Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

An Effective Approach to Enhance the Dissolution Profile of Curcumin and Quercetin: Liquisolid Compacts

Author(s): Shaveta Sharma, Vimal Arora* and Teenu Sharma

Volume 21, Issue 7, 2024

Published on: 27 March, 2023

Page: [1172 - 1184] Pages: 13

DOI: 10.2174/1570180820666230223101504

Price: $65

Abstract

Background: The drugs categorized under BCS class II and IV are poorly water-soluble, which in turn affects their dissolution and bioavailability. To overcome these limitations, namely, poor solubility and bioavailability, several approaches have been tried so far, like, co-solvency, size reduction or micronization, complexation, adsorption on high surface area carriers, etc.

Objective: The present article aims to explore the utilization of the liquisolid technique to improve the dissolution profile of curcumin and quercetin, used as a combination in a solid dosage form. It covers the study of the impact of various carriers employed in liquisolid technology on drug dissolution profiles; Avicel pH 101, Fujicalin and Neusilin were used as carriers in this study.

Methods: The solubility of the drugs was evaluated in various non-volatile solvents except water to select the vehicle having maximum solubility. All formulations were then prepared using curcumin and quercetin in a ratio of 2:1 (150 mg curcumin : 75 mg Quercetin), comprising a proportion of 40-60% w/w of the total mass of the formulation and were estimated for post-compression parameters. During the final processing of the liquisolid compacts, the carrier is to coating material ratio was kept consistent, i.e., 20:1.

Results: Powder X-ray Diffraction (PXRD) and Fourier Transform Infrared Spectroscopy (FTIR) were utilized to analyze drug-excipient interaction; these studies stated no evidence of any physical or chemical interaction between drug(s) and the excipients. The final product was then evaluated for the liquid adsorption capacity and in vitro release of the drugs as a combination, and it was observed that these two properties were found to be significantly improved in the liquisolid compacts.

Conclusion: The outcomes indicated that the combination of Neusilin as the carrier and castor oil as a non-volatile solvent was the best-performing formulation appropriate for targeting an improved dissolution profile.

Keywords: Solubility, dissolution, bioavailability, curcumin, quercetin, liquisolid compacts, castor oil, neusilin.

Graphical Abstract
[1]
Lipinski, C.A. Poor aqueous solubility-An industry wide problem in drug discovery. Am. Pharm. Rev., 2002, 5(3), 82-85.
[2]
Hörter, D.; Dressman, J.B. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv. Drug Deliv. Rev., 2001, 46(1-3), 75-87.
[http://dx.doi.org/10.1016/S0169-409X(00)0013] [PMID: 11259834]
[3]
Kaushik, P.; Mittal, A.; Kumar, S.; Tomar, D.; Mishra, A.; Sah, L.K. Study the effect of liquid solid compact technology on drug’s pharmacokinetic and pharmacodynamic behavior. Int. J. Pharm. Biol. Sci., 2021, 11(1), 61-67.
[http://dx.doi.org/10.21276/ijpbs.2021.11.1.8]
[4]
Kubo, H.; Osawa, T.; Takashima, K.; Mizobe, M. Enhancement of oral bioavailability and pharmacological effect of 1-(3,4-dimethoxyphenyl)-2,3-bis(methoxycarbonyl)-4-hydroxy-6,7,8- trimethoxynaphthalene (TA-7552), a new hypocholesterolemic agent, by micronization in co-ground mixture with D-mannitol. Biol. Pharm. Bull., 1996, 19(5), 741-747.
[http://dx.doi.org/10.1248/bpb.19.741] [PMID: 8741587]
[5]
Al-Hamidi, H.; Edwards, A.A.; Mohammad, M.A.; Nokhodchi, A. To enhance dissolution rate of poorly water-soluble drugs: Glucosamine hydrochloride as a potential carrier in solid dispersion formulations. Colloids Surf. B Biointerfaces, 2010, 76(1), 170-178.
[http://dx.doi.org/10.1016/j.colsurfb.2009.10.030] [PMID: 19945828]
[6]
Barzegar-Jalali, M.; Dastmalchi, S. Kinetic analysis of chlorpropamide dissolution from solid dispersions. Drug Dev. Ind. Pharm., 2007, 33(1), 63-70.
[http://dx.doi.org/10.1080/03639040600762636] [PMID: 17192252]
[7]
Corrigan, O.I. Mechanisms of dissolution of fast release solid dispersions. Drug Dev. Ind. Pharm., 1985, 11(2-3), 697-724.
[http://dx.doi.org/10.3109/03639048509056896]
[8]
Pan, R.N.; Chen, J.H.; Chen, R.R.L. Enhancement of dissolution and bioavailability of piroxicam in solid dispersion systems. Drug Dev. Ind. Pharm., 2000, 26(9), 989-994.
[http://dx.doi.org/10.1081/DDC-100101327] [PMID: 10914324]
[9]
Valizadeh, H.; Zakeri-Milani, P.; Barzegar-Jalali, M.; Mohammadi, G.; Danesh-Bahreini, M.A.; Adibkia, K.; Nokhodchi, A. Preparation and characterization of solid dispersions of piroxicam with hydrophilic carriers. Drug Dev. Ind. Pharm., 2007, 33(1), 45-56.
[http://dx.doi.org/10.1080/03639040600814965] [PMID: 17192250]
[10]
Beg, S.; Jena, S.S.; Patra, C.N.; Rizwan, M.; Swain, S.; Sruti, J. Development of solid self-nanoemulsifying granules (SSNEGs) of ondansetron hydrochloride with enhances bioavailability potential. Colloidand Surface B. Biointerfaces, 2013, 101(1), 414-423.
[http://dx.doi.org/10.1016/j.colsurfb.2012.06.031] [PMID: 23010049]
[11]
Smirnova, I.; Suttiruengwong, S.; Arlt, W. Feasibility studyof hydrophilic and hydrophobic silica aerogels as drug delivery systems. J. Non-Cryst. Solids, 2004, 350(15), 5460.
[http://dx.doi.org/10.1016/j.colsurfb.2012.06.031]
[12]
Smirnova, I.; Tuerk, M.; Wischumerski, R.; Wahl, M. A Comparison of different methods for enhancing the dissolutionrate of poorly soluble drugs: Case of griseofulvin. Enhanced dissolution rate. Life Sci., 2005, 5, 277-280.
[http://dx.doi.org/10.1002/elsc.200500081]
[13]
Barzegar-Jalali, M.; Valizadeh, H.; Shadbad, M.R.S.; Adibkia, K.; Mohammadi, G.; Farahani, A.; Arash, Z.; Nokhodchi, A. Cogrinding as an approach to enhance dissolution rate of a poorly water-soluble drug (gliclazide). Powder Technol., 2010, 197(3), 150-158.
[http://dx.doi.org/10.1016/j.powtec.2009.09.008]
[14]
Pouton, C.W. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and self-micro emulsifying’drug delivery systems. Euro. J. Pharm. Sci., 2000, 1(2), S93-S98.
[http://dx.doi.org/10.1016/S0928-0987(00)00167-6]
[15]
Ruan, L.P.; Yu, B.Y.; Fu, G.M.; Fu, D.N. Improving the solubility of ampelopsin by solid dispersions and inclusion complexes. J. Pharm. Biomed. Anal., 2005, 38(1), 457-464.
[http://dx.doi.org/10.1016/j.jpba.2005.01.030]
[16]
Javadzadeh, Y.; Shariati, H.; Movahhed-Danesh, E.; Nokhodchi, A. Effect of some commercial grades of microcrystalline cellulose on flowability, compressibility, and dissolution profile of piroxicam liquisolid compacts. Drug Dev. Ind. Pharm., 2009, 35(2), 243-251.
[http://dx.doi.org/10.1080/03639040802277672] [PMID: 18785038]
[17]
Christina, M.H.; Claudia, S.L. Drug release from liquisolid systems: Speed it up, slow it down. Expert Opin. Drug Deliv., 2011, 8(2), 191-205.
[http://dx.doi.org/10.1517/17425247.2011.548801] [PMID: 21222556]
[18]
Spireas, S.; Sadu, S. Enhancement of prednisolone dissolution properties using liqui solid compacts. Int. J. Pharm., 1998, 166(2), 177-178.
[http://dx.doi.org/10.1016/S0378-5173(98)00046-5]
[19]
Shashidher, B.; Madhusudhanrao, Y.; Venkateswarlu, V. The liquisolid technique: An overview. Braz. J. Pharm. Sci., 2011, 47(3), 475-482.
[http://dx.doi.org/10.1590/S1984-82502011000300005]
[20]
Thangapazham, R.L.; Sharma, A.; Maheshwari, R.K. Beneficial role of curcumin in skin diseases. Adv. Exp. Med. Biol., 2007, 595, 343-357.
[http://dx.doi.org/10.1007/978-0-387-46401-5_15] [PMID: 17569219]
[21]
Bidian, C.; Mitrea, D.R.; Vasile, O.G.; Filip, A.; Cătoi, A.F.; Moldovan, R.; Decea, N.; Albu, A. Quercetin and curcumin effects in experimental pleural inflammation. Med. Pharm. Rep., 2020, 93(3), 260-266.
[http://dx.doi.org/10.15386/mpr-1484] [PMID: 32832891]
[22]
Heeba, G.H.; Mahmoud, M.E.; Hanafy, A.A.E. Anti-inflammatory potential of curcumin and quercetin in rats. Toxicol. Ind. Health, 2014, 30(6), 551-560.
[http://dx.doi.org/10.1177/0748233712462444] [PMID: 23024111]
[23]
Bulboacă, A.; Porfire, A.; Tefas, L.; Boarescu, P.; Bolboacă, S.; Stănescu, I.; Bulboacă, A.; Dogaru, G. Liposomal curcumin is better than curcumin to alleviate complications in experimental diabetic mellitus. Molecules, 2019, 24(5), 846.
[http://dx.doi.org/10.3390/molecules24050846] [PMID: 30818888]
[24]
Chitkara, D.; Nikalaje, S.K.; Mittal, A.; Chand, M.; Kumar, N. Development of quercetin nanoformulation and in vivo evaluation using streptozotocin induced diabetic rat model. Drug Deliv. Transl. Res., 2012, 2(2), 112-123.
[http://dx.doi.org/10.1007/s13346-012-0063-5] [PMID: 25786720]
[25]
Temraz, S.; Mukherji, D.; Shamseddine, A. Potential targets for colorectal cancer prevention. Int. J. Mol. Sci., 2013, 14(9), 17279-17303.
[http://dx.doi.org/10.3390/ijms140917279] [PMID: 23975167]
[26]
Kaur, G.; Invally, M.; Chintamaneni, M. Influence of piperine and quercetin on antidiabetic potential of curcumin. J. Complement. Integr. Med., 2016, 13(3), 247-255.
[http://dx.doi.org/10.1515/jcim-2016-0016] [PMID: 27343476]
[27]
Mahajan, H.S.; Dhamne, M.R.; Gattani, S.G. Enhanced dissolution rate of glipizide by a liquisolid technique. Int. J. Pharm. Sci. Nanotechnol., 2011, 3(4), 1205-1213.
[http://dx.doi.org/10.37285/ijpsn.2010.3.4.5]
[28]
Gonjari, I.D.; Karmarkar, A.B.; Hosmani, A.H. Evaluation of in vitro dissolution profile comparison methods of sustained release tramadol hydrochloride liquisolid compact formulations with marketed sustained release tablets. Dig. J. Nanomater. Biostruct., 2009, 4, 651-661.
[PMID: 22491149]
[30]
2019. Fuji Chemical Industries, Co., Ltd., Available from: https://www.fujichemical.co.jp/english/medical/ medicine/fujicalin/fujicalin_brochure.pdf]
[31]
Hentzschel, C.M.; Sakmann, A.; Leopold, C.S. Suitability of various excipients as carrier and coating materials for liquisolid compacts. Drug Dev. Ind. Pharm., 2011, 37(10), 1200-1207.
[http://dx.doi.org/10.3109/03639045.2011.564184] [PMID: 21449826]
[32]
Gavali, S.M.; Pacharane, S.S.; Sankpal, S.V. Liquisolid compact: A new technique for enhancement of drug dissolution. Inter. J. Res. Pharm. Biochem., 2011, 1(3), 705-707.
[33]
Dholakiya, A.; Kiran, D.; Jaydip, P.; Mori, D. An integrated qbd based approach of smedds and liquisolid compacts to simultaneously improve the solubility and processability of hydrochlorthiazide. J. Drug Deliv. Sci. Technol., 2020, 61(2021) 102162
[http://dx.doi.org/10.1016/j.jddst.2020.102162]
[34]
Spireas, S.; Sadu, S.; Grover, R. In vitro release evaluation of hydrocortisone liquisolid tablets. J. Pharm. Sci., 1998, 87(7), 867-872.
[http://dx.doi.org/10.1021/js970346g] [PMID: 9649356]
[35]
Wang, T.; Grover, R. Effect of powder substrate on the dissolution properties o fmethy clothiazide liqui solid compacts. Drug Dev. Ind. Pharm., 1999, 25(2), 163-168.
[http://dx.doi.org/10.1081/DDC-100102156] [PMID: 10065349]
[36]
Spireas, S.S.; Jarowski, C.I.; Rohera, B.D. Powdered solution technology: Principles and mechanism. Pharm. Res., 1992, 9(10), 1351-1358.
[http://dx.doi.org/10.1023/A:1015877905988] [PMID: 1448438]
[37]
Spireas, S. Liquisolid systems and methods of preparing same. US Patent 6423339B1, 2002.
[38]
Azharshekoufeh, L.; Javad, S.; Mohammad, B.J.; Yousef, J. Liquiground technique: A new concept for enhancing dissolution rate of glibenclamide by combination of liquisolid and co-grinding technologies. Bioimpacts, 2017, 7(1), 5-12.
[http://dx.doi.org/10.15171/bi.2017.02] [PMID: 28546948]
[39]
Ramadevi, K.; Susheela, V.; Gonugunta, C.S.R.; Vijayaratna, J. Liquisolid Technique: An approach to enhance the dissolution rate of olanzapine. Indian J. Pharm. Sci., 2018, 80(6), 1003-1010.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000450]
[40]
Karmarkar, A.B.; Gonjari, I.D.; Hosmani, A.H. Liquisolid technology for dissolution rate enhancement or sustained release. Expert Opin. Drug Deliv., 2010, 7(10), 1227-1234.
[http://dx.doi.org/10.1517/17425247.2010.511173] [PMID: 20731614]
[41]
Subhramanyam, C.V.S. Textbook of physical pharmaceutics; VallabhPrakashan: New Delhi, 2019, pp. 20-27.
[42]
Vajir, S.; Sahu, V. Enhancement of dissolution rate of poorly water-soluble diclofenac sodium by liquisolid technique. Int. J. Pharm. Chem. Sci., 2012, 1(3), 989-1000.
[43]
Patric, J.S. Martin’s physical pharmacy and pharmaceuticalsciences; Lippincott Williams and Wilkins, 2003.
[44]
Chuahan, P.V.; Patel, H.K.; Patel, B.A.; Patel, K.N.; Patel, P.A. Liquisolid technique for enhancement of dissolution rateof ibuprofen. Int. J. Pharm. Res. Schol., 2012, 1(2), 268-280.
[http://dx.doi.org/10.22159/ijcpr.2018v10i4.28465]
[45]
Gautam, S.; Singh, M. Review: In-vitro drug release characterization models. Int. J. Pharm. Study Res., 2011, 2(1), 77-84.
[46]
Sanka, K.; Poienti, S.; Mohd, A.B.; Diwan, P.V. Improved oral delivery of clonazepam through liquisolid powder compact formulations: In-vitro and ex-vivo characterization. Powder Technol., 2014, 256, 336-344.
[http://dx.doi.org/10.1016/j.powtec.2014.02.026]
[47]
Khinchi, M.P.; Gupta, M.K.; Bhandari, A. Design and development of orally disintegrating tablets of famotidine prepared by direct compression method using different superdisintegrants. J. Appl. Pharm. Sci., 2011, 1(1), 50-58.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy