Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

mRNA疫苗——一种新的癌症治疗策略

卷 23, 期 9, 2023

发表于: 27 April, 2023

页: [669 - 681] 页: 13

弟呕挨: 10.2174/1568009623666230222124424

价格: $65

conference banner
摘要

自2019冠状病毒病疫情爆发以来,相应的mRNA疫苗Comirnaty (BNT162b2)和Spikevax (mRNA-1273)已被授权紧急使用。大多数临床研究还发现,mRNA疫苗是预防和治疗包括癌症在内的许多疾病的革命性策略。与病毒载体或DNA疫苗不同,mRNA疫苗在注射后使身体直接产生蛋白质。传递载体和编码肿瘤抗原或免疫调节分子的mrna共同作用,触发抗肿瘤反应。在mRNA疫苗可用于临床试验之前,需要解决一些挑战。其中包括建立有效和安全的递送系统,产生针对不同类型癌症的成功mRNA疫苗,以及提出改进的联合疗法。因此,我们需要改进疫苗特异性识别并开发mRNA传递机制。本文综述了全mRNA疫苗的元素组成,并对mRNA肿瘤疫苗的最新研究进展和未来发展方向进行了讨论。

关键词: mRNA疫苗,肿瘤抗原,癌症,临床试验,输送系统,免疫治疗。

Next »
图形摘要
[1]
Brenner, S.; Jacob, F.; Meselson, M. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature, 1961, 190(4776), 576-581.
[http://dx.doi.org/10.1038/190576a0] [PMID: 20446365]
[2]
Wolff, J.A.; Malone, R.W.; Williams, P.; Chong, W.; Acsadi, G.; Jani, A.; Felgner, P.L. Direct gene transfer into mouse muscle in vivo. Science, 1990, 247(4949), 1465-1468.
[http://dx.doi.org/10.1126/science.1690918] [PMID: 1690918]
[3]
Petsch, B.; Schnee, M.; Vogel, A.B.; Lange, E.; Hoffmann, B.; Voss, D.; Schlake, T.; Thess, A.; Kallen, K.J.; Stitz, L.; Kramps, T. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat. Biotechnol., 2012, 30(12), 1210-1216.
[http://dx.doi.org/10.1038/nbt.2436] [PMID: 23159882]
[4]
Pardi, N.; Parkhouse, K.; Kirkpatrick, E.; McMahon, M.; Zost, S.J.; Mui, B.L.; Tam, Y.K.; Karikó, K.; Barbosa, C.J.; Madden, T.D.; Hope, M.J.; Krammer, F.; Hensley, S.E.; Weissman, D. Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies. Nat. Commun., 2018, 9(1), 3361.
[http://dx.doi.org/10.1038/s41467-018-05482-0] [PMID: 30135514]
[5]
Feldman, R.A.; Fuhr, R.; Smolenov, I.; Mick Ribeiro, A.; Panther, L.; Watson, M.; Senn, J.J.; Smith, M.; Almarsson, Ӧ.; Pujar, H.S.; Laska, M.E.; Thompson, J.; Zaks, T.; Ciaramella, G. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine, 2019, 37(25), 3326-3334.
[http://dx.doi.org/10.1016/j.vaccine.2019.04.074] [PMID: 31079849]
[6]
Guardo, A.C.; Joe, P.T.; Miralles, L.; Bargalló, M.E.; Mothe, B.; Krasniqi, A.; Heirman, C.; García, F.; Thielemans, K.; Brander, C.; Aerts, J.L.; Plana, M. Preclinical evaluation of an mRNA HIV vaccine combining rationally selected antigenic sequences and adjuvant signals (HTI-TriMix). AIDS, 2017, 31(3), 321-332.
[http://dx.doi.org/10.1097/QAD.0000000000001276] [PMID: 27677160]
[7]
de Jong, W.; Leal, L.; Buyze, J.; Pannus, P.; Guardo, A.; Salgado, M.; Mothe, B.; Molto, J.; Moron-Lopez, S.; Gálvez, C.; Florence, E.; Vanham, G.; van Gorp, E.; Brander, C.; Allard, S.; Thielemans, K.; Martinez-Picado, J.; Plana, M.; García, F.; Gruters, R.A. Therapeutic vaccine in chronically hiv-1-infected patients: A randomized, double-blind, placebo-controlled phase iia trial with htitrimix. Vaccines (Basel), 2019, 7(4), 209.
[http://dx.doi.org/10.3390/vaccines7040209] [PMID: 31817794]
[8]
Erasmus, J.H.; Khandhar, A.P.; O’Connor, M.A.; Walls, A.C.; Hemann, E.A.; Murapa, P.; Archer, J.; Leventhal, S.; Fuller, J.T.; Lewis, T.B.; Draves, K.E.; Randall, S.; Guerriero, K.A.; Duthie, M.S.; Carter, D.; Reed, S.G.; Hawman, D.W.; Feldmann, H.; Gale, M., Jr; Veesler, D.; Berglund, P.; Fuller, D.H. An Alphavirus -derived replicon RNA vaccine induces SARS-CoV-2 neutralizing antibody and T cell responses in mice and nonhuman primates. Sci. Transl. Med., 2020, 12(555), eabc9396.
[http://dx.doi.org/10.1126/scitranslmed.abc9396] [PMID: 32690628]
[9]
Tombácz, I.; Weissman, D.; Pardi, N. Vaccination with messenger rna: A promising alternative to DNA vaccination. Methods Mol. Biol., 2021, 2197, 13-31.
[http://dx.doi.org/10.1007/978-1-0716-0872-2_2] [PMID: 32827130]
[10]
Miao, L.; Zhang, Y.; Huang, L. mRNA vaccine for cancer immunotherapy. Mol. Cancer, 2021, 20(1), 41.
[http://dx.doi.org/10.1186/s12943-021-01335-5] [PMID: 33632261]
[11]
Linares-Fernández, S.; Lacroix, C.; Exposito, J.Y.; Verrier, B. Tailoring mrna vaccine to balance innate/adaptive immune response. Trends Mol. Med., 2020, 26(3), 311-323.
[http://dx.doi.org/10.1016/j.molmed.2019.10.002] [PMID: 31699497]
[12]
Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov., 2018, 17(4), 261-279.
[http://dx.doi.org/10.1038/nrd.2017.243] [PMID: 29326426]
[13]
Iavarone, C.; O’hagan, D.T.; Yu, D.; Delahaye, N.F.; Ulmer, J.B. Mechanism of action of mRNA-based vaccines. Expert Rev. Vaccines, 2017, 16(9), 871-881.
[http://dx.doi.org/10.1080/14760584.2017.1355245] [PMID: 28701102]
[14]
Hu, Z.; Ott, P.A.; Wu, C.J. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat. Rev. Immunol., 2018, 18(3), 168-182.
[http://dx.doi.org/10.1038/nri.2017.131] [PMID: 29226910]
[15]
Jackson, N.A.C.; Kester, K.E.; Casimiro, D.; Gurunathan, S.; DeRosa, F. The promise of mRNA vaccines: a biotech and industrial perspective. NPJ Vaccines, 2020, 5(1), 11.
[http://dx.doi.org/10.1038/s41541-020-0159-8] [PMID: 32047656]
[16]
Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; Bailey, R.; Swanson, K.A.; Roychoudhury, S.; Koury, K.; Li, P.; Kalina, W.V.; Cooper, D.; Frenck, R.W., Jr; Hammitt, L.L.; Türeci, Ö.; Nell, H.; Schaefer, A.; Ünal, S.; Tresnan, D.B.; Mather, S.; Dormitzer, P.R.; Şahin, U.; Jansen, K.U.; Gruber, W.C. Safety and efficacy of the bnt162b2 mrna covid-19 vaccine. N. Engl. J. Med., 2020, 383(27), 2603-2615.
[http://dx.doi.org/10.1056/NEJMoa2034577] [PMID: 33301246]
[17]
Lamb, Y.N. Bnt162b2 mrna covid-19 vaccine: First approval. Drugs, 2021, 81(4), 495-501.
[http://dx.doi.org/10.1007/s40265-021-01480-7] [PMID: 33683637]
[18]
Thess, A.; Grund, S.; Mui, B.L.; Hope, M.J.; Baumhof, P.; Fotin-Mleczek, M.; Schlake, T. Sequence-engineered mrna without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol. Ther., 2015, 23(9), 1456-1464.
[http://dx.doi.org/10.1038/mt.2015.103] [PMID: 26050989]
[19]
Karikó, K.; Muramatsu, H.; Welsh, F.A.; Ludwig, J.; Kato, H.; Akira, S.; Weissman, D. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther., 2008, 16(11), 1833-1840.
[http://dx.doi.org/10.1038/mt.2008.200] [PMID: 18797453]
[20]
Heiser, A.; Coleman, D.; Dannull, J.; Yancey, D.; Maurice, M.A.; Lallas, C.D.; Dahm, P.; Niedzwiecki, D.; Gilboa, E.; Vieweg, J. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J. Clin. Invest., 2002, 109(3), 409-417.
[http://dx.doi.org/10.1172/JCI0214364] [PMID: 11828001]
[21]
Weide, B.; Carralot, J.P.; Reese, A.; Scheel, B.; Eigentler, T.K.; Hoerr, I.; Rammensee, H.G.; Garbe, C.; Pascolo, S. Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. J. Immunother., 2008, 31(2), 180-188.
[http://dx.doi.org/10.1097/CJI.0b013e31815ce501] [PMID: 18481387]
[22]
Rittig, S.M.; Haentschel, M.; Weimer, K.J.; Heine, A.; Muller, M.R.; Brugger, W.; Horger, M.S.; Maksimovic, O.; Stenzl, A.; Hoerr, I.; Rammensee, H.G.; Holderried, T.A.W.; Kanz, L.; Pascolo, S.; Brossart, P. Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol. Ther., 2011, 19(5), 990-999.
[http://dx.doi.org/10.1038/mt.2010.289] [PMID: 21189474]
[23]
Van Gulck, E.; Vlieghe, E.; Vekemans, M.; Van Tendeloo, V.F.I.; Van De Velde, A.; Smits, E.; Anguille, S.; Cools, N.; Goossens, H.; Mertens, L.; De Haes, W.; Wong, J.; Florence, E.; Vanham, G.; Berneman, Z.N. mRNA-based dendritic cell vaccination induces potent antiviral T-cell responses in HIV-1-infected patients. AIDS, 2012, 26(4), F1-F12.
[http://dx.doi.org/10.1097/QAD.0b013e32834f33e8] [PMID: 22156965]
[24]
Maus, M.V.; Haas, A.R.; Beatty, G.L.; Albelda, S.M.; Levine, B.L.; Liu, X.; Zhao, Y.; Kalos, M.; June, C.H. T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol. Res., 2013, 1(1), 26-31.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0006] [PMID: 24777247]
[25]
Finn, O. J. Immuno-oncology: understanding the function and dysfunction of the immune system in cancer. Ann. Oncol., 2012, 23(S8), 6-9.
[http://dx.doi.org/10.1093/annonc/mds256]
[26]
Barbier, A.J.; Jiang, A.Y.; Zhang, P.; Wooster, R.; Anderson, D.G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol., 2022, 40(6), 840-854.
[http://dx.doi.org/10.1038/s41587-022-01294-2] [PMID: 35534554]
[27]
Zhang, C.; Maruggi, G.; Shan, H.; Li, J. Advances in mrna vaccines for infectious diseases. Front. Immunol., 2019, 10, 594.
[http://dx.doi.org/10.3389/fimmu.2019.00594] [PMID: 30972078]
[28]
Tatematsu, M.; Funami, K.; Seya, T.; Matsumoto, M. Extracellular rna sensing by pattern recognition receptors. J. Innate Immun., 2018, 10(5-6), 398-406.
[http://dx.doi.org/10.1159/000494034] [PMID: 30404092]
[29]
Jirikowski, G.F.; Sanna, P.P.; Maciejewski-Lenoir, D.; Bloom, F.E. Reversal of diabetes insipidus in Brattleboro rats: intrahypothalamic injection of vasopressin mRNA. Science, 1992, 255(5047), 996-998.
[http://dx.doi.org/10.1126/science.1546298] [PMID: 1546298]
[30]
Sahin, U.; Karikó, K.; Türeci, Ö. mRNA-based therapeutics — developing a new class of drugs. Nat. Rev. Drug Discov., 2014, 13(10), 759-780.
[http://dx.doi.org/10.1038/nrd4278] [PMID: 25233993]
[31]
Schlake, T.; Thess, A.; Fotin-Mleczek, M.; Kallen, K.J. Developing mRNA-vaccine technologies. RNA Biol., 2012, 9(11), 1319-1330.
[http://dx.doi.org/10.4161/rna.22269] [PMID: 23064118]
[32]
Pardi, N.; Muramatsu, H.; Weissman, D.; Karikó, K. In vitro transcription of long RNA containing modified nucleosides. Methods Mol. Biol., 2013, 969, 29-42.
[http://dx.doi.org/10.1007/978-1-62703-260-5_2] [PMID: 23296925]
[33]
Anderson, B.R.; Muramatsu, H.; Nallagatla, S.R.; Bevilacqua, P.C.; Sansing, L.H.; Weissman, D.; Karikó, K. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res., 2010, 38(17), 5884-5892.
[http://dx.doi.org/10.1093/nar/gkq347] [PMID: 20457754]
[34]
Karikó, K.; Buckstein, M.; Ni, H.; Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity, 2005, 23(2), 165-175.
[http://dx.doi.org/10.1016/j.immuni.2005.06.008] [PMID: 16111635]
[35]
Wadhwa, A.; Aljabbari, A.; Lokras, A.; Foged, C.; Thakur, A. Opportunities and challenges in the delivery of mRNA-based vaccines. Pharmaceutics, 2020, 12(2), 102.
[http://dx.doi.org/10.3390/pharmaceutics12020102] [PMID: 32013049]
[36]
Bloom, K.; van den Berg, F.; Arbuthnot, P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther., 2021, 28(3-4), 117-129.
[http://dx.doi.org/10.1038/s41434-020-00204-y] [PMID: 33093657]
[37]
Ramanathan, A.; Robb, G.B.; Chan, S.H. mRNA capping: biological functions and applications. Nucleic Acids Res., 2016, 44(16), 7511-7526.
[http://dx.doi.org/10.1093/nar/gkw551] [PMID: 27317694]
[38]
Devarkar, S.C.; Wang, C.; Miller, M.T.; Ramanathan, A.; Jiang, F.; Khan, A.G.; Patel, S.S.; Marcotrigiano, J. Structural basis for m7G recognition and 2′-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proc. Natl. Acad. Sci. USA, 2016, 113(3), 596-601.
[http://dx.doi.org/10.1073/pnas.1515152113] [PMID: 26733676]
[39]
Martin, S.A.; Paoletti, E.; Moss, B. Purification of mRNA guanylyltransferase and mRNA (guanine-7-) methyltransferase from vaccinia virions. J. Biol. Chem., 1975, 250(24), 9322-9329.
[http://dx.doi.org/10.1016/S0021-9258(19)40646-7] [PMID: 1194286]
[40]
Wojtczak, B.A.; Sikorski, P.J.; Fac-Dabrowska, K.; Nowicka, A.; Warminski, M.; Kubacka, D.; Nowak, E.; Nowotny, M.; Kowalska, J.; Jemielity, J. 5′-phosphorothiolate dinucleotide cap analogues: Reagents for messenger rna modification and potent smallmolecular inhibitors of decapping enzymes. J. Am. Chem. Soc., 2018, 140(18), 5987-5999.
[http://dx.doi.org/10.1021/jacs.8b02597] [PMID: 29676910]
[41]
Kiriakidou, M.; Tan, G.S.; Lamprinaki, S.; De Planell-Saguer, M.; Nelson, P.T.; Mourelatos, Z. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell, 2007, 129(6), 1141-1151.
[http://dx.doi.org/10.1016/j.cell.2007.05.016] [PMID: 17524464]
[42]
Xu, S.; Yang, K.; Li, R.; Zhang, L. Mrna vaccine era-mechanisms, drug platform and clinical prospection. Int. J. Mol. Sci., 2020, 21(18), 6582.
[http://dx.doi.org/10.3390/ijms21186582] [PMID: 32916818]
[43]
Hinnebusch, A.G.; Ivanov, I.P.; Sonenberg, N. Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science, 2016, 352(6292), 1413-1416.
[http://dx.doi.org/10.1126/science.aad9868] [PMID: 27313038]
[44]
Sonenberg, N.; Hinnebusch, A.G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell, 2009, 136(4), 731-745.
[http://dx.doi.org/10.1016/j.cell.2009.01.042] [PMID: 19239892]
[45]
Haizel, S.A.; Bhardwaj, U.; Gonzalez, R.L., Jr; Mitra, S.; Goss, D.J. 5′-UTR recruitment of the translation initiation factor eIF4GI or DAP5 drives cap-independent translation of a subset of human mRNAs. J. Biol. Chem., 2020, 295(33), 11693-11706.
[http://dx.doi.org/10.1074/jbc.RA120.013678] [PMID: 32571876]
[46]
Warren, L.; Manos, P.D.; Ahfeldt, T.; Loh, Y.H.; Li, H.; Lau, F.; Ebina, W.; Mandal, P.K.; Smith, Z.D.; Meissner, A.; Daley, G.Q.; Brack, A.S.; Collins, J.J.; Cowan, C.; Schlaeger, T.M.; Rossi, D.J. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 2010, 7(5), 618-630.
[http://dx.doi.org/10.1016/j.stem.2010.08.012] [PMID: 20888316]
[47]
Gustafsson, C.; Govindarajan, S.; Minshull, J. Codon bias and heterologous protein expression. Trends Biotechnol., 2004, 22(7), 346-353.
[http://dx.doi.org/10.1016/j.tibtech.2004.04.006] [PMID: 15245907]
[48]
Weissman, D. mRNA transcript therapy. Expert Rev. Vaccines, 2015, 14(2), 265-281.
[http://dx.doi.org/10.1586/14760584.2015.973859] [PMID: 25359562]
[49]
Gallie, D.R. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev., 1991, 5(11), 2108-2116.
[http://dx.doi.org/10.1101/gad.5.11.2108] [PMID: 1682219]
[50]
Yu, S.; Kim, V.N. A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing. Nat. Rev. Mol. Cell Biol., 2020, 21(9), 542-556.
[http://dx.doi.org/10.1038/s41580-020-0246-8] [PMID: 32483315]
[51]
Peng, J.; Murray, E.L.; Schoenberg, D.R. In vivo and in vitro analysis of poly(A) length effects on mRNA translation. Methods Mol. Biol., 2008, 419, 215-230.
[http://dx.doi.org/10.1007/978-1-59745-033-1_15] [PMID: 18369986]
[52]
Oh, S.; Kessler, J.A. Design, assembly, production, and transfection of synthetic modified mrna. Methods, 2018, 133, 29-43.
[http://dx.doi.org/10.1016/j.ymeth.2017.10.008] [PMID: 29080741]
[53]
Proudfoot, N.J. Ending the message: poly(A) signals then and now. Genes Dev., 2011, 25(17), 1770-1782.
[http://dx.doi.org/10.1101/gad.17268411] [PMID: 21896654]
[54]
Pardi, N.; Hogan, M.J.; Pelc, R.S.; Muramatsu, H.; Andersen, H.; DeMaso, C.R.; Dowd, K.A.; Sutherland, L.L.; Scearce, R.M.; Parks, R.; Wagner, W.; Granados, A.; Greenhouse, J.; Walker, M.; Willis, E.; Yu, J.S.; McGee, C.E.; Sempowski, G.D.; Mui, B.L.; Tam, Y.K.; Huang, Y.J.; Vanlandingham, D.; Holmes, V.M.; Balachandran, H.; Sahu, S.; Lifton, M.; Higgs, S.; Hensley, S.E.; Madden, T.D.; Hope, M.J.; Karikó, K.; Santra, S.; Graham, B.S.; Lewis, M.G.; Pierson, T.C.; Haynes, B.F.; Weissman, D. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature, 2017, 543(7644), 248-251.
[http://dx.doi.org/10.1038/nature21428] [PMID: 28151488]
[55]
Koh, K.J.; Liu, Y.; Lim, S.H.; Loh, X.J.; Kang, L.; Lim, C.Y.; Phua, K.K.L. Formulation, characterization and evaluation of mRNA-loaded dissolvable polymeric microneedles (RNApatch). Sci. Rep., 2018, 8(1), 11842.
[http://dx.doi.org/10.1038/s41598-018-30290-3] [PMID: 30087399]
[56]
Ehrengruber, M.U.; Lundstrom, K. Alphaviruses: Semliki Forest virus and Sindbis virus vectors for gene transfer into neurons. Curr. Protoc. Neurosci., 2011. Chapter 4:Unit 4.22.
[http://dx.doi.org/10.1002/0471142301.ns0422s41] [PMID: 21971849]
[57]
Rozovics, J.M.; Chase, A.J.; Cathcart, A.L.; Chou, W.; Gershon, P.D.; Palusa, S.; Wilusz, J.; Semler, B.L. Picornavirus modification of a host mRNA decay protein. MBio, 2012, 3(6), e00431-12.
[http://dx.doi.org/10.1128/mBio.00431-12] [PMID: 23131833]
[58]
Schott, J.W.; Morgan, M.; Galla, M.; Schambach, A. Viral and synthetic rna vector technologies and applications. Mol. Ther., 2016, 24(9), 1513-1527.
[http://dx.doi.org/10.1038/mt.2016.143] [PMID: 27377044]
[59]
Tezel, A.; Dokka, S.; Kelly, S.; Hardee, G.E.; Mitragotri, S. Topical delivery of anti-sense oligonucleotides using low-frequency sonophoresis. Pharm. Res., 2004, 21(12), 2219-2225.
[http://dx.doi.org/10.1007/s11095-004-7674-6] [PMID: 15648253]
[60]
Dhaliwal, H.K.; Fan, Y.; Kim, J.; Amiji, M.M. Intranasal delivery and transfection of mrna therapeutics in the brain using cationic liposomes. Mol. Pharm., 2020, 17(6), 1996-2005.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00170] [PMID: 32365295]
[61]
Pardi, N.; Hogan, M.J.; Weissman, D. Recent advances in mRNA vaccine technology. Curr. Opin. Immunol., 2020, 65, 14-20.
[http://dx.doi.org/10.1016/j.coi.2020.01.008] [PMID: 32244193]
[62]
Corbett, K.S.; Flynn, B.; Foulds, K.E.; Francica, J.R.; Boyoglu-Barnum, S.; Werner, A.P.; Flach, B.; O’Connell, S.; Bock, K.W.; Minai, M.; Nagata, B.M.; Andersen, H.; Martinez, D.R.; Noe, A.T.; Douek, N.; Donaldson, M.M.; Nji, N.N.; Alvarado, G.S.; Edwards, D.K.; Flebbe, D.R.; Lamb, E.; Doria-Rose, N.A.; Lin, B.C.; Louder, M.K.; O’Dell, S.; Schmidt, S.D.; Phung, E.; Chang, L.A.; Yap, C.; Todd, J.P.M.; Pessaint, L.; Van Ry, A.; Browne, S.; Greenhouse, J.; Putman-Taylor, T.; Strasbaugh, A.; Campbell, T.A.; Cook, A.; Dodson, A.; Steingrebe, K.; Shi, W.; Zhang, Y.; Abiona, O.M.; Wang, L.; Pegu, A.; Yang, E.S.; Leung, K.; Zhou, T.; Teng, I.T.; Widge, A.; Gordon, I.; Novik, L.; Gillespie, R.A.; Loomis, R.J.; Moliva, J.I.; Stewart-Jones, G.; Himansu, S.; Kong, W.P.; Nason, M.C.; Morabito, K.M.; Ruckwardt, T.J.; Ledgerwood, J.E.; Gaudinski, M.R.; Kwong, P.D.; Mascola, J.R.; Carfi, A.; Lewis, M.G.; Baric, R.S.; McDermott, A.; Moore, I.N.; Sullivan, N.J.; Roederer, M.; Seder, R.A.; Graham, B.S. Evaluation of the mrna-1273 vaccine against sars-cov-2 in nonhuman primates. N. Engl. J. Med., 2020, 383(16), 1544-1555.
[http://dx.doi.org/10.1056/NEJMoa2024671] [PMID: 32722908]
[63]
van den Brand, D.; Gorris, M.A.J.; van Asbeck, A.H.; Palmen, E.; Ebisch, I.; Dolstra, H.; Hällbrink, M.; Massuger, L.F.A.G.; Brock, R. Peptide-mediated delivery of therapeutic mRNA in ovarian cancer. Eur. J. Pharm. Biopharm., 2019, 141, 180-190.
[http://dx.doi.org/10.1016/j.ejpb.2019.05.014] [PMID: 31103743]
[64]
Kang, Z.; Meng, Q.; Liu, K. Peptide-based gene delivery vectors. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(11), 1824-1841.
[http://dx.doi.org/10.1039/C8TB03124J] [PMID: 32255045]
[65]
Trepotec, Z.; Lichtenegger, E.; Plank, C.; Aneja, M.K.; Rudolph, C. Delivery of mRNA therapeutics for the treatment of hepatic diseases. Mol. Ther., 2019, 27(4), 794-802.
[http://dx.doi.org/10.1016/j.ymthe.2018.12.012] [PMID: 30655211]
[66]
Magadum, A.; Kaur, K.; Zangi, L. mRNA-based protein replacement therapy for the heart. Mol. Ther., 2019, 27(4), 785-793.
[http://dx.doi.org/10.1016/j.ymthe.2018.11.018] [PMID: 30611663]
[67]
Zahm, C.D.; Moseman, J.E.; Delmastro, L.E.; G Mcneel, D. PD-1 and LAG-3 blockade improve anti-tumor vaccine efficacy. OncoImmunology, 2021, 10(1), 1912892.
[http://dx.doi.org/10.1080/2162402X.2021.1912892] [PMID: 33996265]
[68]
Tchou, J.; Zhao, Y.; Levine, B.L.; Zhang, P.J.; Davis, M.M.; Melenhorst, J.J.; Kulikovskaya, I.; Brennan, A.L.; Liu, X.; Lacey, S.F.; Posey, A.D., Jr; Williams, A.D.; So, A.; Conejo-Garcia, J.R.; Plesa, G.; Young, R.M.; McGettigan, S.; Campbell, J.; Pierce, R.H.; Matro, J.M.; DeMichele, A.M.; Clark, A.S.; Cooper, L.J.; Schuchter, L.M.; Vonderheide, R.H.; June, C.H. Safety and efficacy of intratumoral injections of chimeric antigen receptor (car) t cells in metastatic breast cancer. Cancer Immunol. Res., 2017, 5(12), 1152-1161.
[http://dx.doi.org/10.1158/2326-6066.CIR-17-0189] [PMID: 29109077]
[69]
Parayath, N.N.; Stephan, S.B.; Koehne, A.L.; Nelson, P.S.; Stephan, M.T. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat. Commun., 2020, 11(1), 6080.
[http://dx.doi.org/10.1038/s41467-020-19486-2] [PMID: 33247092]
[70]
Mitchell, D.A.; Batich, K.A.; Gunn, M.D.; Huang, M.N.; Sanchez-Perez, L.; Nair, S.K.; Congdon, K.L.; Reap, E.A.; Archer, G.E.; Desjardins, A.; Friedman, A.H.; Friedman, H.S.; Herndon, J.E., II; Coan, A.; McLendon, R.E.; Reardon, D.A.; Vredenburgh, J.J.; Bigner, D.D.; Sampson, J.H. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature, 2015, 519(7543), 366-369.
[http://dx.doi.org/10.1038/nature14320] [PMID: 25762141]
[71]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[72]
Sabari, J.K.; Lok, B.H.; Laird, J.H.; Poirier, J.T.; Rudin, C.M. Unravelling the biology of SCLC: implications for therapy. Nat. Rev. Clin. Oncol., 2017, 14(9), 549-561.
[http://dx.doi.org/10.1038/nrclinonc.2017.71] [PMID: 28534531]
[73]
Khan, P.; Siddiqui, J.A.; Maurya, S.K.; Lakshmanan, I.; Jain, M.; Ganti, A.K.; Salgia, R.; Batra, S.K.; Nasser, M.W. Epigenetic landscape of small cell lung cancer: Small image of a giant recalcitrant disease. Semin. Cancer Biol., 2022, 83, 57-76.
[http://dx.doi.org/10.1016/j.semcancer.2020.11.006] [PMID: 33220460]
[74]
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[75]
Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature, 2019, 575(7782), 299-309.
[http://dx.doi.org/10.1038/s41586-019-1730-1] [PMID: 31723286]
[76]
Xu, R.; Lu, T.; Zhao, J.; Wang, J.; Peng, B.; Zhang, L. Identification of tumor antigens and immune subtypes in lung adenocarcinoma for mRNA vaccine development. Front. Cell Dev. Biol., 2022, 10, 815596.
[http://dx.doi.org/10.3389/fcell.2022.815596] [PMID: 35265614]
[77]
Papachristofilou, A.; Hipp, M.M.; Klinkhardt, U.; Früh, M.; Sebastian, M.; Weiss, C.; Pless, M.; Cathomas, R.; Hilbe, W.; Pall, G.; Wehler, T.; Alt, J.; Bischoff, H.; Geißler, M.; Griesinger, F.; Kallen, K.J.; Fotin-Mleczek, M.; Schröder, A.; Scheel, B.; Muth, A.; Seibel, T.; Stosnach, C.; Doener, F.; Hong, H.S.; Koch, S.D.; Gnad-Vogt, U.; Zippelius, A. Phase Ib evaluation of a self-adjuvanted protamine formulated mRNA-based active cancer immunotherapy, BI1361849 (CV9202), combined with local radiation treatment in patients with stage IV non-small cell lung cancer. J. Immunother. Cancer, 2019, 7(1), 38.
[http://dx.doi.org/10.1186/s40425-019-0520-5] [PMID: 30736848]
[78]
Sebastian, M.; Schröder, A.; Scheel, B.; Hong, H.S.; Muth, A.; von Boehmer, L.; Zippelius, A.; Mayer, F.; Reck, M.; Atanackovic, D.; Thomas, M.; Schneller, F.; Stöhlmacher, J.; Bernhard, H.; Gröschel, A.; Lander, T.; Probst, J.; Strack, T.; Wiegand, V.; Gnad-Vogt, U.; Kallen, K.J.; Hoerr, I.; von der Muelbe, F.; Fotin-Mleczek, M.; Knuth, A.; Koch, S.D. A phase I/IIa study of the mRNA-based cancer immunotherapy CV9201 in patients with stage IIIB/IV non-small cell lung cancer. Cancer Immunol. Immunother., 2019, 68(5), 799-812.
[http://dx.doi.org/10.1007/s00262-019-02315-x] [PMID: 30770959]
[79]
Toomey, P.G.; Vohra, N.A.; Ghansah, T.; Sarnaik, A.A.; Pilon-Thomas, S.A. Immunotherapy for gastrointestinal malignancies. Cancer Contr., 2013, 20(1), 32-42.
[http://dx.doi.org/10.1177/107327481302000106] [PMID: 23302905]
[80]
Zumwalt, T.J.; Goel, A. Immunotherapy of metastatic colorectal cancer: Prevailing challenges and new perspectives. Curr. Colorectal Cancer Rep., 2015, 11(3), 125-140.
[http://dx.doi.org/10.1007/s11888-015-0269-2] [PMID: 26441489]
[81]
Molaei, F.; Forghanifard, M.M.; Fahim, Y.; Abbaszadegan, M.R. Molecular signaling in tumorigenesis of gastric cancer. Iran. Biomed. J., 2018, 22(4), 217-230.
[http://dx.doi.org/10.29252/ibj.22.4.217] [PMID: 29706061]
[82]
Liu, C.; Papukashvili, D.; Dong, Y.; Wang, X.; Hu, X.; Yang, N.; Cai, J.; Xie, F.; Rcheulishvili, N.; Wang, P.G. Identification of tumor antigens and design of mrna vaccine for colorectal cancer based on the immune subtype. Front. Cell Dev. Biol., 2022, 9, 783527.
[http://dx.doi.org/10.3389/fcell.2021.783527] [PMID: 35127707]
[83]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[84]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[85]
Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer incidence and mortality rates and trends--an update. Cancer Epidemiol. Biomarkers Prev., 2016, 25(1), 16-27.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0578] [PMID: 26667886]
[86]
Huang, X.; Zhang, G.; Tang, T.; Liang, T. Identification of tumor antigens and immune subtypes of pancreatic adenocarcinoma for mRNA vaccine development. Mol. Cancer, 2021, 20(1), 44.
[http://dx.doi.org/10.1186/s12943-021-01310-0] [PMID: 33648511]
[87]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[88]
Sinha, M.; Zhang, L.; Subudhi, S.; Chen, B.; Marquez, J.; Liu, E.V.; Allaire, K.; Cheung, A.; Ng, S.; Nguyen, C.; Friedlander, T.W.; Aggarwal, R.; Spitzer, M.; Allison, J.P.; Small, E.J.; Sharma, P.; Fong, L. Pre-existing immune status associated with response to combination of sipuleucel-T and ipilimumab in patients with metastatic castration-resistant prostate cancer. J. Immunother. Cancer, 2021, 9(5), e002254.
[http://dx.doi.org/10.1136/jitc-2020-002254] [PMID: 33986125]
[89]
Sartor, O.; Armstrong, A.J.; Ahaghotu, C.; McLeod, D.G.; Cooperberg, M.R.; Penson, D.F.; Kantoff, P.W.; Vogelzang, N.J.; Hussain, A.; Pieczonka, C.M.; Shore, N.D.; Quinn, D.I.; Small, E.J.; Heath, E.I.; Tutrone, R.F.; Schellhammer, P.F.; Harmon, M.; Chang, N.N.; Sheikh, N.A.; Brown, B.; Freedland, S.J.; Higano, C.S. Survival of African-American and Caucasian men after sipuleucel-T immunotherapy: outcomes from the PROCEED registry. Prostate Cancer Prostatic Dis., 2020, 23(3), 517-526.
[http://dx.doi.org/10.1038/s41391-020-0213-7] [PMID: 32111923]
[90]
Rausch, S.; Schwentner, C.; Stenzl, A.; Bedke, J. mRNA vaccine CV9103 and CV9104 for the treatment of prostate cancer. Hum. Vaccin. Immunother., 2014, 10(11), 3146-3152.
[http://dx.doi.org/10.4161/hv.29553] [PMID: 25483661]
[91]
Zheng, X.; Xu, H.; Yi, X.; Zhang, T.; Wei, Q.; Li, H.; Ai, J. Tumor-antigens and immune landscapes identification for prostate adenocarcinoma mRNA vaccine. Mol. Cancer, 2021, 20(1), 160.
[http://dx.doi.org/10.1186/s12943-021-01452-1] [PMID: 34872584]
[92]
Lai, I.; Swaminathan, S.; Baylot, V.; Mosley, A.; Dhanasekaran, R.; Gabay, M.; Felsher, D.W. Lipid nanoparticles that deliver IL-12 messenger RNA suppress tumorigenesis in MYC oncogene-driven hepatocellular carcinoma. J. Immunother. Cancer, 2018, 6(1), 125.
[http://dx.doi.org/10.1186/s40425-018-0431-x] [PMID: 30458889]
[93]
Rizvi, S.; Khan, S.A.; Hallemeier, C.L.; Kelley, R.K.; Gores, G.J. Cholangiocarcinoma — evolving concepts and therapeutic strategies. Nat. Rev. Clin. Oncol., 2018, 15(2), 95-111.
[http://dx.doi.org/10.1038/nrclinonc.2017.157] [PMID: 28994423]
[94]
Rizvi, S.; Gores, G.J. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology, 2013, 145(6), 1215-1229.
[http://dx.doi.org/10.1053/j.gastro.2013.10.013] [PMID: 24140396]
[95]
Nakanuma, Y.; Sato, Y.; Harada, K.; Sasaki, M.; Xu, J.; Ikeda, H. Pathological classification of intrahepatic cholangiocarcinoma based on a new concept. World J. Hepatol., 2010, 2(12), 419-427.
[http://dx.doi.org/10.4254/wjh.v2.i12.419] [PMID: 21191517]
[96]
Huang, X.; Tang, T.; Zhang, G.; Liang, T. Identification of tumor antigens and immune subtypes of cholangiocarcinoma for mRNA vaccine development. Mol. Cancer, 2021, 20(1), 50.
[http://dx.doi.org/10.1186/s12943-021-01342-6] [PMID: 33685460]
[97]
Kim, S.H.; Castro, F.; Paterson, Y.; Gravekamp, C. High efficacy of a Listeria-based vaccine against metastatic breast cancer reveals a dual mode of action. Cancer Res., 2009, 69(14), 5860-5866.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4855] [PMID: 19584282]
[98]
Bauer, K.R.; Brown, M.; Cress, R.D.; Parise, C.A.; Caggiano, V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype. Cancer, 2007, 109(9), 1721-1728.
[http://dx.doi.org/10.1002/cncr.22618] [PMID: 17387718]
[99]
Yin, L.; Duan, J.J.; Bian, X.W.; Yu, S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res., 2020, 22(1), 61.
[http://dx.doi.org/10.1186/s13058-020-01296-5] [PMID: 32517735]
[100]
Castro, N.P.; Fedorova-Abrams, N.D.; Merchant, A.S.; Rangel, M.C.; Nagaoka, T.; Karasawa, H.; Klauzinska, M.; Hewitt, S.M.; Biswas, K.; Sharan, S.K.; Salomon, D.S. Cripto-1 as a novel therapeutic target for triple negative breast cancer. Oncotarget, 2015, 6(14), 11910-11929.
[http://dx.doi.org/10.18632/oncotarget.4182] [PMID: 26059540]
[101]
Liu, L.; Wang, Y.; Miao, L.; Liu, Q.; Musetti, S.; Li, J.; Huang, L. Combination immunotherapy of muc1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer. Mol. Ther., 2018, 26(1), 45-55.
[http://dx.doi.org/10.1016/j.ymthe.2017.10.020] [PMID: 29258739]
[102]
Schumacher, T.; Bunse, L.; Pusch, S.; Sahm, F.; Wiestler, B.; Quandt, J.; Menn, O.; Osswald, M.; Oezen, I.; Ott, M.; Keil, M.; Balß, J.; Rauschenbach, K.; Grabowska, A.K.; Vogler, I.; Diekmann, J.; Trautwein, N.; Eichmüller, S.B.; Okun, J.; Stevanović, S.; Riemer, A.B.; Sahin, U.; Friese, M.A.; Beckhove, P.; von Deimling, A.; Wick, W.; Platten, M. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature, 2014, 512(7514), 324-327.
[http://dx.doi.org/10.1038/nature13387] [PMID: 25043048]
[103]
Meo, S.A.; Bukhari, I.A.; Akram, J.; Meo, A.S.; Klonoff, D.C. COVID-19 vaccines: comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna Vaccines. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(3), 1663-1669.
[http://dx.doi.org/10.26355/eurrev_202102_24877] [PMID: 33629336]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy