Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Whole-cell Lipase Catalytic Synthesis of Short-chain Fragrance Esters using Aspergillus flavus

Author(s): Santosh K. Rath, Gurpinder Kaur, Anirudh Sharma, Anmol Singh, Ranjana Prakash, Sudip Mandal and Nagaraja Tejo Prakash*

Volume 21, Issue 7, 2024

Published on: 21 March, 2023

Page: [1208 - 1213] Pages: 6

DOI: 10.2174/1570180820666230222145117

Price: $65

Abstract

Background: Fragrances are the collection of unlike functional assemblies, most likely alcohols, esters, aldehydes, ketones, and acids in organic products/hydrocarbons. Short-chain aliphatic fragrance esters have immense applications as flavors in the food, pharmaceutical and cosmetic industries and also have remarkable commercial significance in cosmetics and personal care products like perfumes, face creams, shampoos, soaps, lotions, jams, jellies, etc.

Objective: This study aimed to synthesize short-chain fragrance esters using a whole-cell lipase catalyst from Aspergillus flavus (RBD-01).

Methods: The present study emphasizes the synthesis of artificial flavoring compounds by using a wholecell biocatalytic process, which can have wide significance. Herein, the preparation of ethyl alkanoates (ethyl propanoate to ethyl decanoate) was performed to investigate the flavors and fragrance excellence. The biomass from Aspergillus flavus (RBD-01) was used as a catalyst to facilitate the remarkable esterification activities towards the synthesis of important aroma esters with the help of a series of short-chain acids and alcohols.

Results: The ethyl hexanoate (4) among all synthesized alkanoates was found to have a fruity fragrance with a good conversion rate. Further synthesized alkyl hexanoates (4A-4I) were found to have good fruity/pineapple/berry flavors and significant aroma quality.

Conclusion: These results implied that whole-cell lipase of Aspergillus flavus (RBD-01) is a promising biocatalyst in the production of flavor aroma esters and can boost production in the food/cosmetic manufacturing industries.

Keywords: Alkyl esters, Aspergillus flavus, whole cell catalyst, lipases, fragrance esters, biocatalyst.

Graphical Abstract
[1]
SÁ, A.G.A.; de Meneses, A.C.; de Araújo, P.H.H.; de Oliveira, D. A review on enzymatic synthesis of aromatic esters used as flavor ingredients for food, cosmetics and pharmaceuticals industries. Trends Food Sci. Technol., 2017, 69, 95-105.
[2]
Yan, H.D.; Zhang, Q.; Wang, Z. Biocatalytic synthesis of short-chain flavor esters with high substrate loading by a whole-cell lipase from Aspergillus oryzae. Catal. Commun., 2014, 45, 59-62.
[http://dx.doi.org/10.1016/j.catcom.2013.10.018]
[3]
de Souza, M.; dos Santos, K.; Freire, R.; Barreto, A.; Fechine, P.; Gonçalves, L. Production of flavor esters catalyzed by lipase B from Candida antarctica immobilized on magnetic nanoparticles. Braz. J. Chem. Eng., 2017, 34(3), 681-690.
[http://dx.doi.org/10.1590/0104-6632.20170343s20150575]
[4]
Humble, M.S.; Berglund, P. Biocatalytic promiscuity. Eur. J. Org. Chem., 2011, 2011(19), 3391-3401.
[http://dx.doi.org/10.1002/ejoc.201001664]
[5]
Lin, B.; Tao, Y. Whole-cell biocatalysts by design. Microb. Cell Fact., 2017, 16(1), 106.
[http://dx.doi.org/10.1186/s12934-017-0724-7] [PMID: 28610636]
[6]
Garzón-Posse, F.; Becerra-Figueroa, L.; Hernández-Arias, J.; Gamba-Sánchez, D. Whole cells as biocatalysts in organic transformations. Molecules, 2018, 23(6), 1265.
[http://dx.doi.org/10.3390/molecules23061265] [PMID: 29799483]
[7]
Reetz, M.T. Biocatalysis in organic chemistry and biotechnology: Past, present, and future. J. Am. Chem. Soc., 2013, 135(34), 12480-12496.
[http://dx.doi.org/10.1021/ja405051f] [PMID: 23930719]
[8]
Ban, K.; Hama, S.; Nishizuka, K.; Kaieda, M.; Matsumoto, T.; Kondo, A.; Noda, H.; Fukuda, H. Repeated use of whole-cell biocatalysts immobilized within biomass support particles for biodiesel fuel production. J. Mol. Catal., B Enzym., 2002, 17(3-5), 157-165.
[http://dx.doi.org/10.1016/S1381-1177(02)00023-1]
[9]
Matsumoto, T.; Takahashi, S.; Kaieda, M.; Ueda, M.; Tanaka, A.; Fukuda, H.; Kondo, A. Yeast whole-cell biocatalyst constructed by intracellular overproduction of Rhizopus oryzae lipase is applicable to biodiesel fuel production. Appl. Microbiol. Biotechnol., 2001, 57(4), 515-520.
[http://dx.doi.org/10.1007/s002530100733] [PMID: 11762598]
[10]
De Carvalho, C.C.C.R. Whole cell biocatalysts: Essential workers from nature to the industry. Microb. Biotechnol., 2017, 10(2), 250-263.
[http://dx.doi.org/10.1111/1751-7915.12363] [PMID: 27145540]
[11]
Bharathi, D.; Rajalakshmi, G.; Komathi, S. Optimization and production of lipase enzyme from bacterial strains isolated from petrol spilled soil. J. King Saud Univ. Sci., 2019, 31(4), 898-901.
[12]
Sharma, A.; Melo, J.S.; Tejo Prakash, N.; Prakash, R. Fuel properties of blend and biodiesel generated from acid oil using whole cell biocatalyst. Energy Sources Recov. Util. Environ. Effects, 2018, 40(2), 148-154.
[http://dx.doi.org/10.1080/15567036.2017.1406562]
[13]
Sharma, A.; Verma, A.; Luxami, V.; Melo, J.S.; D’Souza, S.F.; Prakash, N.T.; Prakash, R. New proton nuclear magnetic resonance-based derivation for quantification of alkyl esters generated using biocatalysis. Energy Fuels, 2013, 27(5), 2660-2664.
[http://dx.doi.org/10.1021/ef4001506]
[14]
Sharma, A.; Melo, J.S.; Tejo Prakash, N.; Prakash, R. Effect of feedstocks and chain length of alcohols on whole-cell-catalyzed generation of alkyl esters. Energy Sourc. Recov. Util. Environ. Effects, 2018, 40(21), 2612-2619.
[http://dx.doi.org/10.1080/15567036.2018.1505979]
[15]
Torres, C.; Otero, C.; Part, I. Enzymatic synthesis of lactate and glycolate esters of fatty alcohols. Enzyme Microb. Technol., 1999, 25(8-9), 745-752.
[http://dx.doi.org/10.1016/S0141-0229(99)00117-9]
[16]
Strohalm, H.; Dold, S.; Pendzialek, K.; Weiher, M.; Engel, K.H. Preparation of passion fruit-typical 2-alkyl ester enantiomers via lipase-catalyzed kinetic resolution. J. Agric. Food Chem., 2010, 58(10), 6328-6333.
[http://dx.doi.org/10.1021/jf100432s] [PMID: 20415422]
[17]
Xiao, M.; Mathew, S.; Obbard, J.P. Biodiesel fuel production via transesterification of oils using lipase biocatalyst. Glob. Change Biol. Bioenergy, 2009, 1(2), 115-125.
[http://dx.doi.org/10.1111/j.1757-1707.2009.01009.x]
[18]
Fukuda, H.; Kondo, A.; Noda, H. Biodiesel fuel production by transesterification of oils. J. Biosci. Bioeng., 2001, 92(5), 405-416.
[http://dx.doi.org/10.1016/S1389-1723(01)80288-7] [PMID: 16233120]
[19]
De Castro, H.; De Oliveira, P.; Pereira, E. Biotechnol. Lett. 1997, 19(3), 229-232.
[20]
Xu, Y.; Wang, D.; Mu, X.Q.; Zhao, G.A.; Zhang, K.C. J. Mol. Catal., B Enzym. 2002, 18, 29-37.
[21]
Abbas, H.; Comeau, L. Enzyme Microb. Technol. 2003, 32, 589-595.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy