Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

The Synthetic Progress of Fused Bicyclic N,O-acetals

Author(s): Shuyan Yu*, Zeyu Liu, Hongbing Lan, Kun Qian, Xiaohua Ding* and Zhigang Yin

Volume 26, Issue 24, 2022

Published on: 24 February, 2023

Page: [2203 - 2213] Pages: 11

DOI: 10.2174/1385272827666230217090408

Price: $65

Open Access Journals Promotions 2
Abstract

Owing to the prevalent occurring in natural products and abundant bioactivities, the effective synthetic methods of fused bicyclic N,O-acetals skeletons are of great interest to chemists. This mini-review summarized the thus far synthetic progress of fused bicyclic N,O-acetals. These works were elaborated according to the different reaction types, including a) hetero-Diels-Alder cycloaddition of cyclic enamines with oxadienes; b) step-by-step reactions between cyclic enamines and electrophiles with pendant hydroxyl groups; c) [3+2] cycloaddition of indole with quinone or its equivalent and d) other novel strategies. The catalytic systems and reaction mechanisms are mainly described.

Keywords: N, O-acetals, hetero-Diels-Alder (hetero-DA), multicomponent domino reaction (MCR), hydroxyl groups, cyclic enamines, cycloaddition.

Graphical Abstract
[1]
Hesse, M.; Noyan, S.; Hopp Rentsch, G.; Ali Önür, M.; Gözler, T.; Gözler, B. The gracilines: A novel subgroup of the amaryllidaceae alkaloids. Heterocycles, 1998, 48(9), 1777-1791.
[http://dx.doi.org/10.3987/COM-98-8201]
[2]
Unver, N.; Noyan, S.; Gozler, B.; Gozler, T.; Werner, C.; Hesse, M. Four new amaryllidaceae alkaloids from galanthus gracilis and galanthus plicatus Subsp. Byzantinus. Heterocycles, 2001, 55, 641-652.
[http://dx.doi.org/10.3987/COM-00-9132]
[3]
Lai, D.; Brötz-Oesterhelt, H.; Müller, W.E.G.; Wray, V.; Proksch, P. Bioactive polyketides and alkaloids from Penicillium citrinum, a fungal endophyte isolated from Ocimum tenuiflorum. Fitoterapia, 2013, 91, 100-106.
[http://dx.doi.org/10.1016/j.fitote.2013.08.017] [PMID: 23999155]
[4]
Wu, Q.X.; Crews, M.S.; Draskovic, M.; Sohn, J.; Johnson, T.A.; Tenney, K.; Valeriote, F.A.; Yao, X.J.; Bjeldanes, L.F.; Crews, P. Azonazine, a novel dipeptide from a Hawaiian marine sediment-derived fungus, Aspergillus insulicola. Org. Lett., 2010, 12(20), 4458-4461.
[http://dx.doi.org/10.1021/ol101396n] [PMID: 20866076]
[5]
Zhao, J.C.; Yu, S.M.; Liu, Y.; Yao, Z.J. Biomimetic synthesis of ent-(-)-azonazine and stereochemical reassignment of natural product. Org. Lett., 2013, 15(17), 4300-4303.
[http://dx.doi.org/10.1021/ol4015706] [PMID: 23931155]
[6]
Hotellier, F.; Delaveau, P.; Pousset, J. Alcaloïdes et gluco-alcaloïdes des feuilles de Nauclea latifolia SM. Planta Med., 1979, 35(3), 242-246.
[http://dx.doi.org/10.1055/s-0028-1097211] [PMID: 432302]
[7]
Wölfel, E.; Schöpf, C.; Weitz, G.; Habermehl, G. Die Konstitution und Konfiguration des Samandarins. Chem. Ber., 1961, 94(9), 2361-2373.
[http://dx.doi.org/10.1002/cber.19610940902]
[8]
Boente, J.M.; Castedo, L.; Cuadros; Saá, J.M.; Suau, R.; Perales, A.; Martínez-Ripoll, M.; Fayos, J. Ribasine, a new class of papaveraceae alkaloids. Tetrahedron Lett., 1983, 24(19), 2029-2030.
[http://dx.doi.org/10.1016/S0040-4039(00)81835-3]
[9]
van der Pijl, F.; van Delft, F.L.; Rutjes, F.P.J.T. Synthesis and functionalization of bicyclic N,O-acetal scaffolds from furfural. Bioorg. Med. Chem., 2015, 23(11), 2721-2729.
[http://dx.doi.org/10.1016/j.bmc.2014.12.045] [PMID: 25596167]
[10]
Azevedo, L.; Chagas-Paula, D.A.; Kim, H.; Roque, A.C.M.; Dias, K.S.T.; Machado, J.C.; Soares, M.G.; Mertens-Talcott, S.U. White mold (Sclerotinia sclerotiorum), friend or foe: Cytotoxic and mutagenic activities in vitro and in vivo. Food Res. Int., 2016, 80, 27-35.
[http://dx.doi.org/10.1016/j.foodres.2015.11.029]
[11]
Sasaki, M.; Tsuda, M.; Sekiguchi, M.; Mikami, Y.; Kobayashi, J. Perinadine A, a novel tetracyclic alkaloid from marine-derived fungus Penicillium citrinum. Org. Lett., 2005, 7(19), 4261-4264.
[http://dx.doi.org/10.1021/ol051695h] [PMID: 16146402]
[12]
Deeks, S.G.; Smith, M.; Holodniy, M.; Kahn, J.O. HIV-1 protease inhibitors. A review for clinicians. JAMA, 1997, 277(2), 145-153.
[http://dx.doi.org/10.1001/jama.1997.03540260059037] [PMID: 8990341]
[13]
Wang, G.; Shang, L.; Burgett, A.W.G.; Harran, P.G.; Wang, X. Diazonamide toxins reveal an unexpected function for ornithine δ-amino transferase in mitotic cell division. Proc. Natl. Acad. Sci., 2007, 104(7), 2068-2073.
[http://dx.doi.org/10.1073/pnas.0610832104] [PMID: 17287350]
[14]
Williams, N.S.; Burgett, A.W.G.; Atkins, A.S.; Wang, X.; Harran, P.G.; McKnight, S.L. Therapeutic anticancer efficacy of a synthetic diazonamide analog in the absence of overt toxicity. Proc. Natl. Acad. Sci. USA, 2007, 104(7), 2074-2079.
[http://dx.doi.org/10.1073/pnas.0611340104] [PMID: 17287337]
[15]
Yuan, M.Y.; Chen, X.Y.; Lin, S.L. Synthesis of the functionalized enamine. Huaxue Jinzhan, 2018, 30, 1082-1096.
[http://dx.doi.org/10.7536/PC171246]
[16]
Gu, Y.; De Sousa, R.; Frapper, G.; Bachmann, C.; Barrault, J.; Jérôme, F. Catalyst-free aqueous multicomponent domino reactions from formaldehyde and 1,3-dicarbonyl derivatives. Green Chem., 2009, 11(12), 1968-1972.
[http://dx.doi.org/10.1039/b913846c]
[17]
Burns, N.Z.; Baran, P.S.; Hoffmann, R.W. Redox economy in organic synthesis. Angew. Chem. Int. Ed., 2009, 48(16), 2854-2867.
[http://dx.doi.org/10.1002/anie.200806086] [PMID: 19294720]
[18]
Newhouse, T.; Baran, P.S.; Hoffmann, R.W. The economies of synthesis. Chem. Soc. Rev., 2009, 38(11), 3010-3021.
[http://dx.doi.org/10.1039/b821200g] [PMID: 19847337]
[19]
Peng, B.; Maulide, N. The redox-neutral approach to C-H functionalization. Chemistry, 2013, 19(40), 13274-13287.
[http://dx.doi.org/10.1002/chem.201301522] [PMID: 24027042]
[20]
Xia, X.F.; Shu, X.Z.; Ji, K.G.; Shaukat, A.; Liu, X.Y.; Liang, Y.M. Platinum/scandium-cocatalyzed cascade cyclization and ring-opening reaction of tertiary amines with substituted salicylaldehydes to synthesize 3-(aminoalkyl)coumarins. J. Org. Chem., 2011, 76(1), 342-345.
[http://dx.doi.org/10.1021/jo102219z] [PMID: 21141942]
[21]
Takasu, N.; Oisaki, K.; Kanai, M. Iron-catalyzed oxidative C(3)-H functionalization of amines. Org. Lett., 2013, 15(8), 1918-1921.
[http://dx.doi.org/10.1021/ol400568u] [PMID: 23578034]
[22]
Chen, W.; Kang, Y.; Wilde, R.G.; Seidel, D. Redox‐;Neutral α,β‐Difunctionalization of Cyclic Amines. Angew. Chem. Int. Ed., 2014, 53(20), 5179-5182.
[http://dx.doi.org/10.1002/anie.201311165] [PMID: 24692162]
[23]
Tashrifi, Z.; Mohammadi, K.M.; Biglar, M.; Larijani, B.; Mahdavi, M. Recent advances in alkyne hydroamination as a powerful tool for the construction of C−N bonds. Asian J. Org. Chem., 2020, 9(7), 969-991.
[http://dx.doi.org/10.1002/ajoc.202000092]
[24]
Pohlki, F.; Doye, S. The catalytic hydroamination of alkynes. Chem. Soc. Rev., 2003, 32(2), 104-114.
[http://dx.doi.org/10.1039/b200386b] [PMID: 12683107]
[25]
Patil, N.T.; Lutete, L.M.; Wu, H.; Pahadi, N.K.; Gridnev, I.D.; Yamamoto, Y. Palladium-catalyzed intramolecular asymmetric hydroamination, hydroalkoxylation, and hydrocarbonation of alkynes. J. Org. Chem., 2006, 71(11), 4270-4279.
[http://dx.doi.org/10.1021/jo0603835] [PMID: 16709071]
[26]
Han, Z.Y.; Xiao, H.; Chen, X.H.; Gong, L.Z. Ultrafast ligand exchange: Detection of a pentacoordinate Ru(II) intermediate and product formation. J. Am. Chem. Soc., 2009, 131, 9182-9183.
[http://dx.doi.org/10.1021/ja903547q] [PMID: 19518048]
[27]
Chang, S.; Lee, M.; Jung, D.Y.; Yoo, E.J.; Cho, S.H.; Han, S.K. Catalytic one-pot synthesis of cyclic amidines by virtue of tandem reactions involving intramolecular hydroamination under mild conditions. J. Am. Chem. Soc., 2006, 128(38), 12366-12367.
[http://dx.doi.org/10.1021/ja064788i] [PMID: 16984157]
[28]
Hirano, K.; Inaba, Y.; Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, H. Gold-catalyzed intramolecular alkyne cycloisomerization cascade: Direct synthesis of aryl-annulated[ a]carbazoles from aniline-substituted diethynylarenes. Adv. Synth. Catal., 2010, 352(2-3), 368-372.
[http://dx.doi.org/10.1002/adsc.200900880]
[29]
Barber, D.M.; Sanganee, H.J.; Dixon, D.J. One-pot catalytic enantioselective synthesis of tetrahydropyridines via a nitro-Mannich/hydroamination cascade. Org. Lett., 2012, 14(20), 5290-5293.
[http://dx.doi.org/10.1021/ol302459c] [PMID: 23039069]
[30]
Verma, A.K.; Jha, R.R.; Chaudhary, R.; Tiwari, R.K.; Reddy, K.S.K.; Danodia, A. Copper-catalyzed tandem synthesis of indolo-, pyrrolo[2,1-a]isoquinolines, naphthyridines and bisindolo/pyrrolo[2,1-a]isoquinolines via hydroamination of ortho-haloarylalkynes followed by C-2 arylation. J. Org. Chem., 2012, 77(18), 8191-8205.
[http://dx.doi.org/10.1021/jo301572p] [PMID: 22906046]
[31]
Wang, X.; Yao, Z.; Dong, S.; Wei, F.; Wang, H.; Xu, Z. Synthesis of fused bicyclic aminals through sequential gold/Lewis acid catalysis. Org. Lett., 2013, 15(9), 2234-2237.
[http://dx.doi.org/10.1021/ol400803f] [PMID: 23600662]
[32]
Yesilcimen, A.; Jiang, N.C.; Gottlieb, F.H.; Wasa, M. Enantioselective organocopper-catalyzed hetero diels–alder reaction through in situ oxidation of ethers into enol ethers. J. Am. Chem. Soc., 2022, 144(14), 6173-6179.
[http://dx.doi.org/10.1021/jacs.2c01656] [PMID: 35380438]
[33]
Chen, J.B.; Xu, M.; Zhang, J.Q.; Sun, B.B.; Hu, J.M.; Yu, J.Q.; Wang, X.W.; Xia, Y.; Wang, Z. Modular chiral bisoxalamide–copper-catalyzed asymmetric oxo-diels–alder reaction: Carbonyl coordination for high enantio- and diastereocontrols. ACS Catal., 2020, 10(6), 3556-3563.
[http://dx.doi.org/10.1021/acscatal.9b05606]
[34]
Zhou, Y.; Zhu, Y.; Lin, L.; Zhang, Y.; Zheng, J.; Liu, X.; Feng, X. N,N′-dioxide/nickel(II)-catalyzed asymmetric inverse-electron-demand hetero-diels-alder reaction of βγ-unsaturated α-ketoesters with enecarbamates. Chemistry, 2014, 20(50), 16753-16758.
[http://dx.doi.org/10.1002/chem.201403764] [PMID: 25348771]
[35]
Hu, Y.; Xu, K.; Zhang, S.; Guo, F.; Zha, Z.; Wang, Z. Copper-catalyzed enantioselective hetero-diels–alder reaction of danishefsky’s diene with β,γ-unsaturated α-ketoesters. Org. Lett., 2014, 16(13), 3564-3567.
[http://dx.doi.org/10.1021/ol5015009] [PMID: 24955872]
[36]
Matsumura, Y.; Suzuki, T.; Sakakura, A.; Ishihara, K. Catalytic enantioselective inverse electron demand hetero-Diels-Alder reaction with allylsilanes. Angew. Chem. Int. Ed., 2014, 53(24), 6131-6134.
[http://dx.doi.org/10.1002/anie.201402934] [PMID: 24782343]
[37]
Lv, J.; Zhong, X.; Cheng, J-P.; Luo, S. Asymmetric binary-acid catalysis in the inverse-electron-demanding hetero-diels-alder reaction of 3,4-Dihydro-2 H -Pyran. Huaxue Xuebao, 2012, 70(14), 1518-1522.
[http://dx.doi.org/10.6023/A12060346]
[38]
Zhu, Y.; Xie, M.; Dong, S.; Zhao, X.; Lin, L.; Liu, X.; Feng, X. Asymmetric cycloaddition of β,γ-unsaturated α-ketoesters with electron-rich alkenes catalyzed by a chiral Er(OTf)3/N,N′-dioxide complex: highly enantioselective synthesis of 3,4-dihydro-2H-pyrans. Chemistry, 2011, 17(29), 8202-8208.
[http://dx.doi.org/10.1002/chem.201100520] [PMID: 21647990]
[39]
Guan, X.K.; Liu, G.F.; An, D.; Zhang, H.; Zhang, S.Q. Chiral imidodiphosphoric acid-catalyzed highly diastereo- and enantioselective synthesis of poly-substituted 3,4-Dihydro-2 H -pyrans: [4 + 2] Cycloadditions of βγ-unsaturated α-ketoesters and 3-vinylindoles. Org. Lett., 2019, 21(14), 5438-5442.
[http://dx.doi.org/10.1021/acs.orglett.9b01675] [PMID: 31267756]
[40]
Liu, Q.J.; Wang, L.; Kang, Q.K.; Zhang, X.P.; Tang, Y. Cy‐SaBOX/Copper(II)‐;catalyzed highly diastereo‐; and enantioselective synthesis of bicyclic n,o acetals. Angew. Chem. Int. Ed., 2016, 55(32), 9220-9223.
[http://dx.doi.org/10.1002/anie.201603911] [PMID: 27351738]
[41]
Hu, B.; Li, J.; Cao, W.; Lin, Q.; Yang, J.; Lin, L.; Liu, X.; Feng, X. Asymmetric synthesis of fused bicyclic N,O - and O,O -acetals via cascade reaction by Gold(I)/N,N ′-Dioxide-Nickel(II) bimetallic relay catalysis. Adv. Synth. Catal., 2018, 360(15), 2831-2835.
[http://dx.doi.org/10.1002/adsc.201800576]
[42]
Liu, X.; Zheng, H.; Xia, Y.; Lin, L.; Feng, X. Asymmetric cycloaddition and cyclization reactions catalyzed by chiral N,N′-dioxide–metal complexes. Acc. Chem. Res., 2017, 50(10), 2621-2631.
[http://dx.doi.org/10.1021/acs.accounts.7b00377] [PMID: 28967737]
[43]
Liu, X.; Lin, L.; Feng, X.; Chiral, N. Chiral, N,N′-dioxides: New ligands and organocatalysts for catalytic asymmetric reactions. Acc. Chem. Res., 2011, 44(8), 574-587.
[http://dx.doi.org/10.1021/ar200015s] [PMID: 21702458]
[44]
Li, J.; Lin, L.; Hu, B.; Lian, X.; Wang, G.; Liu, X.; Feng, X. Bimetallic Gold(I)/Chiral N, N′ ‐;Dioxide Nickel(II) Asymmetric Relay Catalysis: Chemo‐; and Enantioselective Synthesis of Spiroketals and Spiroaminals. Angew. Chem. Int. Ed., 2016, 55(20), 6075-6078.
[http://dx.doi.org/10.1002/anie.201601701] [PMID: 27062196]
[45]
Xia, X.F.; Shu, X.Z.; Ji, K.G.; Yang, Y.F.; Shaukat, A.; Liu, X.Y.; Liang, Y.M. Platinum-catalyzed michael addition and cyclization of tertiary amines with nitroolefins by dehydrogenation of αβ-sp3 C-H bonds. J. Org. Chem., 2010, 75(9), 2893-2902.
[http://dx.doi.org/10.1021/jo100133z] [PMID: 20345090]
[46]
Tong, S.; Wang, M.X. Domino reactions of tertiary enamides in organic synthesis. Synlett, 2021, 32(14), 1419-1427.
[http://dx.doi.org/10.1055/a-1352-6358]
[47]
Cai, X.; Yang, M.; Guo, H. Tertiary enamides: Versatile and available substrates in synthetic chemistry. Curr. Org. Synth., 2019, 16(1), 70-97.
[http://dx.doi.org/10.2174/1570179415666181107122814] [PMID: 31965923]
[48]
Wang, M.X. Exploring tertiary enamides as versatile synthons in organic synthesis. Chem. Commun., 2015, 51(28), 6039-6049.
[http://dx.doi.org/10.1039/C4CC10327K] [PMID: 25673494]
[49]
Miesch, L.; Beltran, F. Tertiary enamides as versatile and valuable substrates to reach chemical diversity. Synthesis, 2020, 52(17), 2497-2511.
[http://dx.doi.org/10.1055/s-0040-1707403]
[50]
Yang, L.; Zheng, Q.Y.; Wang, D.X.; Huang, Z.T.; Wang, M.X. Reversal of nucleophilicity of enamides in water: Control of cyclization pathways by reaction media for the orthogonal synthesis of dihydropyridinone and pyrrolidinone Clausena alkaloids. Org. Lett., 2008, 10(12), 2461-2464.
[http://dx.doi.org/10.1021/ol800740h] [PMID: 18505262]
[51]
Yang, L.; Wang, D.X.; Huang, Z.T.; Wang, M.X. Cr(III)(salen)Cl catalyzed enantioselective intramolecular addition of tertiary enamides to ketones: a general access to enantioenriched 1H-pyrrol-2(3H)-one derivatives bearing a hydroxylated quaternary carbon atom. J. Am. Chem. Soc., 2009, 131(30), 10390-10391.
[http://dx.doi.org/10.1021/ja904534t] [PMID: 19722618]
[52]
Tong, S.; Wang, D.X.; Zhao, L.; Zhu, J.; Wang, M.X. Enantioselective synthesis of 4-hydroxytetrahydropyridine derivatives by intramolecular addition of tertiary enamides to aldehydes. Angew. Chem. Int. Ed., 2012, 51(18), 4417-4420.
[http://dx.doi.org/10.1002/anie.201200459] [PMID: 22441973]
[53]
Lei, C.H.; Wang, D.X.; Zhao, L.; Zhu, J.; Wang, M.X. Synthesis of substituted pyridines from cascade [1 + 5] cycloaddition of isonitriles to N-formylmethyl-substituted enamides, aerobic oxidative aromatization, and acyl transfer reaction. J. Am. Chem. Soc., 2013, 135(12), 4708-4711.
[http://dx.doi.org/10.1021/ja401701x] [PMID: 23477427]
[54]
Tong, S.; Yang, X.; Wang, D.X.; Zhao, L.; Zhu, J.; Wang, M.X. Synthesis of 4-amino-1,2,3,4-tetrahydropyridine derivatives by intramolecular nucleophilic addition of tertiary enamides to in-situ generated imines. Tetrahedron, 2012, 68(32), 6492-6497.
[http://dx.doi.org/10.1016/j.tet.2012.05.108]
[55]
He, L.; Zhao, L.; Wang, D.X.; Wang, M.X. Catalytic asymmetric difunctionalization of stable tertiary enamides with salicylaldehydes: Highly efficient, enantioselective, and diastereoselective synthesis of diverse 4-chromanol derivatives. Org. Lett., 2014, 16(22), 5972-5975.
[http://dx.doi.org/10.1021/ol5029964] [PMID: 25358127]
[56]
He, L.; Liu, H.B.; Zhao, L.; Wang, D.X.; Wang, M.X. Lewis acid-catalyzed reaction between tertiary enamides and imines of salicylaldehydes: expedient synthesis of novel 4-chromanamine derivatives. Tetrahedron, 2015, 71(4), 523-531.
[http://dx.doi.org/10.1016/j.tet.2014.12.050]
[57]
Lindquist, N.; Fenical, W.; Van Duyne, G.D.; Clardy, J. Isolation and structure determination of diazonamides A and B, unusual cytotoxic metabolites from the marine ascidian Diazona chinensis. J. Am. Chem. Soc., 1991, 113(6), 2303-2304.
[http://dx.doi.org/10.1021/ja00006a060]
[58]
Li, J.; Burgett, A.W.G.; Esser, L.; Amezcua, C.; Harran, P.G. Total synthesis of nominal diazonamides-part 2: On the true structure and origin of natural isolates. Angew. Chem. Int. Ed., 2001, 40(24), 4770-4773.
[http://dx.doi.org/10.1002/1521-3773(20011217)40:24<4770:AID-ANIE4770>3.0.CO;2-T] [PMID: 12404412]
[59]
Ritter, T.; Carreira, E.M. The diazonamides: The plot thickens. Angew. Chem. Int. Ed., 2002, 41(14), 2489-2495.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2489:AID-ANIE2489>3.0.CO;2-V] [PMID: 12203512]
[60]
Yu, T.; Sun, Y.; Tu, C.; Chen, T.; Fu, S.; Liu, B.; Liu, B. Total synthesis of crotophorbolone. Chem. Sci., 2020, 11(27), 7177-7181.
[http://dx.doi.org/10.1039/D0SC02829K] [PMID: 34123002]
[61]
Du, B.; Huang, Z.; Wang, X.; Chen, T.; Shen, G.; Fu, S.; Liu, B. A unified strategy toward total syntheses of lindenane sesquiterpenoid [4 + 2] dimers. Nat. Commun., 2019, 10(1), 1892-1899.
[http://dx.doi.org/10.1038/s41467-019-09858-8] [PMID: 31015442]
[62]
Hills, I.D.; Fu, G.C. Catalytic enantioselective synthesis of oxindoles and benzofuranones that bear a quaternary stereocenter. Angew. Chem. Int. Ed., 2003, 42(33), 3921-3924.
[http://dx.doi.org/10.1002/anie.200351666] [PMID: 12949869]
[63]
Cheung, C.M.; Goldberg, F.W.; Magnus, P.; Russell, C.J.; Turnbull, R.; Lynch, V. An expedient formal total synthesis of (-)-diazonamide A via a powerful, stereoselective O-aryl to C-aryl migration to form the C10 quaternary center. J. Am. Chem. Soc., 2007, 129(40), 12320-12327.
[http://dx.doi.org/10.1021/ja0744448] [PMID: 17880079]
[64]
Nicolaou, K.C.; Bheema Rao, P.; Hao, J.; Reddy, M.V.; Rassias, G.; Huang, X.; Chen, D.Y.K.; Snyder, S.A. The second total synthesis of diazonamide A. Angew. Chem. Int. Ed., 2003, 42(15), 1753-1758.
[http://dx.doi.org/10.1002/anie.200351112] [PMID: 12707898]
[65]
Zheng, K.; Shen, D.; Hong, R. Biomimetic synthesis of lankacidin antibiotics. J. Am. Chem. Soc., 2017, 139(37), 12939-12942.
[http://dx.doi.org/10.1021/jacs.7b08500] [PMID: 28853876]
[66]
Yang, L.; Lin, Z.; Shao, S.; Zhao, Q.; Hong, R. An enantioconvergent and concise synthesis of lasonolide A. Angew. Chem. Int. Ed., 2018, 57(49), 16200-16204.
[http://dx.doi.org/10.1002/anie.201811093] [PMID: 30320943]
[67]
Burgett, A.W.G.; Li, Q.; Wei, Q.; Harran, P.G. A concise and flexible total synthesis of (-)-diazonamide A. Angew. Chem. Int. Ed., 2003, 42(40), 4961-4966.
[http://dx.doi.org/10.1002/anie.200352577] [PMID: 14579451]
[68]
Chan, C.; Li, C.; Zhang, F.; Danishefsky, S.J. Studies toward the total synthesis of phalarine: A survey of some biomimetic possibilities. Tetrahedron Lett., 2006, 47(28), 4839-4841.
[http://dx.doi.org/10.1016/j.tetlet.2006.05.041]
[69]
Nicolaou, K.C.; Dalby, S.M.; Li, S.; Suzuki, T.; Chen, D.Y.K. Total synthesis of (+)-haplophytine. Angew. Chem. Int. Ed., 2009, 48(41), 7616-7620.
[http://dx.doi.org/10.1002/anie.200904588] [PMID: 19746386]
[70]
Beaud, R.; Guillot, R.; Kouklovsky, C.; Vincent, G. FeCl3-mediated Friedel-Crafts hydroarylation with electrophilic N-acetyl indoles for the synthesis of benzofuroindolines. Angew. Chem. Int. Ed., 2012, 51(50), 12546-12550.
[http://dx.doi.org/10.1002/anie.201206611] [PMID: 23125000]
[71]
Beaud, R.; Guillot, R.; Kouklovsky, C.; Vincent, G. Regioselective hydroarylation reactions of C3 electrophilic N-acetylindoles activated by FeCl3: an entry to 3-(hetero)arylindolines. Chemistry, 2014, 20(24), 7492-7500.
[http://dx.doi.org/10.1002/chem.201400284] [PMID: 24828464]
[72]
Tomakinian, T.; Guillot, R.; Kouklovsky, C.; Vincent, G. Direct oxidative coupling of N-acetyl indoles and phenols for the synthesis of benzofuroindolines related to phalarine. Angew. Chem. Int. Ed., 2014, 53(44), 11881-11885.
[http://dx.doi.org/10.1002/anie.201404055] [PMID: 25208884]
[73]
Poupon, E.; Evanno, L.; Vincent, G.; Denizot, N.; Lachkar, D.; Kouklovsky, C. Divergent oxidative couplings between indoles and 2,3-dihydroxybenzoic acid derivatives for the biomimetic synthesis of voacalgine A and bipleiophylline. Synthesis, 2018, 50(21), 4229-4242.
[http://dx.doi.org/10.1055/s-0036-1591910]
[74]
Denizot, N.; Pouilhès, A.; Cucca, M.; Beaud, R.; Guillot, R.; Kouklovsky, C.; Vincent, G. Bioinspired direct access to benzofuroindolines by oxidative [3 + 2] annulation of phenols and indoles. Org. Lett., 2014, 16(21), 5752-5755.
[http://dx.doi.org/10.1021/ol502820p] [PMID: 25347388]
[75]
Vincent, G.; Denizot, N.; Guillot, R.; Kouklovsky, C. N-Iodosuccinimide-mediated oxidative coupling of indoles and phenols: A synthetic study toward the benzofuroindoline moiety of bipleiophylline. Synthesis, 2018, 50(24), 4823-4828.
[http://dx.doi.org/10.1055/s-0036-1592002]
[76]
Wu, J.; Dou, Y.; Guillot, R.; Kouklovsky, C.; Vincent, G. Electrochemical dearomative 2,3-difunctionalization of indoles. J. Am. Chem. Soc., 2019, 141(7), 2832-2837.
[http://dx.doi.org/10.1021/jacs.8b13371] [PMID: 30672705]
[77]
Liu, K.; Tang, S.; Huang, P.; Lei, A. External oxidant-free electrooxidative [3 + 2] annulation between phenol and indole derivatives. Nat. Commun., 2017, 8(1), 775-782.
[http://dx.doi.org/10.1038/s41467-017-00873-1] [PMID: 28974679]
[78]
Noland, W.E.; Baude, F.J. The cycloaddition reaction of 3-Alkylindoles with p-Benzoquinone. J. Org. Chem., 1966, 31(10), 3321-3337.
[http://dx.doi.org/10.1021/jo01348a051]
[79]
Joshi, K.C.; Pathak, V.N.; Gupta, R. Synthesis and mass spectral studies of fluorine containing 5a, 7b, 12a, 14b-tetrahydrobisindolo [2,3-b:2′3′-b′] benzo [1,2-d:4,5-d′] difurans. J. Fluor. Chem., 1988, 38(2), 153-161.
[http://dx.doi.org/10.1016/S0022-1139(00)83024-9]
[80]
Tian, W.; Chennamaneni, L.R.; Suzuki, T.; Chen, D.Y.K. A second-generation formal synthesis of (+)-haplophytine. Eur. J. Org. Chem., 2011, 2011(6), 1027-1031.
[http://dx.doi.org/10.1002/ejoc.201001629]
[81]
Liao, L.; Shu, C.; Zhang, M.; Liao, Y.; Hu, X.; Zhang, Y.; Wu, Z.; Yuan, W.; Zhang, X. Highly enantioselective [3+2] coupling of indoles with quinone monoimines promoted by a chiral phosphoric acid. Angew. Chem. Int. Ed., 2014, 53(39), 10471-10475.
[http://dx.doi.org/10.1002/anie.201405689] [PMID: 25088553]
[82]
Shu, C.; Liao, L.H.; Liao, Y.J.; Hu, X.Y.; Zhang, Y.H.; Yuan, W.C.; Zhang, X.M. Lewis acid catalyzed [3+2] coupling of indoles with quinone monoacetals or quinone imine ketal. Eur. J. Org. Chem., 2014, 2014(21), 4467-4471.
[http://dx.doi.org/10.1002/ejoc.201402490]
[83]
Chai, Z.; Chen, J.N.; Liu, Z.; Li, X.F.; Yang, P.J.; Hu, J.P.; Yang, G. [3 + 2]-Annulations of N-alkyl-3-substituted indoles with quinone monoketals catalysed by Brønsted acids. Org. Biomol. Chem., 2016, 14(3), 1024-1030.
[http://dx.doi.org/10.1039/C5OB01876E] [PMID: 26633006]
[84]
Pathak, T.P.; Gligorich, K.M.; Welm, B.E.; Sigman, M.S. Synthesis and preliminary biological studies of 3-substituted indoles accessed by a palladium-catalyzed enantioselective alkene difunctionalization reaction. J. Am. Chem. Soc., 2010, 132(23), 7870-7871.
[http://dx.doi.org/10.1021/ja103472a] [PMID: 20486685]
[85]
Deruer, E.; Canesi, S. One-step formation of dihydrofuranoindoline cores promoted by a hypervalent iodine reagent. Org. Biomol. Chem., 2017, 15(17), 3736-3741.
[http://dx.doi.org/10.1039/C7OB00326A] [PMID: 28406505]
[86]
Liu, Q.J.; Zhu, J.; Song, X.Y.; Wang, L.; Wang, S.R.; Tang, Y. Highly enantioselective [3+2] annulation of indoles with quinones to access structurally diverse benzofuroindolines. Angew. Chem. Int. Ed., 2018, 57(14), 3810-3814.
[http://dx.doi.org/10.1002/anie.201800733] [PMID: 29405544]
[87]
Zhang, L.; Hu, J.; Xu, R.; Pan, S.; Zeng, X.; Zhong, G. Catalytic asymmetric dearomative [3+2] cyclisation of 1,4‐;quinone with 2,3‐;disubstituted indoles. Adv. Synth. Catal., 2019, 361(23), 5449-5457.
[http://dx.doi.org/10.1002/adsc.201901035]
[88]
Cheng, Y.Z.; Zhao, Q.R.; Zhang, X.; You, S.L. Asymmetric dearomatization of indole derivatives with n‐;hydroxycarbamates enabled by photoredox catalysis. Angew. Chem. Int. Ed., 2019, 58(50), 18069-18074.
[http://dx.doi.org/10.1002/anie.201911144] [PMID: 31587423]
[89]
Adam, W.; Krebs, O. The nitroso ene reaction: A regioselective and stereoselective allylic nitrogen functionalization of mechanistic delight and synthetic potential. Chem. Rev., 2003, 103(10), 4131-4146.
[http://dx.doi.org/10.1021/cr030004x] [PMID: 14531720]
[90]
Bodnar, B.S.; Miller, M.J. The nitrosocarbonyl hetero-Diels-Alder reaction as a useful tool for organic syntheses. Angew. Chem. Int. Ed., 2011, 50(25), 5630-5647.
[http://dx.doi.org/10.1002/anie.201005764] [PMID: 21520360]
[91]
Maji, B.; Yamamoto, H. Use of in situ generated nitrosocarbonyl compounds in catalytic asymmetric α-hydroxylation and α-amination reactions. Bull. Chem. Soc. Jpn., 2015, 88(6), 753-762.
[http://dx.doi.org/10.1246/bcsj.20150040]
[92]
Memeo, M.G.; Quadrelli, P. Generation and trapping of nitrosocarbonyl intermediates. Chem. Rev., 2017, 117(3), 2108-2200.
[http://dx.doi.org/10.1021/acs.chemrev.6b00684] [PMID: 28105813]
[93]
Teo, Y.C.; Pan, Y.; Tan, C.H. Organic dye-photocatalyzed acylnitroso ene reaction. ChemCatChem, 2013, 5(1), 235-240.
[http://dx.doi.org/10.1002/cctc.201200435]
[94]
Frazier, C.P.; Palmer, L.I.; Samoshin, A.V.; Read de Alaniz, J. Accessing nitrosocarbonyl compounds with temporal and spatial control via the photoredox oxidation of N-substituted hydroxylamines. Tetrahedron Lett., 2015, 56(23), 3353-3357.
[http://dx.doi.org/10.1016/j.tetlet.2015.01.024]
[95]
Zhou, L.; Yan, W.G.; Sun, X.L.; Wang, L.; Tang, Y. A versatile enantioselective catalytic cyclopropanation‐;rearrangement approach to the divergent construction of chiral spiroaminals and fused bicyclic acetals. Angew. Chem. Int. Ed., 2020, 59(43), 18964-18969.
[http://dx.doi.org/10.1002/anie.202007068] [PMID: 32677727]
[96]
Pirrung, M.C.; Zhang, J.; McPhail, A.T. Dipolar cycloaddition of cyclic rhodium carbenoids to aromatic heterocycles. J. Org. Chem., 1991, 56(22), 6269-6271.
[http://dx.doi.org/10.1021/jo00022a010]
[97]
Müller, P.; Allenbach, Y.F.; Bernardinelli, G. On the enantioselectivity of transition metal-catalyzed 1,3-cycloadditions of 2-diazocyclohexane-1,3-diones. Helv. Chim. Acta, 2003, 86(9), 3164-3178.
[http://dx.doi.org/10.1002/hlca.200390257]
[98]
Müller, P.; Chappellet, S. Asymmetric 1,3-dipolar cycloadditions of 2-diazocyclohexane-1,3-diones and alkyl diazopyruvates. Helv. Chim. Acta, 2005, 88(5), 1010-1021.
[http://dx.doi.org/10.1002/hlca.200590071]
[99]
Müller, P.; Bernardinelli, G.; Allenbach, Y.F.; Ferri, M.; Grass, S. Asymmetric synthesis of dihydrofurans via Rh(II)-Catalyzed cyclopropanation-rearrangement of enol ethers with 1-(Silanyloxy)vinyl Diazoacetates. Synlett, 2005, 1397-1400(9), 1397-1400.
[http://dx.doi.org/10.1055/s-2005-868501]
[100]
Lebel, H.; Marcoux, J.F.; Molinaro, C.; Charette, A.B. Stereoselective cyclopropanation reactions. Chem. Rev., 2003, 103(4), 977-1050.
[http://dx.doi.org/10.1021/cr010007e] [PMID: 12683775]
[101]
Carson, C.A.; Kerr, M.A. Heterocycles from cyclopropanes: Applications in natural product synthesis. Chem. Soc. Rev., 2009, 38(11), 3051-3060.
[http://dx.doi.org/10.1039/b901245c] [PMID: 19847340]
[102]
Schneider, T.F.; Kaschel, J.; Werz, D.B. A new golden age for donor-acceptor cyclopropanes. Angew. Chem. Int. Ed., 2014, 53(22), 5504-5523.
[http://dx.doi.org/10.1002/anie.201309886] [PMID: 24771660]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy