Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Scoping Review

A Scoping Review on Recent Progress on Purpurin and its Derivatives

Author(s): Kajol Rustage*, Pragati Chauhan, Kapish Kapoor, Manish Kumar, Bhuvanesh Baniya and Vivek Jain*

Volume 21, Issue 7, 2024

Published on: 27 March, 2023

Page: [1148 - 1163] Pages: 16

DOI: 10.2174/1570180820666230220124204

Price: $65

Abstract

Background: Purpurin is being used as a red dye for many decades. But recently, due to its pharmacological properties, purpurin and its derivatives have attracted a lot of researchers for the treatment of various ailments, such as cancer, Alzheimer’s disease, depression, etc.

Objectives: The objective of this study is to provide an overview of its pharmacological properties, pharmacokinetic studies, synthesis, isolation, quality assurance, and patent studies.

Methods: A systemic scoping review was undertaken. Three databases (Pubmed, Scopus, and Google Scholar) and patent websites were searched using relevant words (e.g., purpurin, purpurin derivatives, anticancer, toxicity, etc.). All outcomes for studies that met the inclusion criteria were included in the review. Extracted data were accumulated using tables, figures, and accompanying narrative descriptive summaries. The review was reported using the preferred reporting items for scoping review (PRISMAScR) guidelines. Sixty-eight studies and eighty-six patents met the inclusion criteria, mostly preclinical (in vitro, in vivo, and in silico) studies performed in rats, mice, dogs, and zebrafish, followed by one clinical trial study.

Results: The potent antioxidant nature of purpurin is the main reason behind its vast pharmacological properties. It acts by decreasing mitochondrial stress and by acting on the endoplasmic reticulum. It also crosses the BBB barrier, has high GI absorption, and follows the Lipinski rule, which makes it a good drug for various neurodegenerative disorders. It inhibits various CYP-450, CYP 1A2, and CYP 3A4 enzymes, which are responsible for causing mutations. It gets photosensitized by UV light and causes ROSdependent apoptosis in cancer cells.

Conclusion: This scoping review highlights purpurin and its derivatives as highly prized moieties in the treatment of various neurological conditions and cancer. The unique nature of purpurin is responsible for its pharmacological properties, which are due to the presence of hydroxyl and keto groups at specific positions. It gets photosensitized by UV and laser light and acts as an anticancer drug. But the lack of robust evaluation in clinical studies is another major concern. Purpurin can be seen in the prescription in the future, although a lot of work still needs to be done.

Keywords: Purpurin, purpurin derivatives, alzheimer’s, caviolin, rejuvenation, cancer, GI absorption.

Graphical Abstract
[1]
Locatelli, M.; Genovese, S.; Carlucci, G.; Kremer, D.; Randic, M.; Epifano, F. Development and application of high-performance liquid chromatography for the study of two new oxyprenylated anthraquinones produced by Rhamnus species. J. Chromatogr. A, 2012, 1225, 113-120.
[http://dx.doi.org/10.1016/j.chroma.2011.12.085] [PMID: 22261224]
[2]
Lee, J.H. Kim, YG; Yong Ryu, S; Lee, J. Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus. Sci. Rep., 2016, 6, 1-11.
[3]
Nam, W.; Kim, S.; Nam, S.; Friedman, M.; Sabatier, J.M. Structure-antioxidative and anti-inflammatory activity relationships of purpurin and related anthraquinones in chemical and cell assays. Molecules, 2017, 22(2), 265.
[http://dx.doi.org/10.3390/molecules22020265] [PMID: 28208613]
[4]
Tsang, P.W.K.; Wong, A.P.K.; Jung, H.S.; Fong, W.P. Sub-MIC levels of purpurin inhibit membrane ATPase-mediated proton efflux activity in the human fungal pathogen Candida albicans. J. Antibiot. (Tokyo), 2014, 67(4), 349-350.
[http://dx.doi.org/10.1038/ja.2013.140] [PMID: 24496146]
[5]
Zengin, G.; Degirmenci, N.S.; Alpsoy, L.; Aktumsek, A. Evaluation of antioxidant, enzyme inhibition, and cytotoxic activity of three anthraquinones (alizarin, purpurin, and quinizarin). Hum. Exp. Toxicol., 2016, 35(5), 544-553.
[http://dx.doi.org/10.1177/0960327115595687] [PMID: 26178874]
[6]
Yuxiao, Y.; Shaoyang, S. Fei, F; Jingjing, W; Youhua, W; Ranran, Z; JingWu, LL. Screening in larval zebrafish reveals tissue-specific distribution of fifteen fluorescent compounds. Dis. Model. Mech., 2017, 10, 55-64.
[7]
Basu, T.; Panja, S.; Ghate, N.B.; Chaudhuri, D.; Mandal, N. Antioxidant and antiproliferative effects of different solvent fractions from Terminalia belerica Roxb. fruit on various cancer cells. Cytotechnology, 2017, 69(2), 201-216.
[http://dx.doi.org/10.1007/s10616-016-0051-6] [PMID: 28004224]
[8]
Pavelka, K.; Bruyère, O.; Cooper, C.; Kanis, J.A.; Leeb, B.F.; Maheu, E.; Martel-Pelletier, J.; Monfort, J.; Pelletier, J.P.; Rizzoli, R.; Reginster, J.Y. Diacerein: Benefits, risks and place in the management of osteoarthritis. An opinion-based report from the ESCEO. Drugs Aging, 2016, 33(2), 75-85.
[http://dx.doi.org/10.1007/s40266-016-0347-4] [PMID: 26849131]
[9]
Contributors, W. Anthraquinone - Wikipedia. 2020. Available from: [eu.wikipedia.org/Wiki/Anthraquinone]
[10]
Henderson, R.L.; Rayner, C.M.; Blackburn, R.S. Isolation and extraction of lucidin primeveroside from Rubia tinctorum L. and crystal structure elucidation. Phytochemistry, 2013, 95, 105-108.
[http://dx.doi.org/10.1016/j.phytochem.2013.07.001] [PMID: 23891215]
[11]
Imre, B.; László-Bencsik, A. ZoltánSzucs, BD. Examination of the anthraquinone composition in root-stock and root samples of Rubia tinctorium L. plants of different origins. Acta Pharm. Hung., 2004, 3, 142-148.
[12]
Bosch, E.; McClain, E.N. Synthesis and crystal structures of two purpurin derivatives: 1,4-dihydroxy-2-propoxyanthraquinone and 2-butoxy-1,4-dihydroxyanthraquinone. Acta Crystallogr. E Crystallogr. Commun., 2017, 73(11), 1687-1691.
[http://dx.doi.org/10.1107/S2056989017014724] [PMID: 29152351]
[13]
Derksen, G.C.H.; Lelyveld, G.P.; van Beek, T.A.; Capelle, A. de Groot, Two validated HPLC methods for the quanti?cation of alizarin and other anthraquinones in Rubia tinctorum cultivars. Phytochem. Anal., 2004, 15(6), 397-406.
[http://dx.doi.org/10.1002/pca.800] [PMID: 15599964]
[14]
Ford, L.; Henderson, R.L.; Rayner, C.M.; Blackburn, R.S. Mild extraction methods using aqueous glucose solution for the analysis of natural dyes in textile artefacts dyed with Dyer’s madder (Rubia tinctorum L.). J. Chromatogr. A, 2017, 1487, 36-46.
[http://dx.doi.org/10.1016/j.chroma.2017.01.053] [PMID: 28131591]
[15]
Zenkevich, E.; Sagun, E.; Knyukshto, V.; Shulga, A.; Mironov, A.; Efremova, O.; Bonnett, R.; Songca, S.P.; Kassem, M. Photophysical and photochemical properties of potential porphyrin and chlorin photosensitizers for PDT. J. Photochem. Photobiol. B, 1996, 33(2), 171-180.
[http://dx.doi.org/10.1016/1011-1344(95)07241-1]
[16]
Van Elslande, E.; Guérineau, V.; Thirioux, V.; Richard, G.; Richardin, P.; Laprévote, O.; Hussler, G.; Walter, P. Analysis of ancient Greco–Roman cosmetic materials using laser desorption ionization and electrospray ionization mass spectrometry. Anal. Bioanal. Chem., 2008, 390(7), 1873-1879.
[http://dx.doi.org/10.1007/s00216-008-1924-0] [PMID: 18320177]
[17]
Natarajan, S.; Mishra, P.; Vadivel, M.; Basha, M.G.; Kumar, A.; Velusamy, S. ISSR characterization and quantification of Purpurin and Alizarin in Rubia cordifolia L. populations from India. Biochem. Genet., 2019, 57(1), 56-72.
[http://dx.doi.org/10.1007/s10528-018-9875-4] [PMID: 30039443]
[18]
Peters, M.D.J.; Godfrey, C.M.; Khalil, H.; McInerney, P.; Parker, D.; Soares, C.B. Guidance for conducting systematic scoping reviews. Int. J. Evid.-Based Healthc., 2015, 13(3), 141-146.
[http://dx.doi.org/10.1097/XEB.0000000000000050] [PMID: 26134548]
[19]
Tsang, P.W.K.; Wong, A.P.K.; Yang, H.P.; Li, N.F. Purpurin triggers caspase-independent apoptosis in Candida dubliniensis biofilms. PLoS One, 2013, 8(12), e86032.
[http://dx.doi.org/10.1371/journal.pone.0086032] [PMID: 24376900]
[20]
Kang, K.; Fong, W.P.; Tsang, P.W.K. Novel antifungal activity of purpurin against Candida species in vitro. Med. Mycol., 2010, 48(7), 904-911.
[http://dx.doi.org/10.3109/13693781003739351] [PMID: 20392152]
[21]
Ujimoto, H.F. Akamura, EN; Kuyama, EO; Shibashi, MI. Six Immunosuppressive features from an Ascomycete, Zopfiella longicaudata. Found Screen. Study Monitor. Immunomodul. Activity. Chem. Pharm. Bull., 2004, 52, 6-9.
[22]
Pfeffer, J.M.; Clarke, A.J. Identification of the first known inhibitors of O-acetylpeptidoglycan esterase: A potential new antibacterial target. ChemBioChem, 2012, 13(5), 722-731.
[http://dx.doi.org/10.1002/cbic.201100744] [PMID: 22351512]
[23]
Friedman, M.; Xu, A.; Lee, R.; Nguyen, D.N.; Phan, T.A.; Hamada, S.M.; Panchel, R.; Tam, C.C.; Kim, J.H.; Cheng, L.W.; Land, K.M. The inhibitory activity of anthraquinones against pathogenic protozoa, bacteria, and fungi and the relationship to structure. Molecules, 2020, 25(13), 3101.
[http://dx.doi.org/10.3390/molecules25133101] [PMID: 32646028]
[24]
Pang, X.; Xiao, Q.; Cheng, Y.; Ren, E.; Lian, L.; Zhang, Y.; Gao, H.; Wang, X.; Leung, W.; Chen, X.; Liu, G.; Xu, C. Bacteria-responsive nanoliposomes as smart sonotheranostics for multidrug resistant bacterial infections. ACS Nano. 2019, 13(2) acsnano.8b09336
[http://dx.doi.org/10.1021/acsnano.8b09336] [PMID: 30657302]
[25]
Zhou, J.; Qi, G.B.; Wang, H. A purpurin-peptide derivative for selective killing of Gram-positive bacteria via insertion into cell membrane. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(28), 4855-4861.
[http://dx.doi.org/10.1039/C6TB00406G] [PMID: 32263144]
[26]
Orliando, M.; Dechatiwongse, T. Ayudhya, N. Biomedicine & Pharmacotherapy Anti-bio fi lm, nitric oxide inhibition and wound healing potential of purpurin-18 phytyl ester isolated from Clinacanthus nutans leaves. Biomed. Pharmacother., 2019, 113, 108724.
[http://dx.doi.org/10.1016/j.biopha.2019.108724] [PMID: 30877884]
[27]
Kumar, M.; Chandel, M.; Kumar, S.; Kaur, S. Amelioration of oxidative stress by anthraquinones in various in vitro assays. Asian Pac. J. Trop. Dis., 2012, 2, S692-S698.
[http://dx.doi.org/10.1016/S2222-1808(12)60245-X]
[28]
Viswanathan, G.K.; Shwartz, D.; Losev, Y.; Arad, E.; Shemesh, C.; Pichinuk, E.; Engel, H.; Raveh, A.; Jelinek, R.; Cooper, I.; Gosselet, F.; Gazit, E.; Segal, D. Purpurin modulates Tau-derived VQIVYK fibrillization and ameliorates Alzheimer’s disease-like symptoms in animal model. Cell. Mol. Life Sci., 2020, 77(14), 2795-2813.
[http://dx.doi.org/10.1007/s00018-019-03312-0] [PMID: 31562564]
[29]
Chen, D.; Gao, H.; Peng, C.; Pei, S.; Dai, A.; Yu, X.; Zhou, P.; Wang, Y.; Cai, B. Quinones as preventive agents in Alzheimer’s diseases: focus on NLRP3 inflammasomes. J. Pharm. Pharmacol., 2020, 72(11), 1481-1490.
[http://dx.doi.org/10.1111/jphp.13332]
[30]
Van-Quan, N.; Tran, H.D. Xuan, TD; Ahmad, A; Dat, TD; Khanh, TD; Teschke, R. Momilactones A and B are α-amylase and α-glucosidase inhibitors. Molecules, 2019, 24, 1-13.
[31]
Bedi, O.; Srivastava, N.; Parsad, D.; Krishan, P. Fatty acid synthase inhibition ameliorates diabetes induced liver injury in rodent experimental model. Eur. J. Pharmacol., 2021, 901, 174078.
[http://dx.doi.org/10.1016/j.ejphar.2021.174078] [PMID: 33839087]
[32]
Ferino, G.; Vilar, S.; Matos, M.J.; Uriarte, E.; Cadoni, E. Monoamine oxidase inhibitors: ten years of docking studies. Curr. Top. Med. Chem., 2012, 12(20), 2145-2162.
[http://dx.doi.org/10.2174/156802612805220048] [PMID: 23231393]
[33]
Fowler, J.S.; Logan, J.; Azzaro, A.J.; Fielding, R.M.; Zhu, W.; Poshusta, A.K.; Burch, D.; Brand, B.; Free, J.; Asgharnejad, M.; Wang, G.J.; Telang, F.; Hubbard, B.; Jayne, M.; King, P.; Carter, P.; Carter, S.; Xu, Y.; Shea, C.; Muench, L.; Alexoff, D.; Shumay, E.; Schueller, M.; Warner, D.; Apelskog-Torres, K. Reversible inhibitors of monoamine oxidase-A (RIMAs): robust, reversible inhibition of human brain MAO-A by CX157. Neuropsychopharmacology, 2010, 35(3), 623-631.
[http://dx.doi.org/10.1038/npp.2009.167] [PMID: 19890267]
[34]
Lee, H.W.; Ryu, H.W.; Kang, M.G.; Park, D.; Oh, S.R.; Kim, H. Selective inhibition of monoamine oxidase A by purpurin, an anthraquinone. Bioorg. Med. Chem. Lett., 2017, 27(5), 1136-1140.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.085] [PMID: 28188065]
[35]
de Beer, F.; Petzer, J.P.; Petzer, A. Monoamine oxidase inhibition by selected dye compounds. Chem. Biol. Drug Des., 2020, 95(3), 355-367.
[http://dx.doi.org/10.1111/cbdd.13654] [PMID: 31834986]
[36]
Ma, L.; Hu, P.; Zhang, J.; Cui, W.; Zhao, X. Purpurin exerted antidepressant-like effects on behavior and stress axis reactivity: evidence of serotonergic engagement. Psychopharmacology (Berl.), 2020, 237(3), 887-899.
[http://dx.doi.org/10.1007/s00213-019-05422-w] [PMID: 31900524]
[37]
Marczylo, T.H.; Hayatsu, T.; Arimoto-Kobayashi, S.; Tada, M.; Fujita, K.; Kamataki, T.; Nakayama, K.; Hayatsu, H. Protection against the bacterial mutagenicity of heterocyclic amines by purpurin, a natural anthraquinone pigment. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 1999, 444(2), 451-461.
[http://dx.doi.org/10.1016/S1383-5718(99)00109-6] [PMID: 10521685]
[38]
Takahashi, E.; Fujita, K.; Kamataki, T.; Arimoto-Kobayashi, S.; Okamoto, K.; Negishi, T. Inhibition of human cytochrome P450 1B1, 1A1 and 1A2 by antigenotoxic compounds, purpurin and alizarin. Mutat. Res., 2002, 508(1-2), 147-156.
[http://dx.doi.org/10.1016/S0027-5107(02)00212-9] [PMID: 12379470]
[39]
Takahashi, E.; Arimoto, S.; Okamoto, K.; Negishi, T. Enhancement of phase II enzyme activity by purpurin resulting in the suppression of MeIQx–DNA-adduct formation in mice. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2007, 626(1-2), 128-134.
[http://dx.doi.org/10.1016/j.mrgentox.2006.09.011] [PMID: 17137831]
[40]
Park, H.; Shim, J.S.; Kim, B.S.; Jung, H.J.; Huh, T.L.; Kwon, H.J. Purpurin inhibits adipocyte-derived leucine aminopeptidase and angiogenesis in a zebrafish model. Biochem. Biophys. Res. Commun., 2014, 450(1), 561-567.
[http://dx.doi.org/10.1016/j.bbrc.2014.06.017] [PMID: 24928393]
[41]
Ghate, N.B.; Das, A.; Chaudhuri, D.; Panja, S.; Mandal, N. Sundew plant, a potential source of anti-inflammatory agents, selectively induces G2/M arrest and apoptosis in MCF-7 cells through upregulation of p53 and Bax/Bcl-2 ratio. Cell Death Discov., 2016, 2(1), 15062.
[http://dx.doi.org/10.1038/cddiscovery.2015.62] [PMID: 27551490]
[42]
Kinsella, T.J.; Colussi, V.C.; Oleinick, N.L.; Sibata, C.H. Photodynamic therapy in oncology. Expert Opin. Pharmacother., 2001, 2(6), 917-927.
[http://dx.doi.org/10.1517/14656566.2.6.917] [PMID: 11585008]
[43]
Mang, T.S.; Allison, R.; Hewson, G.; Snider, W.; Moskowitz, R. A phase II/III clinical study of tin ethyl etiopurpurin (Purlytin)-induced photodynamic therapy for the treatment of recurrent cutaneous metastatic breast cancer. Cancer J. Sci. Am., 1998, 4(6), 378-384.
[PMID: 9853137]
[44]
Kaplan, M.J.; Somers, R.G.; Greenberg, R.H.; Ackler, J. Photodynamic therapy in the management of metastatic cutaneous adenocarcinomas: case reports from phase 1/2 studies using tin ethyl etiopurpurin (SnET2). J. Surg. Oncol., 1998, 67(2), 121-125.
[http://dx.doi.org/10.1002/(SICI)1096-9098(199802)67:2<121:AID-JSO9>3.0.CO;2-C] [PMID: 9486784]
[45]
Stefano, A.D.; Ettorre, A.; Sbrana, S.; Giovani, C.; Neri, P. Purpurin-18 in combination with light leads to apoptosis or necrosis in HL60 leukemia cells. Photochem. Photobiol., 2001, 73(3), 290-296.
[http://dx.doi.org/10.1562/0031-8655(2001)073<0290:PICWLL>2.0.CO;2] [PMID: 11281026]
[46]
Huang, P.; Zhang, B.; Yuan, Q.; Zhang, X.; Leung, W.; Xu, C. Photodynamic treatment with purpurin 18 effectively inhibits triple negative breast cancer by inducing cell apoptosis. Lasers Med. Sci., 2021, 36(2), 339-347.
[http://dx.doi.org/10.1007/s10103-020-03035-w] [PMID: 32623604]
[47]
Zhang, D.; Wang, Z.; Wang, L.; Wang, Z.; Wang, H.; Li, G.; Qiao, Z.Y.; Xu, W.; Wang, H. High-performance identification of human bladder cancer using a signal self-amplifiable photoacoustic nanoprobe. ACS Appl. Mater. Interfaces, 2018, 10(34), 28331-28339.
[http://dx.doi.org/10.1021/acsami.8b08357] [PMID: 29989788]
[48]
Nam, W.; Nam, S.H.; Kim, S.P.; Levin, C.; Friedman, M. Anti-adipogenic and anti-obesity activities of purpurin in 3T3-L1 preadipocyte cells and in mice fed a high-fat diet. BMC Complement. Altern. Med., 2019, 19(1), 364.
[http://dx.doi.org/10.1186/s12906-019-2756-5] [PMID: 31829180]
[49]
Bedi, O.; Aggarwal, S.; Trehanpati, N.; Ramakrishna, G.; Grewal, A.S.; Krishan, P. In vitro targeted screening and molecular docking of stilbene, quinones, and flavonoid on 3T3-L1 pre-adipocytes for anti-adipogenic actions. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(11), 2093-2106.
[http://dx.doi.org/10.1007/s00210-020-01919-w] [PMID: 32588069]
[50]
Tanaka, M.; Murayama, D.; Nagashima, M.; Higashi, T. Purpurin expression in the zebrafish retina during early development and after optic nerve lesion in adults. Brain Res, 2007, 53, 0-8.
[http://dx.doi.org/10.1016/j.brainres.2007.03.075]
[51]
Schubert, D.; LaCorbiere, M.; Esch, F. A chick neural retina adhesion and survival molecule is a retinol-binding protein. J. Cell Biol., 1986, 102(6), 2295-2301.
[http://dx.doi.org/10.1083/jcb.102.6.2295] [PMID: 3754874]
[52]
Matsukawa, T.; Sugitani, K.; Mawatari, K.; Koriyama, Y.; Liu, Z.; Tanaka, M.; Kato, S. Role of purpurin as a retinol-binding protein in goldfish retina during the early stage of optic nerve regeneration: its priming action on neurite outgrowth. J. Neurosci., 2004, 24(38), 8346-8353.
[http://dx.doi.org/10.1523/JNEUROSCI.1809-04.2004] [PMID: 15385617]
[53]
Nagashima, M.; Mawatari, K.; Tanaka, M.; Higashi, T.; Saito, H.; Muramoto, K.; Matsukawa, T.; Koriyama, Y.; Sugitani, K.; Kato, S. Purpurin is a key molecule for cell differentiation during the early development of zebrafish retina. Brain Res., 2009, 1302, 54-63.
[http://dx.doi.org/10.1016/j.brainres.2009.09.020] [PMID: 19748496]
[54]
Huang, H.S.; Allen, J.A.; Mabb, A.M.; King, I.F.; Miriyala, J.; Taylor-Blake, B.; Sciaky, N.; Dutton, J.W., Jr; Lee, H.M.; Chen, X.; Jin, J.; Bridges, A.S.; Zylka, M.J.; Roth, B.L.; Philpot, B.D. Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature, 2012, 481(7380), 185-189.
[http://dx.doi.org/10.1038/nature10726] [PMID: 22190039]
[55]
Cong, W.; Shen, J.; Xuan, Y.; Zhu, X.; Ni, M.; Zhu, Z.; Hong, G.; Lu, X.; Jin, L. A simple, rapid and low-cost staining method for gel-electrophoresis separated phosphoproteins via the fluorescent purpurin dye. Analyst (Lond.), 2014, 139(23), 6104-6108.
[http://dx.doi.org/10.1039/C4AN01334D] [PMID: 25325196]
[56]
Mori, H.; Ohnishi, M.; Kawamori, T.; Sugie, S.; Tanaka, T.; Ino, N.; Kawai, K. Toxicity and tumorigenicity of purpurin, a natural hydroxyanthraquinone in rats: induction of bladder neoplasms. Cancer Lett., 1996, 102(1-2), 193-198.
[http://dx.doi.org/10.1016/0304-3835(96)04159-6] [PMID: 8603369]
[57]
Bedi, O.; Krishan, P. Investigations on acute oral toxicity studies of purpurin by application of OECD guideline 423 in rodents. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(4), 565-571.
[http://dx.doi.org/10.1007/s00210-019-01742-y] [PMID: 31713650]
[58]
Gao, M.; Yang, J.; Wang, Z.; Yang, B.; Kuang, H.; Liu, L.; Wang, L.; Yang, C. Simultaneous determination of purpurin, munjistin and mollugin in rat plasma by ultra high performance liquid chromatography-tandem mass spectrometry: Application to a pharmacokinetic study after oral administration of Rubia cordifolia L. extract. Molecules, 2016, 21(6), 717.
[http://dx.doi.org/10.3390/molecules21060717] [PMID: 27258244]
[59]
Zheng, Z.; Li, S.; Zhong, Y.; Zhan, R.; Yan, Y.; Pan, H.; Yan, P. UPLC-QTOF-MS Identification of the chemical constituents in rat plasma and urine after oral administration of Rubia cordifolia L. extract. Molecules, 2017, 22(8), 1327.
[http://dx.doi.org/10.3390/molecules22081327] [PMID: 28800124]
[60]
Bányai, P.; Kuzovkina, I.N.; Kursinszki, L.; Szőke, É. Kursinszki, L; Szoke, É. HPLC analysis of alizarin and purpurin produced by Rubia tinctorum L. hairy root cultures. Chromatographia, 2006, 63(S13), S111-S114.
[http://dx.doi.org/10.1365/s10337-006-0792-z]
[61]
Marshall, P.G.; Part, I.A. CCCCXLV.-Hydroxyanthraquinones. Part I. Synthesis of purpurin. J. Chem. Soc., 1931, 0(0), 3206-3208.
[http://dx.doi.org/10.1039/JR9310003206]
[62]
Friedman, M. Agric. Food Chem., 1997, 45, 1523-1540.
[http://dx.doi.org/10.1021/jf960900s]
[63]
MD, B. PubChem Compound Summary for CID 6683, Purpurin. Natl. Cent. Biotechnol. Inf, 2021. Available from: [https://pubchem. ncbi.nlm.nih.gov/compound/purpurin#section=Depositor-Supplied-Synonyms]
[64]
Li, Z.; Zhou, X.; Zhu, H.; Niu, Z.; Lu, J. Purpurin binding interacts with LHPP protein that inhibits PI3K / AKT phosphorylation and induces apoptosis in colon cancer cells HCT - 116. J. Biochem. Mol. Toxicol., 2021, 35(3:e22665), 1-10.
[http://dx.doi.org/10.1002/jbt.22752] [PMID: 33759271]
[65]
Wang, H.W.; Chen, T.L.; Yang, P.C.; Ueng, T.H. Induction of cytochromes P450 1A1 and 1B1 by emodin in human lung adenocarcinoma cell line CL5. Drug Metab. Dispos., 2001, 29(9), 1229-1235.
[PMID: 11502733]
[66]
Marczylo, T.; Sugiyama, C.; Hayatsu, H. Protection against Trp-P-2 DNA adduct formation in C57bl6 mice by purpurin is accompanied by induction of cytochrome P450. J. Agric. Food Chem., 2003, 51(11), 3334-3337.
[http://dx.doi.org/10.1021/jf026072m] [PMID: 12744663]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy