Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Stem Cells and Tumor-Killing Virus to Target Brain Tumor: In Pursuit to Bring a Potential Delivery Vehicle for the Central Nervous System Tumors

Author(s): Vignesh Balaji E. and K. Sreedhara Ranganath Pai*

Volume 21, Issue 1, 2024

Published on: 01 March, 2023

Page: [2 - 15] Pages: 14

DOI: 10.2174/1567201820666230220101052

Price: $65

conference banner
Abstract

To target brain cancer, various therapeutic options are present to fight against cancer cells. But the existing therapies are not showing a proper curation of cancer patients. Henceforth, activating the immune cells and targeting oncogenes/proteins might be an emerging therapeutic approach to target and destroy malignant brain tumor. Stem cells (SCs) are considered potential immunomodulators that trigger the highly suppressed immune system in the tumor microenvironment. Also, engineered SCs can repress the aberrantly expressed oncoproteins that cause tumor cell proliferation and growth. SCs have an excellent migration capability to reach the infected site and support the regeneration of damaged blood vessels and tissues. Likewise, oncolytic virotherapy (OVT) is a promising novel therapeutic molecule in which genetically modified viruses can selectively replicate and destroy cancer cells without harming healthy cells. Same as SCs, oncolytic viruses (OVs) tend to stimulate the host's innate and adaptive immune response to battle against the advanced brain tumor. In clinical studies, various OVs have shown good immunogenic responses with a high safety profile and tolerability against cancer patients with reduced morbidity and mortality rate. SCs act as an attractive cargo for OVs which helps to influence the tumor site and destroy the tumor volume. SCs protect the OVs from systemic degradation and promote therapeutic efficacy against cancer cells. SCs carried OVs might be a potential therapeutic way to bring an effective treatment option for brain tumors.

Keywords: Brain tumor, oncolytic virotherapy, stem cells, novel delivery vehicle, host immune system, glioblastoma.

Graphical Abstract
[1]
Balaji, E, V.; Pai, K.S.R. Stem cells delivered oncolytic virus to destroy formidable brain tumor. Stem Cell Rev. Rep., 2021, 1-3
[http://dx.doi.org/10.1007/s12015-021-10296-7]
[2]
Hemminki, O.; dos Santos, J.M.; Hemminki, A. Oncolytic viruses for cancer immunotherapy. J. Hematol. Oncol., 2020, 13(1), 84.
[http://dx.doi.org/10.1186/s13045-020-00922-1] [PMID: 32600470]
[3]
Pearce, C.M.; Chrostek, M.R.; Fellows, E.G.; Toman, N.G.; Tran, S.K.; Crane, A.T.; Low, W.C. Immunotherapy and checkpoint inhibitors for gliomas. Neuroimmunol. Neuroinflamm., 2018, 5(11), 47.
[http://dx.doi.org/10.20517/2347-8659.2018.46]
[4]
Ribas, A. Adaptive immune resistance: How cancer protects from immune attack. Cancer Discov., 2015, 5(9), 915-919.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0563] [PMID: 26272491]
[5]
Rivera-Cruz, C.M.; Shearer, J.J.; Figueiredo Neto, M.; Figueiredo, M.L. The immunomodulatory effects of mesenchymal stem cell polarization within the tumor microenvironment niche. Stem Cells Int., 2017, 2017, 1-17.
[http://dx.doi.org/10.1155/2017/4015039] [PMID: 29181035]
[6]
Babajani, A.; Soltani, P.; Jamshidi, E.; Farjoo, M.H.; Niknejad, H. Recent advances on drug-loaded mesenchymal stem cells with anti-neoplastic agents for targeted treatment of cancer. Front. Bioeng. Biotechnol., 2020, 8, 748.
[http://dx.doi.org/10.3389/fbioe.2020.00748] [PMID: 32793565]
[7]
Singh, V.K.; Saini, A.; Kalsan, M.; Kumar, N.; Chandra, R. Describing the stem cell potency: the various methods of functional assessment and In silico diagnostics. Front. Cell Dev. Biol., 2016, 4, 134.
[http://dx.doi.org/10.3389/fcell.2016.00134] [PMID: 27921030]
[8]
Shah, K. Stem cell-based therapies for tumors in the brain: Are we there yet? Neuro-oncol., 2016, 18(8), 1066-1078.
[http://dx.doi.org/10.1093/neuonc/now096] [PMID: 27282399]
[9]
Sagar, J.; Chaib, B.; Sales, K.; Winslet, M.; Seifalian, A. Role of stem cells in cancer therapy and cancer stem cells: A review. Cancer Cell Int., 2007, 7(1), 9.
[http://dx.doi.org/10.1186/1475-2867-7-9] [PMID: 17547749]
[10]
Parker Kerrigan, B.C.; Shimizu, Y.; Andreeff, M.; Lang, F.F. Mesenchymal stromal cells for the delivery of oncolytic viruses in gliomas. Cytotherapy, 2017, 19(4), 445-457.
[http://dx.doi.org/10.1016/j.jcyt.2017.02.002] [PMID: 28233640]
[11]
Marelli, G.; Howells, A.; Lemoine, N.R.; Wang, Y. Oncolytic viral therapy and the immune system: A double-edged sword against cancer. Front. Immunol., 2018, 9, 866.
[http://dx.doi.org/10.3389/fimmu.2018.00866] [PMID: 29755464]
[12]
Rahman, M.M.; McFadden, G. Oncolytic viruses: Newest frontier for cancer immunotherapy. Cancers, 2021, 13(21), 5452.
[http://dx.doi.org/10.3390/cancers13215452]
[13]
Patel, M.R.; Kratzke, R.A. Oncolytic virus therapy for cancer: The first wave of translational clinical trials. Transl. Res., 2013, 161(4), 355-364.
[http://dx.doi.org/10.1016/j.trsl.2012.12.010] [PMID: 23313629]
[14]
Chiocca, E.A.; Rabkin, S.D. Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol. Res., 2014, 2(4), 295-300.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0015] [PMID: 24764576]
[15]
Oh, C.M.; Chon, H.J.; Kim, C. Combination immunotherapy using oncolytic virus for the treatment of advanced solid tumors. Int. J. Mol. Sci., 2020, 21(20), 7743.
[http://dx.doi.org/10.3390/ijms21207743] [PMID: 33086754]
[16]
Lan, Q.; Xia, S.; Wang, Q.; Xu, W.; Huang, H.; Jiang, S.; Lu, L. Development of oncolytic virotherapy: From genetic modification to combination therapy. Front. Med., 2020, 14(2), 160-184.
[http://dx.doi.org/10.1007/s11684-020-0750-4] [PMID: 32146606]
[17]
Taguchi, S.; Fukuhara, H.; Todo, T. Oncolytic virus therapy in Japan: Progress in clinical trials and future perspectives. Jpn. J. Clin. Oncol., 2019, 49(3), 201-209.
[http://dx.doi.org/10.1093/jjco/hyy170] [PMID: 30462296]
[18]
Lawler, S.E.; Speranza, M.C.; Cho, C.F.; Chiocca, E.A. Oncolytic viruses in cancer treatment. JAMA Oncol., 2017, 3(6), 841-849.
[http://dx.doi.org/10.1001/jamaoncol.2016.2064] [PMID: 27441411]
[19]
Dey, M.; Auffinger, B.; Lesniak, M.S.; Ahmed, A.U. Antiglioma oncolytic virotherapy: Unattainable goal or a success story in the making? Future Virol., 2013, 8(7), 675-693.
[http://dx.doi.org/10.2217/fvl.13.47] [PMID: 24910708]
[20]
Achard, C.; Surendran, A.; Wedge, M.E.; Ungerechts, G.; Bell, J.; Ilkow, C.S. Lighting a fire in the tumor microenvironment using oncolytic immunotherapy. EBioMedicine, 2018, 31, 17-24.
[http://dx.doi.org/10.1016/j.ebiom.2018.04.020] [PMID: 29724655]
[21]
Huang, F.; Wang, B.R.; Wu, Y.Q.; Wang, F.C.; Zhang, J.; Wang, Y.G. Oncolytic viruses against cancer stem cells: A promising approach for gastrointestinal cancer. World J. Gastroenterol., 2016, 22(35), 7999-8009.
[http://dx.doi.org/10.3748/wjg.v22.i35.7999] [PMID: 27672294]
[22]
Maroun, J.; Muñoz-Alía, M.; Ammayappan, A.; Schulze, A.; Peng, K.W.; Russell, S. Designing and building oncolytic viruses. Future Virol., 2017, 12(4), 193-213.
[http://dx.doi.org/10.2217/fvl-2016-0129] [PMID: 29387140]
[23]
Martinez-Quintanilla, J.; Seah, I.; Chua, M.; Shah, K. Oncolytic viruses: Overcoming translational challenges. J. Clin. Invest., 2019, 129(4), 1407-1418.
[http://dx.doi.org/10.1172/JCI122287] [PMID: 30829653]
[24]
Chu, D.T.; Nguyen, T.T.; Tien, N.L.B.; Tran, D.K.; Jeong, J.H.; Anh, P.G.; Thanh, V.V.; Truong, D.T.; Dinh, T.C. Recent progress of stem cell therapy in cancer treatment: Molecular mechanisms and potential applications. Cells, 2020, 9(3), 563.
[http://dx.doi.org/10.3390/cells9030563] [PMID: 32121074]
[25]
Lettry, V.; Hagler, S.B.; Khagi, S.; Hingtgen, S.D. Tumor-homing stem cell therapy for brain cancer. Curr. Surg. Rep., 2017, 5(10), 28.
[http://dx.doi.org/10.1007/s40137-017-0190-5]
[26]
Bhere, D.; Shah, K. Stem cell-based therapies for cancer. Adv. Cancer Res., 2015, 127, 159-189.
[http://dx.doi.org/10.1016/bs.acr.2015.04.012] [PMID: 26093900]
[27]
Zhang, Q.; Xiang, W.; Yi, D.; Xue, B.; Wen, W.; Abdelmaksoud, A.; Xiong, N.; Jiang, X.; Zhao, H.; Fu, P. Current status and potential challenges of mesenchymal stem cell-based therapy for malignant gliomas. Stem Cell Res. Ther., 2018, 9(1), 228.
[http://dx.doi.org/10.1186/s13287-018-0977-z] [PMID: 30143053]
[28]
Chulpanova, D.S.; Kitaeva, K.V.; Tazetdinova, L.G.; James, V.; Rizvanov, A.A.; Solovyeva, V.V. Application of mesenchymal stem cells for therapeutic agent delivery in anti-tumor treatment. Front. Pharmacol., 2018, 9, 259.
[http://dx.doi.org/10.3389/fphar.2018.00259] [PMID: 29615915]
[29]
Hadry ś.; A.; Sochanik, A.; McFadden, G.; Jazowiecka-Rakus, J. Mesenchymal stem cells as carriers for systemic delivery of oncolytic viruses. Eur. J. Pharmacol., 2020, 874, 172991.
[http://dx.doi.org/10.1016/j.ejphar.2020.172991] [PMID: 32044323]
[30]
Song, N.; Scholtemeijer, M.; Shah, K. Mesenchymal stem cell immunomodulation: Mechanisms and therapeutic potential. Trends Pharmacol. Sci., 2020, 41(9), 653-664.
[http://dx.doi.org/10.1016/j.tips.2020.06.009] [PMID: 32709406]
[31]
Kwon, S.; Yoo, K.H.; Sym, S.J.; Khang, D. Mesenchymal stem cell therapy assisted by nanotechnology: A possible combinational treatment for brain tumor and central nerve regeneration. Int. J. Nanomedicine, 2019, 14, 5925-5942.
[http://dx.doi.org/10.2147/IJN.S217923] [PMID: 31534331]
[32]
Fuchs, T.L.; Sioson, L.; Sheen, A.; Jafari-Nejad, K.; Renaud, C.J.; Andrici, J.; Ahadi, M.; Chou, A.; Gill, A.J. Assessment of tumor-infiltrating lymphocytes using international tils working group (ITWG) system is a strong predictor of overall survival in colorectal carcinoma. Am. J. Surg. Pathol., 2020, 44(4), 536-544.
[http://dx.doi.org/10.1097/PAS.0000000000001409] [PMID: 31743129]
[33]
Matarredona, E.R.; Pastor, A.M. Neural stem cells of the subventricular zone as the origin of human glioblastoma stem cells. Therapeutic implications. Front. Oncol., 2019, 9, 779.
[http://dx.doi.org/10.3389/fonc.2019.00779] [PMID: 31482066]
[34]
Mapara, K.Y.; Stevenson, C.B.; Thompson, R.C.; Ehtesham, M. Stem cells as vehicles for the treatment of brain cancer. Neurosurg. Clin. N. Am., 2007, 18(1), 71-80.
[http://dx.doi.org/10.1016/j.nec.2006.10.001] [PMID: 17244555]
[35]
Kavari, S.L.; Shah, K. Engineered stem cells targeting multiple cell surface receptors in tumors. Stem Cells, 2020, 38(1), 34-44.
[http://dx.doi.org/10.1002/stem.3069] [PMID: 31381835]
[36]
Bagó, J.R.; Alfonso-Pecchio, A.; Okolie, O.; Dumitru, R.; Rinkenbaugh, A.; Baldwin, A.S.; Miller, C.R.; Magness, S.T.; Hingtgen, S.D. Therapeutically engineered induced neural stem cells are tumour-homing and inhibit progression of glioblastoma. Nat. Commun., 2016, 7(1), 10593.
[http://dx.doi.org/10.1038/ncomms10593] [PMID: 26830441]
[37]
Zhang, S.; Xie, R.; Zhao, T.; Yang, X.; Han, L.; Ye, F.; Lei, T.; Wan, F. Neural stem cells preferentially migrate to glioma stem cells and reduce their stemness phenotypes. Int. J. Oncol., 2014, 45(5), 1989-1996.
[http://dx.doi.org/10.3892/ijo.2014.2629] [PMID: 25176161]
[38]
Miska, J.; Lesniak, M.S. Neural stem cell carriers for the treatment of glioblastoma multiforme. EBioMedicine, 2015, 2(8), 774-775.
[http://dx.doi.org/10.1016/j.ebiom.2015.08.022] [PMID: 26425671]
[39]
Brown, J.M. Tumor hypoxia in cancer therapy. Methods Enzymol., 2007, 435, 295-321.
[http://dx.doi.org/10.1016/S0076-6879(07)35015-5] [PMID: 17998060]
[40]
Kim, S.U. Neural stem cell-based gene therapy for brain tumors. Stem Cell Rev., 2011, 7(1), 130-140.
[http://dx.doi.org/10.1007/s12015-010-9154-1] [PMID: 20521177]
[41]
Portnow, J.; Synold, T.W.; Badie, B.; Tirughana, R.; Lacey, S.F.; D’Apuzzo, M.; Metz, M.Z.; Najbauer, J.; Bedell, V.; Vo, T.; Gutova, M.; Frankel, P.; Chen, M.; Aboody, K.S. Neural stem cell-based anticancer gene therapy: A first-in-human study in recurrent high-grade glioma patients. Clin. Cancer Res., 2017, 23(12), 2951-2960.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1518] [PMID: 27979915]
[42]
Chen, J. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb. Perspect. Med., 2016, 6(3), a026104.
[http://dx.doi.org/10.1101/cshperspect.a026104] [PMID: 26931810]
[43]
Susanto, E.; Marin Navarro, A.; Zhou, L.; Sundström, A.; van Bree, N.; Stantic, M.; Moslem, M.; Tailor, J.; Rietdijk, J.; Zubillaga, V.; Hübner, J.M.; Weishaupt, H.; Wolfsberger, J.; Alafuzoff, I.; Nordgren, A.; Magnaldo, T.; Siesjö, P.; Johnsen, J.I.; Kool, M.; Tammimies, K.; Darabi, A.; Swartling, F.J.; Falk, A.; Wilhelm, M. Modeling SHH-driven medulloblastoma with patient iPS cell-derived neural stem cells. Proc. Natl. Acad. Sci. USA, 2020, 117(33), 20127-20138.
[http://dx.doi.org/10.1073/pnas.1920521117] [PMID: 32747535]
[44]
Achanta, P.; Sedora Roman, N.I.; Quiñones-Hinojosa, A. Gliomagenesis and the use of neural stem cells in brain tumor treatment. Anticancer. Agents Med. Chem., 2010, 10(2), 121-130.
[http://dx.doi.org/10.2174/187152010790909290] [PMID: 20184546]
[45]
Lee, J.Y.; Hong, S.H. Hematopoietic stem cells and their roles in tissue regeneration. Int. J. Stem Cells, 2020, 13(1), 1-12.
[http://dx.doi.org/10.15283/ijsc19127] [PMID: 31887851]
[46]
Adair, J.E.; Beard, B.C.; Trobridge, G.D.; Neff, T.; Rockhill, J.K.; Silbergeld, D.L.; Mrugala, M.M.; Kiem, H.P. Extended survival of glioblastoma patients after chemoprotective HSC gene therapy. Sci. Transl. Med., 2012, 4(133), 133ra57.
[http://dx.doi.org/10.1126/scitranslmed.3003425] [PMID: 22572881]
[47]
Bryukhovetskiy, I.S.; Dyuizen, I.V.; Shevchenko, V.E.; Bryukhovetskiy, A.S.; Mischenko, P.V.; Milkina, E.V.; Khotimchenko, Y.S. Hematopoietic stem cells as a tool for the treatment of glioblastoma multiforme. Mol. Med. Rep., 2016, 14(5), 4511-4520.
[http://dx.doi.org/10.3892/mmr.2016.5852] [PMID: 27748891]
[48]
Wildes, T.J.; Grippin, A.; Dyson, K.A.; Wummer, B.M.; Damiani, D.J.; Abraham, R.S.; Flores, C.T.; Mitchell, D.A. Cross-talk between T Cells and hematopoietic stem cells during adoptive cellular therapy for malignant glioma. Clin. Cancer Res., 2018, 24(16), 3955-3966.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3061] [PMID: 29712687]
[49]
Panosyan, E.H.; Ikeda, A.K.; Chang, V.Y.; Laks, D.R.; Reeb, C.L.; Bowles, L.V.; Lasky, J.L., III; Moore, T.B. High-dose chemotherapy with autologous hematopoietic stem-cell rescue for pediatric brain tumor patients: A single institution experience from UCLA. J. Transplant., 2011, 2011, 1-11.
[http://dx.doi.org/10.1155/2011/740673] [PMID: 21559259]
[50]
Steenbruggen, T.G.; Steggink, L.C.; Seynaeve, C.M.; van der Hoeven, J.J.M.; Hooning, M.J.; Jager, A.; Konings, I.R.; Kroep, J.R.; Smit, W.M.; Tjan-Heijnen, V.C.G.; van der Wall, E.; Bins, A.D.; Linn, S.C.; Schaapveld, M.; Jacobse, J.N.; van Leeuwen, F.E.; Schröder, C.P.; van Tinteren, H.; de Vries, E.G.E.; Sonke, G.S.; Gietema, J.A. High-dose chemotherapy with hematopoietic stem cell transplant in patients with high-risk breast cancer and 4 or more involved axillary lymph nodes. JAMA Oncol., 2020, 6(4), 528-534.
[http://dx.doi.org/10.1001/jamaoncol.2019.6276] [PMID: 31999296]
[51]
Sorrentino, B.P. Chemoprotection in brain tumor patients: Another success for stem cell gene therapy. Mol. Ther., 2012, 20(8), 1485-1487.
[http://dx.doi.org/10.1038/mt.2012.139] [PMID: 22850719]
[52]
Mondal, S.; Datta, A.; Hazra, I.; Omar Faruk, S.M.; Moitra, S.; Chaudhuri, S.; Nath, L.; Das, P.K.; Basu, A.K.; Tripathi, S.K.; Chaudhuri, S. The novel-molecule T11TS facilitated arousal of glioma-mediated dormancy of bone-marrow hematopoietic stem-cells. Neuroimmunol. Neuroinflamm., 2018, 5(8), 34.
[http://dx.doi.org/10.20517/2347-8659.2018.13]
[53]
Adair, J.E.; Kubek, S.P.; Kiem, H.P. Hematopoietic stem cell approaches to cancer. Hematol. Oncol. Clin. North Am., 2017, 31(5), 897-912.
[http://dx.doi.org/10.1016/j.hoc.2017.06.012] [PMID: 28895855]
[54]
Flores, C.; Pham, C.; Snyder, D.; Yang, S.; Sanchez-Perez, L.; Sayour, E.; Cui, X.; Kemeny, H.; Friedman, H.; Bigner, D.D.; Sampson, J.; Mitchell, D.A. Novel role of hematopoietic stem cells in immunologic rejection of malignant gliomas. OncoImmunology, 2015, 4(3), e994374.
[http://dx.doi.org/10.4161/2162402X.2014.994374] [PMID: 25949916]
[55]
Arias, J.; Yu, J.; Varshney, M.; Inzunza, J.; Nalvarte, I. Hematopoietic stem cell- and induced pluripotent stem cell-derived CAR-NK cells as reliable cell-based therapy solutions. Stem Cells Transl. Med., 2021, 10(7), 987-995.
[http://dx.doi.org/10.1002/sctm.20-0459] [PMID: 33634954]
[56]
Li, S.C.; Kabeer, M.H.; Vu, L.T.; Keschrumrus, V.; Yin, H.Z.; Dethlefs, B.A.; Zhong, J.F.; Weiss, J.H.; Loudon, W.G. Training stem cells for treatment of malignant brain tumors. World J. Stem Cells, 2014, 6(4), 432-440.
[http://dx.doi.org/10.4252/wjsc.v6.i4.432] [PMID: 25258664]
[57]
Takahashi, K.; Yamanaka, S. Induced pluripotent stem cells in medicine and biology. Development, 2013, 140(12), 2457-2461.
[http://dx.doi.org/10.1242/dev.092551] [PMID: 23715538]
[58]
Wuputra, K.; Ku, C.C.; Wu, D.C.; Lin, Y.C.; Saito, S.; Yokoyama, K.K. Prevention of tumor risk associated with the reprogramming of human pluripotent stem cells. J. Exp. Clin. Cancer Res., 2020, 39(1), 100.
[http://dx.doi.org/10.1186/s13046-020-01584-0] [PMID: 32493501]
[59]
Fernandez, T.S.; de Souza Fernandez, C.; Mencalha, A.L. Human induced pluripotent stem cells from basic research to potential clinical applications in cancer. BioMed Res. Int., 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/430290] [PMID: 24288679]
[60]
Cefalo, M.G.; Carai, A.; Miele, E.; Po, A.; Ferretti, E.; Mastronuzzi, A.; Germano, I.M. Human iPSC for therapeutic approaches to the nervous system: Present and future applications. Stem Cells Int., 2016, 2016, 1-11.
[http://dx.doi.org/10.1155/2016/4869071] [PMID: 26697076]
[61]
Sancho-Martinez, I.; Nivet, E.; Xia, Y.; Hishida, T.; Aguirre, A.; Ocampo, A.; Ma, L.; Morey, R.; Krause, M.N.; Zembrzycki, A.; Ansorge, O.; Vazquez-Ferrer, E.; Dubova, I.; Reddy, P.; Lam, D.; Hishida, Y.; Wu, M.Z.; Esteban, C.R.; O’Leary, D.; Wahl, G.M.; Verma, I.M.; Laurent, L.C.; Izpisua Belmonte, J.C. Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nat. Commun., 2016, 7(1), 10743.
[http://dx.doi.org/10.1038/ncomms10743] [PMID: 26899176]
[62]
Werbowetski-Ogilvie, T.E.; Morrison, L.C.; Fiebig-Comyn, A.; Bhatia, M. In vivo generation of neural tumors from neoplastic pluripotent stem cells models early human pediatric brain tumor formation. Stem Cells, 2012, 30(3), 392-404.
[http://dx.doi.org/10.1002/stem.1017] [PMID: 22213600]
[63]
Balaji, E, V.; Kumar, N.; Satarker, S.; Nampoothiri, M. Zinc as a plausible epigenetic modulator of glioblastoma multiforme. Eur. J. Pharmacol., 2020, 887, 173549.
[http://dx.doi.org/10.1016/j.ejphar.2020.173549]
[64]
Smith, R.C.; Tabar, V. Constructing and deconstructing cancers using human pluripotent stem cells and organoids. Cell Stem Cell, 2019, 24(1), 12-24.
[http://dx.doi.org/10.1016/j.stem.2018.11.012] [PMID: 30581078]
[65]
Murphy, A.M.; Rabkin, S.D. Current status of gene therapy for brain tumors. Transl. Res., 2013, 161(4), 339-354.
[http://dx.doi.org/10.1016/j.trsl.2012.11.003] [PMID: 23246627]
[66]
Kane, J.R.; Miska, J.; Young, J.S.; Kanojia, D.; Kim, J.W.; Lesniak, M.S. Sui generis: gene therapy and delivery systems for the treatment of glioblastoma. Neuro-oncol., 2015, 17(Suppl. 2), ii24-ii36.
[http://dx.doi.org/10.1093/neuonc/nou355] [PMID: 25746089]
[67]
Czolk, R.; Schwarz, N.; Koch, H.; Schötterl, S.; Wuttke, T.V.; Holm, P.S.; Huber, S.M.; Naumann, U. Irradiation enhances the therapeutic effect of the oncolytic adenovirus XVir-N-31 in brain tumor initiating cells. Int. J. Mol. Med., 2019, 44(4), 1484-1494.
[http://dx.doi.org/10.3892/ijmm.2019.4296] [PMID: 31432139]
[68]
Russell, L.; Peng, K.W. The emerging role of oncolytic virus therapy against cancer. Chin. Clin. Oncol., 2018, 7(2), 16.
[http://dx.doi.org/10.21037/cco.2018.04.04] [PMID: 29764161]
[69]
Vähä-Koskela, M.J.V.; Heikkilä, J.E.; Hinkkanen, A.E. Oncolytic viruses in cancer therapy. Cancer Lett., 2007, 254(2), 178-216.
[http://dx.doi.org/10.1016/j.canlet.2007.02.002] [PMID: 17383089]
[70]
Fu, Y.J.; Du, J.; Yang, R.J.; Yin, L.T.; Liang, A.H. Potential adenovirus-mediated gene therapy of glioma cancer. Biotechnol. Lett., 2010, 32(1), 11-18.
[http://dx.doi.org/10.1007/s10529-009-0132-0] [PMID: 19784809]
[71]
Li, H.; Chen, L.; Li, J.; Zhou, Q.; Huang, A.; Liu, W.; Wang, K.; Gao, L.; Qi, S.; Lu, Y. miR-519a enhances chemosensitivity and promotes autophagy in glioblastoma by targeting STAT3/Bcl2 signaling pathway. J. Hematol. Oncol., 2018, 11(1), 70.
[http://dx.doi.org/10.1186/s13045-018-0618-0] [PMID: 29843746]
[72]
Xie, F.Z.; Zheng, L.L. Oncolytic viruses and their application to cancer treatment. Int. Archiv. Clin. Pharmacol., 2019, 5(1), 1-6.
[http://dx.doi.org/10.23937/2572-3987.1510020]
[73]
Atasheva, S.; Emerson, C.C.; Yao, J.; Young, C.; Stewart, P.L.; Shayakhmetov, D.M. Systemic cancer therapy with engineered adenovirus that evades innate immunity. Sci. Transl. Med., 2020, 12(571), eabc6659.
[http://dx.doi.org/10.1126/scitranslmed.abc6659] [PMID: 33239388]
[74]
Zhang, Q.; Liu, F. Advances and potential pitfalls of oncolytic viruses expressing immunomodulatory transgene therapy for malignant gliomas. Cell Death Dis., 2020, 11(485), 1-11.
[http://dx.doi.org/10.1038/s41419-019-2182-0] [PMID: 31911576]
[75]
Kwiatkowska, A.; Nandhu, M.; Behera, P.; Chiocca, E.; Viapiano, M. Strategies in gene therapy for glioblastoma. Cancers (Basel), 2013, 5(4), 1271-1305.
[http://dx.doi.org/10.3390/cancers5041271] [PMID: 24202446]
[76]
Okura, H.; Smith, C.A.; Rutka, J.T. Gene therapy for malignant glioma. Mol. Cell. Ther., 2014, 2(1), 21.
[http://dx.doi.org/10.1186/2052-8426-2-21] [PMID: 26056588]
[77]
Kyritsis, A.P.; Sioka, C.; Rao, J.S. Viruses, gene therapy and stem cells for the treatment of human glioma. Cancer Gene Ther., 2009, 16(10), 741-752.
[http://dx.doi.org/10.1038/cgt.2009.52] [PMID: 19644531]
[78]
Harter, D.H.; Wilson, T.A.; Karajannis, M.A. Glioblastoma multiforme: State of the art and future therapeutics. Surg. Neurol. Int., 2014, 5(1), 64.
[http://dx.doi.org/10.4103/2152-7806.132138] [PMID: 24991467]
[79]
Kanai, R.; Rabkin, S.D. Combinatorial strategies for oncolytic herpes simplex virus therapy of brain tumors. CNS Oncol., 2013, 2(2), 129-142.
[http://dx.doi.org/10.2217/cns.12.42] [PMID: 23687568]
[80]
Newcastle disease virus (PDQ®)-patient version - national cancer institute Available from: https://www.cancer.gov/about-cancer/treatment/cam/patient/ndv-pdq(accessed 2021-05-22).
[81]
Lemos de Matos, A.; Franco, L.S.; McFadden, G. Oncolytic viruses and the immune system: The dynamic duo. Mol. Ther. Methods Clin. Dev., 2020, 17, 349-358.
[http://dx.doi.org/10.1016/j.omtm.2020.01.001] [PMID: 32071927]
[82]
García-Romero, N.; Palacín-Aliana, I.; Esteban-Rubio, S.; Madurga, R.; Rius-Rocabert, S.; Carrión-Navarro, J.; Presa, J.; Cuadrado-Castano, S.; Sánchez-Gómez, P.; García-Sastre, A.; Nistal-Villan, E.; Ayuso-Sacido, A. Newcastle Disease Virus (NDV) oncolytic activity in human glioma tumors is dependent on CDKN2A-Type I IFN gene cluster codeletion. Cells, 2020, 9(6), 1405.
[http://dx.doi.org/10.3390/cells9061405] [PMID: 32516884]
[83]
Lee, E.Y.H.P.; Muller, W.J. Oncogenes and tumor suppressor genes. Cold Spring Harb. Perspect. Biol., 2010, 2(10), a003236.
[http://dx.doi.org/10.1101/cshperspect.a003236] [PMID: 20719876]
[84]
Abdullah, J.M.; Mustafa, Z.; Ideris, A. Newcastle disease virus interaction in targeted therapy against proliferation and invasion pathways of glioblastoma multiforme. BioMed Res. Int., 2014, 2014, 1-11.
[http://dx.doi.org/10.1155/2014/386470] [PMID: 25243137]
[85]
Neßelhut, T.; Marx, D.; Neßelhut, J.; Fändrich, F. Immunotherapy with Dendritic Cells and Newcastle Disease Virus in Glioblasto.Brain Tumors-Current and Emerging Therapeutic Strategies; Abujamra, A.L., Ed.; InTech: Croatia, 2011.
[http://dx.doi.org/10.5772/22074]
[86]
Friedman, G.K.; Cassady, K.A.; Beierle, E.A.; Markert, J.M.; Gillespie, G.Y. Targeting pediatric cancer stem cells with oncolytic virotherapy. Pediatr. Res., 2012, 71(2-4), 500-510.
[http://dx.doi.org/10.1038/pr.2011.58] [PMID: 22430386]
[87]
Muik, A.; von Laer, D. Oncolytic virotherapy of glioma: what does it need to make it work? Future Virol., 2011, 6(11), 1289-1297.
[http://dx.doi.org/10.2217/fvl.11.111]
[88]
Allen, C.; Opyrchal, M.; Aderca, I.; Schroeder, M.A.; Sarkaria, J.N.; Domingo, E.; Federspiel, M.J.; Galanis, E. Oncolytic measles virus strains have significant antitumor activity against glioma stem cells. Gene Ther., 2013, 20(4), 444-449.
[http://dx.doi.org/10.1038/gt.2012.62] [PMID: 22914495]
[89]
Rajaraman, S.; Canjuga, D.; Ghosh, M.; Codrea, M.C.; Sieger, R.; Wedekink, F.; Tatagiba, M.; Koch, M.; Lauer, U.M.; Nahnsen, S.; Rammensee, H.G.; Mühlebach, M.D.; Stevanovic, S.; Tabatabai, G. Measles virus-based treatments trigger a pro-inflammatory cascade and a distinctive immunopeptidome in glioblastoma. Mol. Ther. Oncolytics, 2019, 12(March), 147-161.
[http://dx.doi.org/10.1016/j.omto.2018.12.010] [PMID: 30775418]
[90]
Loya, J.; Zhang, C.; Cox, E.; Achrol, A.S.; Kesari, S. Biological intratumoral therapy for the high-grade glioma part II: Vector- and cell-based therapies and radioimmunotherapy. CNS Oncol., 2019, 8(3), CNS40.
[http://dx.doi.org/10.2217/cns-2019-0002] [PMID: 31747784]
[91]
Cao, G.; He, X.; Sun, Q.; Chen, S.; Wan, K.; Xu, X.; Feng, X.; Li, P.; Chen, B.; Xiong, M. The oncolytic virus in cancer diagnosis and treatment. Front. Oncol., 2020, 10, 1786.
[http://dx.doi.org/10.3389/fonc.2020.01786] [PMID: 33014876]
[92]
Bai, Y.; Hui, P.; Du, X.; Su, X. Updates to the antitumor mechanism of oncolytic virus. Thorac. Cancer, 2019, 10(5), 1031-1035.
[http://dx.doi.org/10.1111/1759-7714.13043]
[93]
Sonabend, A.M.; Ulasov, I.V.; Tyler, M.A.; Rivera, A.A.; Mathis, J.M.; Lesniak, M.S. Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells, 2008, 26, 831-841.
[94]
Rincón, E.; Cejalvo, T.; Kanojia, D.; Alfranca, A.; Rodríguez-Milla, M.Á.; Hoyos, R.A.G.; Han, Y.; Zhang, L.; Alemany, R.; Lesniak, M.S.; García-Castro, J.; García-Castro, J. Mesenchymal stem cell carriers enhance antitumor efficacy of oncolytic adenoviruses in an immunocompetent mouse model. Oncotarget, 2017, 8(28), 45415-45431.
[http://dx.doi.org/10.18632/oncotarget.17557] [PMID: 28525366]
[95]
Melen, G.J.; Franco-Luzón, L.; Ruano, D.; González-Murillo, Á.; Alfranca, A.; Casco, F.; Lassaletta, Á.; Alonso, M.; Madero, L.; Alemany, R.; García-Castro, J.; Ramírez, M. Influence of carrier cells on the clinical outcome of children with neuroblastoma treated with high dose of oncolytic adenovirus delivered in mesenchymal stem cells. Cancer Lett., 2016, 371(2), 161-170.
[http://dx.doi.org/10.1016/j.canlet.2015.11.036] [PMID: 26655276]
[96]
Ahmed, A.U.; Thaci, B.; Alexiades, N.G.; Han, Y.; Qian, S.; Liu, F.; Balyasnikova, I.V.; Ulasov, I.Y.; Aboody, K.S.; Lesniak, M.S. Neural stem cell-based cell carriers enhance therapeutic efficacy of an oncolytic adenovirus in an orthotopic mouse model of human glioblastoma. Mol. Ther., 2011, 19(9), 1714-1726.
[http://dx.doi.org/10.1038/mt.2011.100] [PMID: 21629227]
[97]
de Melo, S.M.; Bittencourt, S.; Ferrazoli, E.G.; da Silva, C.S.; da Cunha, F.F.; da Silva, F.H.; Stilhano, R.S.; Denapoli, P.M.A.; Zanetti, B.F.; Martin, P.K.M.; Silva, L.M.; Santos, A.A.; Baptista, L.S.; Longo, B.M.; Han, S.W. The anti-tumor effects of adipose tissue mesenchymal stem cell transduced with HSV-TK gene on U-87-driven brain tumor. PLoS One, 2015, 10(6), e0128922.
[http://dx.doi.org/10.1371/journal.pone.0128922] [PMID: 26067671]
[98]
Duebgen, M.; Martinez-Quintanilla, J.; Tamura, K.; Hingtgen, S.; Redjal, N.; Wakimoto, H.; Shah, K. Stem cells loaded with multimechanistic oncolytic herpes simplex virus variants for brain tumor therapy. J. Natl. Cancer Inst., 2014, 106(6), dju090.
[http://dx.doi.org/10.1093/jnci/dju090] [PMID: 24838834]
[99]
Du, W.; Seah, I.; Bougazzoul, O.; Choi, G.; Meeth, K.; Bosenberg, M.W.; Wakimoto, H.; Fisher, D.; Shah, K. Stem cell-released oncolytic herpes simplex virus has therapeutic efficacy in brain metastatic melanomas. Proc. Natl. Acad. Sci. USA, 2017, 114(30), E6157-E6165.
[http://dx.doi.org/10.1073/pnas.1700363114] [PMID: 28710334]
[100]
Kazimirsky, G.; Jiang, W.; Slavin, S.; Ziv-Av, A.; Brodie, C. Mesenchymal stem cells enhance the oncolytic effect of Newcastle disease virus in glioma cells and glioma stem cells via the secretion of TRAIL. Stem Cell Res. Ther., 2016, 7(1), 149.
[http://dx.doi.org/10.1186/s13287-016-0414-0] [PMID: 27724977]
[101]
Leske, H.; Haase, R.; Restle, F.; Schichor, C.; Albrecht, V.; Vizoso Pinto, M.G.; Tonn, J.C.; Baiker, A.; Thon, N. Varicella zoster virus infection of malignant glioma cell cultures: A new candidate for oncolytic virotherapy? Anticancer Res., 2012, 32(4), 1137-1144.
[PMID: 22493342]
[102]
Babaei, A.; Baghi, H.B.; Nezhadi, A.; Jamalpoor, Z. In vitro Anti-cancer activity of adipose-derived mesenchymal stem cells increased after infection with oncolytic reovirus. In: Adv Pharm Bull;; , 2021; 11, pp. (2)361-370.
[http://dx.doi.org/10.34172/apb.2021.034]
[103]
Auffinger, B.; Morshed, R.; Tobias, A.; Cheng, Y.; Ahmed, A.U.; Lesniak, M.S. Drug-loaded nanoparticle systems and adult stem cells: A potential marriage for the treatment of malignant glioma? Oncotarget, 2013, 4(3), 378-396.
[http://dx.doi.org/10.18632/oncotarget.937] [PMID: 23594406]
[104]
Levy, O.; Kuai, R.; Siren, E.M.J.; Bhere, D.; Milton, Y.; Nissar, N.; De Biasio, M.; Heinelt, M.; Reeve, B.; Abdi, R.; Alturki, M.; Fallatah, M.; Almalik, A.; Alhasan, A.H.; Shah, K.; Karp, J.M. Shattering barriers toward clinically meaningful MSC therapies. Sci. Adv., 2020, 6(30), eaba6884.
[http://dx.doi.org/10.1126/sciadv.aba6884] [PMID: 32832666]
[105]
Zheng, M.; Huang, J.; Tong, A.; Yang, H. Oncolytic viruses for cancer therapy: Barriers and recent advances. Mol. Ther. Oncolytics, 2019, 15, 234-247.
[http://dx.doi.org/10.1016/j.omto.2019.10.007] [PMID: 31872046]
[106]
Wei, D.; Xu, J.; Liu, X.Y.; Chen, Z.N.; Bian, H. Fighting cancer with viruses: Oncolytic virus therapy in china. Hum. Gene Ther., 2018, 29(2), 151-159.
[http://dx.doi.org/10.1089/hum.2017.212] [PMID: 29284308]
[107]
Ferguson, M.S.; Lemoine, N.R.; Wang, Y. Systemic delivery of oncolytic viruses: Hopes and hurdles. Adv. Virol., 2012, 2012, 1-14.
[http://dx.doi.org/10.1155/2012/805629] [PMID: 22400027]
[108]
DeCordova, S.; Shastri, A.; Tsolaki, A.G.; Yasmin, H.; Klein, L.; Singh, S.K.; Kishore, U. Molecular heterogeneity and immunosuppressive microenvironment in glioblastoma. Front. Immunol., 2020, 11, 1402.
[http://dx.doi.org/10.3389/fimmu.2020.01402] [PMID: 32765498]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy