Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

1,3,5 and 1,2,4-triazines as Potent Scaffolds for Molecules Potentially Attenuating Breast Cancer Cell Lines

Author(s): Pragya Dubey*, Dharam Pal Pathak, Faraat Ali and Garima Chauhan

Volume 26, Issue 24, 2022

Published on: 22 February, 2023

Page: [2188 - 2202] Pages: 15

DOI: 10.2174/1385272827666230215141854

Price: $65

Open Access Journals Promotions 2
Abstract

Breast cancer was diagnosed in around 2.3 million women in 2020. Owing to the alarming rise in the incidence of breast cancer, newer small molecules with targeted therapy are the need of the hour. A plethora of small molecules has been approved by the USFDA in the past few years.

Triazine is a six-membered aromatic nitrogen heterocyclic molecule that was investigated for its various types of biological activities specially anticancer activity.

Triazines are studied in many derivatives having remarkable anti-tumor activity as reported in this literature. Triazines are reported to possess a variety of biological activities and have been widely investigated as a scaffold for developing newer anti-tumor agents with an ability to inhibit various types of cancers, including breast cancers.

Triazine derivatives show anticancer activity by inhibiting various targets like mTOR- kinase, PIP3-kinase, epidermal growth factor, etc. A limited number of triazine derivatives have also been clinically used for the treatment of breast cancer. A detailed study of the literature available on various derivatives of triazines with primary applicability as cytotoxic to breast cancer cell was carried out and is presented in this review. A total of 66 structurally diverse triazines have been reported in this review along with the structural features responsible for activity against various breast cancer cell lines. The primary amino residues to which the triazine based molecules bind in the estrogen receptor alpha and epidermal growth factor receptor 2, as found in various docking studies have also been detailed in the review.

Keywords: Triazine, antiproliferative, inhibitors, breast cancer cell line, structure-activity relationship, molecular target, tumors, docking.

Graphical Abstract
[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
World Health Organizaton (WHO) Fact sheets, Breast cancer. 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/breast-cancer (Assessed on: 24/054/2022).
[3]
Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast cancer. Nat. Rev. Dis. Primers, 2019, 5(1), 66.
[http://dx.doi.org/10.1038/s41572-019-0111-2] [PMID: 31548545]
[4]
Fisher, B. Biological research in the evolution of cancer surgery: A personal perspective. Cancer Res., 2008, 68(24), 10007-10020.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0186] [PMID: 19074862]
[5]
Utreja, D.; Vibha, B.S.P.; Singh, S.; Kaur, M. Schiff bases and their metal complexes as anti-cancer agents: A review. Curr. Bioact. Compd., 2015, 11(4), 215-230.
[http://dx.doi.org/10.2174/1573407212666151214221219]
[6]
Bawaskar, H.S.; Bawaskar, P.H. Scorpion sting: Update. J. Assoc. Physicians India, 2012, 60, 46-55.
[PMID: 22715546]
[7]
Gompel, A. Hormone and breast cancer. Presse Medicale, 2019, 48(10), 1085-1091.
[8]
Lev, S. Targeted therapy and drug resistance in triple-negative breast cancer: the EGFR axis. Biochem. Soc. Trans., 2020, 48(2), 657-665.
[http://dx.doi.org/10.1042/BST20191055] [PMID: 32311020]
[9]
Guan, L.Y.; Lu, Y. New developments in molecular targeted therapy of ovarian cancer. Discov. Med., 2018, 26(144), 219-229.
[PMID: 30695681]
[10]
Waks, A.G.; Winer, E.P. Breast cancer treatment. JAMA, 2019, 321(3), 316-316.
[http://dx.doi.org/10.1001/jama.2018.20751] [PMID: 30667503]
[11]
Chauhan, G.; Pathak, D.P.; Ali, F.; Dubey, P.; Khasimbi, S. In-vitro evaluation of isatin derivatives as potent anti-breast cancer agents against MCF-7, MDA MB 231, MDA-MB 435 and MDA-MB 468 breast cancers cell lines: A review. Anti-Cancer Agents Med. Chem., 2022, 22(10), 1883-1896.
[12]
Zhou, X.; Li, X.; Wu, M. miRNAs reshape immunity and inflammatory responses in bacterial infection. Signal Transduct. Target. Ther., 2018, 3(1), 14.
[http://dx.doi.org/10.1038/s41392-018-0006-9] [PMID: 29844933]
[13]
Higa, G.M.; Abraham, J. Lapatinib in the treatment of breast cancer. Expert Rev. Anticancer Ther., 2007, 7(9), 1183-1192.
[http://dx.doi.org/10.1586/14737140.7.9.1183] [PMID: 17892419]
[14]
Food and Drug Administration (FDA). FDA approves neratinib for extended adjuvant treatment of early stage HER2-positive breast cancer., Available From: https://www.fda.gov/drugs/resources-information-approved-drugs (Assessed on: 24/04/2022).
[15]
Food and Drug Administration (FDA). FDA approves tucatinib for patients with HER2-positive metastatic breast cancer., Available From: https://www.fda.gov/drugs/resources-information-approved-drugs (Assessed on: 24/04/2022).
[16]
Sabt, A.; Eldehna, W.M.; Al-Warhi, T.; Alotaibi, O.J.; Elaasser, M.M.; Suliman, H.; Abdel-Aziz, H.A. Discovery of 3,6-disubstituted pyridazines as a novel class of anticancer agents targeting cyclin-dependent kinase 2: synthesis, biological evaluation and in silico insights. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1616-1630.
[http://dx.doi.org/10.1080/14756366.2020.1806259] [PMID: 32781872]
[17]
Lavanya, V.; Mohamed Adil, A.A.; Neesar Ahmed, A.K.R.; Shazia, J. Small molecule inhibitors as emerging cancer therapeutics. Integr. Cancer Sci. Therap., 2014, 1(3), 39-46.
[18]
Pan, L.; Li, Z.; Ding, T.; Fang, X.; Zhang, W.; Xu, H.; Xu, Y. Base-Mediated Synthesis of unsymmetrical 1,3,5-triazin-2-amines via three-component reaction of imidates, guanidines, and amides or aldehydes. J. Org. Chem., 2017, 82(19), 10043-10050.
[http://dx.doi.org/10.1021/acs.joc.7b01510] [PMID: 28841321]
[19]
El-Faham, A.; Soliman, S.M.; Osman, S.M.; Ghabbour, H.A.; Siddiqui, M.R.H.; Fun, H.K.; Albericio, F. One pot synthesis, molecular structure and spectroscopic studies (X-ray, IR, NMR, UV–Vis) of novel 2-(4,6-dimethoxy-1,3,5-triazin-2-yl) amino acid ester derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 159, 184-198.
[http://dx.doi.org/10.1016/j.saa.2016.01.051] [PMID: 26845586]
[20]
Liu, B.; Sun, T.; Zhou, Z.; Du, L. A systematic review on antitumor agents with 1, 3, 5-triazines. Med. Chem., 2015, 5(3), 131-148.
[21]
Srivastava, J.K.; Pillai, G.G.; Bhat, H.R.; Verma, A.; Singh, U.P. Design and discovery of novel monastrol-1,3,5-triazines as potent anti-breast cancer agent via attenuating epidermal growth factor receptor tyrosine kinase. Sci. Rep., 2017, 7(1), 5851.
[http://dx.doi.org/10.1038/s41598-017-05934-5] [PMID: 28724908]
[22]
Barakat, A.; El-Senduny, F. F.; Almarhoon, Z.; Al-Rasheed, H. H.; Badria, F. A.; Al-Majid, A.; Ghabbour, H.A.; El-Faham, A. Synthesis, X-ray crystal structures, and preliminary antiproliferative activities of new s-triazinehydroxybenzylidenehydrazone derivatives. J. Chem., 2019, 2019, 9403908.
[23]
Hashem, H.E.; Amr, A.E.G.E.; Nossier, E.S.; Anwar, M.M.; Azmy, E.M. New Benzimidazole-, 1,2,4-Triazole-, and 1,3,5-Triazine-Based Derivatives as Potential EGFR WT and EGFR T790M inhibitors: Microwave-assisted synthesis, anticancer evaluation, and molecular docking study. ACS Omega, 2022, 7(8), 7155-7171.
[http://dx.doi.org/10.1021/acsomega.1c06836] [PMID: 35252706]
[24]
Amr, A.; Elsayed, E.; Al-Omar, M.; Badr Eldin, H.; Nossier, E.; Abdallah, M. Design, synthesis, anticancer evaluation and molecular modeling of novel estrogen derivatives. Molecules, 2019, 24(3), 416.
[http://dx.doi.org/10.3390/molecules24030416] [PMID: 30678347]
[25]
Chhatbar, D.M.; Chaube, U.J.; Vyas, V.K.; Bhatt, H.G. CoMFA, CoMSIA, Topomer CoMFA, HQSAR, molecular docking and molecular dynamics simulations study of triazine morpholino derivatives as mTOR inhibitors for the treatment of breast cancer. Comput. Biol. Chem., 2019, 80, 351-363.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.04.017] [PMID: 31085426]
[26]
De, P.; Miskimins, K.; Dey, N.; Leyland-Jones, B. Promise of rapalogues versus mTOR kinase inhibitors in subset specific breast cancer: Old targets new hope. Cancer Treat. Rev., 2013, 39(5), 403-412.
[http://dx.doi.org/10.1016/j.ctrv.2012.12.002] [PMID: 23352077]
[27]
Dehnhardt, C.M.; Venkatesan, A.M.; Chen, Z.; Delos-Santos, E.; Ayral-Kaloustian, S.; Brooijmans, N.; Yu, K.; Hollander, I.; Feldberg, L.; Lucas, J.; Mallon, R. Identification of 2-oxatriazines as highly potent pan-PI3K/mTOR dual inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(16), 4773-4778.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.063] [PMID: 21763134]
[28]
Venkatesan, A.M.; Dehnhardt, C.M.; Delos Santos, E.; Chen, Z.; Dos Santos, O.; Ayral-Kaloustian, S.; Khafizova, G.; Brooijmans, N.; Mallon, R.; Hollander, I.; Feldberg, L.; Lucas, J.; Yu, K.; Gibbons, J.; Abraham, R.T.; Chaudhary, I.; Mansour, T.S. Bis(morpholino-1,3,5-triazine) derivatives: potent adenosine 5′-triphosphate competitive phosphatidylinositol-3-kinase/mammalian target of rapamycin inhibitors: discovery of compound 26 (PKI-587), a highly efficacious dual inhibitor. J. Med. Chem., 2010, 53(6), 2636-2645.
[http://dx.doi.org/10.1021/jm901830p] [PMID: 20166697]
[29]
Venkatesan, A.M.; Chen, Z.; Santos, O.D.; Dehnhardt, C.; Santos, E.D.; Ayral-Kaloustian, S.; Mallon, R.; Hollander, I.; Feldberg, L.; Lucas, J.; Yu, K.; Chaudhary, I.; Mansour, T.S. PKI-179: An orally efficacious dual phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitor. Bioorg. Med. Chem. Lett., 2010, 20(19), 5869-5873.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.104] [PMID: 20797855]
[30]
Bass, R.; Jenkinson, S.; Wright, J.; Smulders-Srinivasan, T.; Marshall, J.C.; Castagnolo, D. Synthesis and biological evaluation of novel amidinourea and triazine congeners as inhibitors of MDA-MB-231 human breast cancer cell proliferation. ChemMedChem, 2017, 12(4), 288-291.
[http://dx.doi.org/10.1002/cmdc.201600580] [PMID: 28076663]
[31]
El-Faham, A.; Farooq, M.; Almarhoon, Z.; Alhameed, R.A.; Wadaan, M.A.M.; de la Torre, B.G.; Albericio, F. Di- and tri-substituted s-triazine derivatives: Synthesis, characterization, anticancer activity in human breast-cancer cell lines, and developmental toxicity in zebrafish embryos. Bioorg. Chem., 2020, 94, 103397.
[http://dx.doi.org/10.1016/j.bioorg.2019.103397] [PMID: 31706684]
[32]
Salado, I.G.; Baán, A.; Verdeyen, T.; Matheeussen, A.; Caljon, G.; Van der Veken, P.; Augustyns, K. Optimization of the pharmacokinetic properties of potent anti-trypanosomaltriazine derivatives. Eur. J. Med. Chem., 2018, 151, 18-26.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.048] [PMID: 29604541]
[33]
Akram, N.; Mansha, A.; Premkumar, R.; Franklin Benial, A.M.; Asim, S.; Iqbal, S.Z.; Ali, H.S. Spectroscopic, quantum chemical and molecular docking studies on 2,4-dimethoxy-1,3,5-triazine: A potent inhibitor of protein kinase CK2 for the development of breast cancer drug. Mol. Simul., 2020, 46(17), 1340-1353.
[http://dx.doi.org/10.1080/08927022.2020.1822526]
[34]
Al Rasheed, H.; Dahlous, K.; Sharma, A.; Sholkamy, E.; El-Faham, A.; de la Torre, B.G.; Albericio, F. Barbiturate-and Thiobarbituarte-based s-Triazinehydrazone derivatives with promising antiproliferative activities. ACS Omega, 2020, 5(26), 15805-15811.
[http://dx.doi.org/10.1021/acsomega.0c00468] [PMID: 32656400]
[35]
Junaid, A.; Lim, F.P.L.; Chuah, L.H.; Dolzhenko, A.V. 6, N2 -Diaryl-1,3,5-triazine-2,4-diamines: synthesis, antiproliferative activity and 3D-QSAR modeling. RSC Advances, 2020, 10(21), 12135-12144.
[http://dx.doi.org/10.1039/D0RA00643B] [PMID: 35497593]
[36]
Junaid, A.; Lim, F.P.L.; Tiekink, E.R.T.; Dolzhenko, A.V. Design, synthesis, and biological evaluation of new 6, N2 -diaryl-1,3,5-triazine-2,4-diamines as anticancer agents selectively targeting triple negative breast cancer cells. RSC Advances, 2020, 10(43), 25517-25528.
[http://dx.doi.org/10.1039/D0RA04970K] [PMID: 35518627]
[37]
Ashok, D.; Ravi, S.; Ganesh, A.; Lakshmi, B.V.; Adam, S.; Murthy, S.D.S. Microwave-assisted synthesis and biological evaluation of carbazole-based chalcones, aurones and flavones. Med. Chem. Res., 2016, 25(5), 909-922.
[http://dx.doi.org/10.1007/s00044-016-1537-7]
[38]
Tayyab Imtiaz, M.; Anwar, F.; Saleem, U.; Ahmad, B.; Hira, S.; Mehmood, Y.; Ismail, T. Triazine derivative as putative candidate for the reduction of hormone-positive breast tumor: In Silico, pharmacological, and toxicological approach. Front. Pharmacol., 2021, 12, 686614.
[39]
Malebari, A.M.; Abd Alhameed, R.; Almarhoon, Z.; Farooq, M.; Wadaan, M.A.M.; Sharma, A.; de la Torre, B.G.; Albericio, F.; El-Faham, A. The antiproliferative and apoptotic effect of a novel synthesized s-triazine dipeptide series, and toxicity screening in zebrafish embryos. Molecules, 2021, 26(4), 1170.
[http://dx.doi.org/10.3390/molecules26041170] [PMID: 33671801]
[40]
Yan, W.; Zhao, Y.; He, J. Anti-breast cancer activity of selected 1,3,5-triazines via modulation of EGFR-TK. Mol. Med. Rep., 2018, 18(5), 4175-4184.
[http://dx.doi.org/10.3892/mmr.2018.9426] [PMID: 30152850]
[41]
Patel, R.V.; Kumari, P.; Rajani, D.P.; Pannecouque, C.; De Clercq, E.; Chikhalia, K.H. Antimicrobial, anti-TB, anticancer and anti-HIV evaluation of new s -triazine-based heterocycles. Future Med. Chem., 2012, 4(9), 1053-1065.
[http://dx.doi.org/10.4155/fmc.12.57] [PMID: 22709250]
[42]
Akinleye, A.; Avvaru, P.; Furqan, M.; Song, Y.; Liu, D. Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics. J. Hematol. Oncol., 2013, 6(1), 88.
[http://dx.doi.org/10.1186/1756-8722-6-88] [PMID: 24261963]
[43]
Liu, P.; Cheng, H.; Roberts, T.M.; Zhao, J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov., 2009, 8(8), 627-644.
[http://dx.doi.org/10.1038/nrd2926] [PMID: 19644473]
[44]
Singh, U.; Verma, A.; Bhat, H.R. Discovery of novel 1,3,5-triazine-thiozolidine (DDDL-251) based dual PI3K/mTOR inhibitor against breast cancer. Ann. Oncol., 2017, 28, x3.
[http://dx.doi.org/10.1093/annonc/mdx652.007]
[45]
Huang, Q.; Fu, Q.; Liu, Y.; Bai, J.; Wang, Q.; Liao, H.; Gong, P. Design, synthesis and anticancer activity of novel 6-(aminophenyl)-2,4-bismorpholino-1,3,5-triazine derivatives bearing arylmethylene hydrazine moiety. Chem. Res. Chin. Univ., 2014, 30(2), 257-265.
[http://dx.doi.org/10.1007/s40242-014-3253-5]
[46]
Moreno, L.; Quiroga, J.; Abonia, R.; Ramírez-Prada, J.; Insuasty, B. Synthesis of new 1, 3, 5-triazine-based 2-pyrazolines as potential anticancer agents. Molecules, 2018, 23(8), 1956.
[http://dx.doi.org/10.3390/molecules23081956] [PMID: 30082588]
[47]
Limareva, L.; Iliasov, P.; Gidaspov, A.; Zalomlenkov, V.; Sustretov, A.; Sizova, A.; Rossinskaya, V. In vitro cytotoxic effect of 2-(morpholin-4-yl)-4, 5-bis (2’’, 2’’, 2’’-trinitroethoxy)-1, 3, 5-triazine on human fibroblasts, peripheral blood mononuclear cells and breast cancer cells. Pharmacol. Toxicol., 2021, 2021, 110403.
[48]
Zhang, B.; Zhang, Q.; Xiao, Z.; Sun, X.; Yang, Z.; Gu, Q.; Liu, Z.; Xie, T.; Jin, Q.; Zheng, P.; Xu, S.; Zhu, W. Design, synthesis and biological evaluation of substituted 2-(thiophen-2-yl)-1,3,5-triazine derivatives as potential dual PI3Kα/mTOR inhibitors. Bioorg. Chem., 2020, 95, 103525.
[http://dx.doi.org/10.1016/j.bioorg.2019.103525] [PMID: 31887474]
[49]
Hu, J.; Zhang, Y.; Tang, N.; Lu, Y.; Guo, P.; Huang, Z. Discovery of novel 1,3,5-triazine derivatives as potent inhibitor of cervical cancer via dual inhibition of PI3K/mTOR. Bioorg. Med. Chem., 2021, 32, 115997.
[http://dx.doi.org/10.1016/j.bmc.2021.115997] [PMID: 33440319]
[50]
Class, I. PI3K in oncogenic cellular transformation. Zhao L, Vogt PK. Oncogene, 2008, 27, 5486-5496.
[http://dx.doi.org/10.1038/onc.2008.244] [PMID: 18794883]
[51]
Hawkins, P.T.; Anderson, K.E.; Davidson, K.; Stephens, L.R. Signalling through Class I PI3Ks in mammalian cells. Biochem. Soc. Trans., 2006, 34(5), 647-662.
[http://dx.doi.org/10.1042/BST0340647] [PMID: 17052169]
[52]
Singla, P.; Luxami, V.; Paul, K. Synthesis, in vitro antitumor activity, dihydrofolate reductase inhibition, DNA intercalation and structure–activity relationship studies of 1,3,5-triazine analogues. Bioorg. Med. Chem. Lett., 2016, 26(2), 518-523.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.083] [PMID: 26670841]
[53]
Denny, W.A.; Rewcastle, G.W.; Baguley, B.C. Potential antitumor agents. 59. Structure-activity relationships for 2-phenylbenzimidazole-4-carboxamides, a new class of minimal DNA-intercalating agents which may not act via topoisomerase II. J. Med. Chem., 1990, 33(2), 814-819.
[http://dx.doi.org/10.1021/jm00164a054] [PMID: 2153829]
[54]
Tsitsa, P.; Antoniadou-Vyza, E.; Hamodrakas, S.J.; Eliopoulos, E.E.; Tsantili-Kakoulidou, A.; Lada-Hytiroglou, E.; Roussakis, C.; Chinou, I.; Hempel, A.; Camerman, N.; Ottensmeyer, F.P.; Vanden Berghe, D.A. Synthesis, crystal structure and biological properties of a new series of lipophilic s-triazines, dihydrofolate reductase inhibitors. Eur. J. Med. Chem., 1993, 28(2), 149-158.
[http://dx.doi.org/10.1016/0223-5234(93)90007-2]
[55]
Pathak, P.; Naumovich, V.; Grishina, M.; Shukla, P.K.; Verma, A.; Potemkin, V. Quinazoline based 1,3,5‐triazine derivatives as cancer inhibitors by impeding the phosphorylated RET tyrosine kinase pathway: Design, synthesis, docking, and QSAR study. Arch. Pharm., 2019, 352(9), 1900053.
[http://dx.doi.org/10.1002/ardp.201900053] [PMID: 31380598]
[56]
Feldmann, G.; Mishra, A.; Bisht, S.; Karikari, C.; Garrido-Laguna, I.; Rasheed, Z.; Ottenhof, N.I.A.; Dadon, T.; Alvarez, H.; Fendrich, V.; Rajeshkumar, N.V.; Matsui, W.; Brossart, P.; Hidalgo, M.; Bannerji, R.; Maitra, A.; Nelkin, B.D. Cyclin-dependent kinase inhibitor Dinaciclib (SCH727965) inhibits pancreatic cancer growth and progression in murine xenograft models. Cancer Biol. Ther., 2011, 12(7), 598-609.
[http://dx.doi.org/10.4161/cbt.12.7.16475] [PMID: 21768779]
[57]
Guha, M. Blockbuster dreams for Pfizer’s CDK inhibitor. Nat. Biotechnol., 2013, 31(3), 187-188.
[http://dx.doi.org/10.1038/nbt0313-187a] [PMID: 23471056]
[58]
Oudah, K.H.; Najm, M.A.A.; Samir, N.; Serya, R.A.T.; Abouzid, K.A.M. Design, synthesis and molecular docking of novel pyrazolo[1,5-a][1,3,5]triazine derivatives as CDK2 inhibitors. Bioorg. Chem., 2019, 92, 103239.
[http://dx.doi.org/10.1016/j.bioorg.2019.103239] [PMID: 31513938]
[59]
Moreno, L.M.; Quiroga, J.; Abonia, R.; Lauria, A.; Martorana, A.; Insuasty, H.; Insuasty, B. Synthesis, biological evaluation, and in silico studies of novel chalcone- and pyrazoline-based 1,3,5-triazines as potential anticancer agents. RSC Advances, 2020, 10(56), 34114-34129.
[http://dx.doi.org/10.1039/D0RA06799G] [PMID: 35519030]
[60]
Rahman, L.; Voeller, D.; Rahman, M.; Lipkowitz, S.; Allegra, C.; Barrett, J.C.; Kaye, F.J.; Zajac-Kaye, M. Thymidylate synthase as an oncogene. Cancer Cell, 2004, 5(4), 341-351.
[http://dx.doi.org/10.1016/S1535-6108(04)00080-7] [PMID: 15093541]
[61]
Xing, R.; Zhang, H.; Yuan, J.; Zhang, K.; Li, L.; Guo, H.; Zhao, L.; Zhang, C.; Li, S.; Gao, T.; Liu, Y.; Wang, L. Novel 6-substituted benzoyl and nonbenzoyl straight chain pyrrolo[2,3- d]pyrimidines as potential antitumor agents with multitargeted inhibition of TS, GARFTase and AICARFTase. Eur. J. Med. Chem., 2017, 139, 531-541.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.032] [PMID: 28830032]
[62]
Kumar, G.J.; Kumar, S.N.; Thummuri, D.; Adari, L.B.S.; Naidu, V.G.M.; Srinivas, K.; Rao, V.J. Synthesis and characterization of new s-triazine bearing benzimidazole and benzothiazole derivatives as anticancer agents. Med. Chem. Res., 2015, 24(12), 3991-4001.
[http://dx.doi.org/10.1007/s00044-015-1430-9]
[63]
Rosner, K.; Mehregan, D.R.; Kirou, E.; Abrams, J.; Kim, S.; Campbell, M.; Frieder, J.; Lawrence, K.; Haynes, B.; Shekhar, M.P.V. Melanoma development and progression are associated with Rad6 upregulation and β-catenin relocation to the cell membrane. J. Skin Cancer, 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/439205]
[64]
Shekhar, M.P.; Lyakhovich, A.; Visscher, D.W.; Heng, H.; Kondrat, N. Rad6 overexpression induces multinucleation, centrosome amplification, abnormal mitosis, aneuploidy, and transformation. Cancer Res., 2002, 62(7), 2115-2124.
[PMID: 11929833]
[65]
Shekhar, M.P.V.; Gerard, B.; Pauley, R.J.; Williams, B.O.; Tait, L. Rad6B is a positive regulator of β-catenin stabilization. Cancer Res., 2008, 68(6), 1741-1750.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2111] [PMID: 18339854]
[66]
Sanders, M.A.; Brahemi, G.; Nangia-Makker, P.; Balan, V.; Morelli, M.; Kothayer, H.; Westwell, A.D.; Shekhar, M.P.V. Novel inhibitors of Rad6 ubiquitin conjugating enzyme: Design, synthesis, identification, and functional characterization. Mol. Cancer Ther., 2013, 12(4), 373-383.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0793] [PMID: 23339190]
[67]
Kothayer, H.; Spencer, S.M.; Tripathi, K.; Westwell, A.D.; Palle, K. Synthesis and in vitro anticancer evaluation of some 4,6-diamino-1,3,5-triazine-2-carbohydrazides as Rad6 ubiquitin conjugating enzyme inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(8), 2030-2034.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.085] [PMID: 26965855]
[68]
Bhat, H.R.; Masih, A.; Shakya, A.; Ghosh, S.K.; Singh, U.P. Design, synthesis, anticancer, antibacterial, and antifungal evaluation of 4‐aminoquinoline‐1,3,5‐triazine derivatives. J. Heterocycl. Chem., 2020, 57(1), 390-399.
[http://dx.doi.org/10.1002/jhet.3791]
[69]
Sravan Kumar, J.; Alam, M.A.; Gurrapu, S.; Nelson, G.; Williams, M.; Corsello, M.A.; Johnson, J.L.; Jonnalagadda, S.C.; Mereddy, V.R. Synthesis and biological evaluation of novel benzoxaboroles as potential antimicrobial and anticancer agents. J. Heterocycl. Chem., 2013, 50(4), 814-820.
[http://dx.doi.org/10.1002/jhet.1777]
[70]
Sidwell, R.W.; Dixon, G.J.; Sellers, S.M.; Schabel, F.M., Jr In vivo antiviral properties of biologically active compounds. II. Studies with influenza and vaccinia viruses. Appl. Microbiol., 1968, 16(2), 370-392.
[http://dx.doi.org/10.1128/am.16.2.370-392.1968] [PMID: 5694419]
[71]
Benson, S.C.; Li, J.H.; Snyder, J.K. Indole as a dienophile in inverse electron demand Diels-Alder reactions. 3. Intramolecular reactions with 1,2,4-triazines to access the canthine skeleton. J. Org. Chem., 1992, 57(20), 5285-5287.
[http://dx.doi.org/10.1021/jo00046a005]
[72]
Lacefield, W.B. Acid hydrazides, potent reagents for synthesis of oxygen-, nitrogen-, and/or sulfur-containing heterocyclic rings. U.S. Patent no. 3979516, 1977.
[73]
Tanaka, A.; Sakai, H.; Ishikawa, T.; Motoyama, Y.; Takasugi, H. Studies on anti-platelet agents. V. Synthesis and structure-activity relationship of 3-substituted 5,6-bis(4-methoxyphenyl)-1,2,4-triazines. Chem. Pharm. Bull., 1994, 42(9), 1835-1840.
[http://dx.doi.org/10.1248/cpb.42.1835] [PMID: 7954935]
[74]
Ellis, K.M.; Lucantoni, L.; Chavchich, M.; Abraham, M.; De Paoli, A.; Luth, M.R.; Zeeman, A.M.; Delves, M.J.; Terán, F.S.R.; Straschil, U.; Baum, J.; Kocken, C.H.M.; Ralph, S.A.; Winzeler, E.A.; Avery, V.M.; Edstein, M.D.; Baell, J.B.; Creek, D.J. The novel bis-1, 2, 4-Triazine MIPS-0004373 demonstrates rapid and potent activity against all blood stages of the malaria parasite. Antimicrob. Agents Chemother., 2021, 65(11), e00311-21.
[http://dx.doi.org/10.1128/AAC.00311-21] [PMID: 34460304]
[75]
Li, L.X.; Jiao, J.; Wang, X.B.; Chen, M.; Fu, X.C.; Si, W.J.; Yang, C.L. Synthesis, characterization, and antifungal activity of novel benzo [4, 5] imidazo [1, 2-d][1, 2, 4] triazine derivatives. Molecules, 2018, 23(4), 746.
[http://dx.doi.org/10.3390/molecules23040746] [PMID: 29570685]
[76]
Martin, E.; Thougaard, A.V.; Grauslund, M.; Jensen, P.B.; Bjorkling, F.; Hasinoff, B.B.; Tjørnelund, J.; Sehested, M.; Jensen, L.H. Evaluation of the topoisomerase II-inactive bisdioxopiperazine ICRF-161 as a protectant against doxorubicin-induced cardiomyopathy. Toxicology, 2009, 255(1-2), 72-79.
[http://dx.doi.org/10.1016/j.tox.2008.10.011] [PMID: 19010377]
[77]
Suresh, N.; Nagesh, H.N.; Chandra Sekhar, K.V.G.; Kumar, A.; Shirazi, A.N.; Parang, K. Synthesis of novel ciprofloxacin analogues and evaluation of their anti-proliferative effect on human cancer cell lines. Bioorg. Med. Chem. Lett., 2013, 23(23), 6292-6295.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.077] [PMID: 24138941]
[78]
Fink, B.E.; Vite, G.D.; Mastalerz, H.; Kadow, J.F.; Kim, S.H.; Leavitt, K.J.; Du, K.; Crews, D.; Mitt, T.; Wong, T.W.; Hunt, J.T.; Vyas, D.M.; Tokarski, J.S. New dual inhibitors of EGFR and HER2 protein tyrosine kinases. Bioorg. Med. Chem. Lett., 2005, 15(21), 4774-4779.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.027] [PMID: 16111887]
[79]
Mastalerz, H.; Gavai, A.V.; Fink, B.; Struzynski, C.; Tarrant, J.; Vite, G.D.; Wong, T.W.; Zhang, G.; Vyas, D.M. Pyrrolotriazine-5-carboxylate ester inhibitors of EGFR and HER2 protein tyrosine kinases and a novel one-pot synthesis of C-4 subsitituted pyrrole-2,3-dicarboxylate diesters. Can. J. Chem., 2006, 84(4), 528-533.
[http://dx.doi.org/10.1139/v06-037]
[80]
Mastalerz, H.; Chang, M.; Chen, P.; Fink, B.E.; Gavai, A.; Han, W.C.; Johnson, W.; Langley, D.; Lee, F.Y.; Leavitt, K.; Marathe, P.; Norris, D.; Oppenheimer, S.; Sleczka, B.; Tarrant, J.; Tokarski, J.S.; Vite, G.D.; Vyas, D.M.; Wong, H.; Wong, T.W.; Zhang, H.; Zhang, G. 5-((4-Aminopiperidin-1-yl)methyl)pyrrolotriazine dual inhibitors of EGFR and HER2 protein tyrosine kinases. Bioorg. Med. Chem. Lett., 2007, 17(17), 4947-4954.
[http://dx.doi.org/10.1016/j.bmcl.2007.06.019] [PMID: 17606372]
[81]
Fettig, L.M.; Yee, D. Advances in insulin-like growth factor biology and -directed cancer therapeutics. Adv. Cancer Res., 2020, 147, 229-257.
[http://dx.doi.org/10.1016/bs.acr.2020.04.005] [PMID: 32593402]
[82]
Chen, H.X.; Sharon, E. IGF-1R as an anti-cancer target-trials and tribulations. Chin. J. Cancer, 2013, 32(5), 242-252.
[http://dx.doi.org/10.5732/cjc.012.10263] [PMID: 23601239]
[83]
Wittman, M.D.; Carboni, J.M.; Yang, Z.; Lee, F.Y.; Antman, M.; Attar, R.; Balimane, P.; Chang, C.; Chen, C.; Discenza, L.; Frennesson, D.; Gottardis, M.M.; Greer, A.; Hurlburt, W.; Johnson, W.; Langley, D.R.; Li, A.; Li, J.; Liu, P.; Mastalerz, H.; Mathur, A.; Menard, K.; Patel, K.; Sack, J.; Sang, X.; Saulnier, M.; Smith, D.; Stefanski, K.; Trainor, G.; Velaparthi, U.; Zhang, G.; Zimmermann, K.; Vyas, D.M. Discovery of a 2,4-disubstituted pyrrolo[1,2-f][1,2,4]triazine inhibitor (BMS-754807) of insulin-like growth factor receptor (IGF-1R) kinase in clinical development. J. Med. Chem., 2009, 52(23), 7360-7363.
[http://dx.doi.org/10.1021/jm900786r] [PMID: 19778024]
[84]
Guerrini, R.; Marzola, E.; Trapella, C.; Pela’, M.; Molinari, S.; Cerlesi, M.C.; Malfacini, D.; Rizzi, A.; Salvadori, S.; Calo’, G. A novel and facile synthesis of tetra branched derivatives of nociceptin/orphanin FQ. Bioorg. Med. Chem., 2014, 22(14), 3703-3712.
[http://dx.doi.org/10.1016/j.bmc.2014.05.005] [PMID: 24878361]
[85]
Corbet, J.P.; Mignani, G. Selected patented cross-coupling reaction technologies. Chem. Rev., 2006, 106(7), 2651-2710.
[http://dx.doi.org/10.1021/cr0505268] [PMID: 16836296]
[86]
Karczmarzyk, Z.; Wysocki, W.; Urbańczyk-Lipkowska, Z.; Kalicki, P.; Bielawska, A.; Bielawski, K.; Ławecka, J. Synthetic approaches for sulfur derivatives containing 1,2,4-triazine moiety: their activity for in vitro screening towards two human cancer cell lines. Chem. Pharm. Bull., 2015, 63(7), 531-537.
[http://dx.doi.org/10.1248/cpb.c15-00153] [PMID: 26133068]
[87]
Branowska, D.; Ławecka, J.; Sobiczewski, M.; Karczmarzyk, Z.; Wysocki, W.; Wolińska, E.; Olender, E.; Mirosław, B.; Perzyna, A.; Bielawska, A.; Bielawski, K. Synthesis of unsymmetrical disulfanes bearing 1,2,4-triazine scaffold and their in vitro screening towards anti-breast cancer activity. Monatsh. Chem., 2018, 149(8), 1409-1420.
[http://dx.doi.org/10.1007/s00706-018-2206-y]
[88]
Branowska, D.; Karczmarzyk, Z.; Wolińska, E.; Wysocki, W.; Morawiak, M.; Urbańczyk-Lipkowska, Z.; Bielawski, K. 1, 2, 4-Triazine Sulfonamides: Synthesis by sulfenamide intermediates, in vitro anticancer screening, structural characterization, and molecular docking study. Molecules, 2020, 25(10), 2324.
[http://dx.doi.org/10.3390/molecules25102324] [PMID: 32429377]
[89]
Tiwari, A.; Modi, S.J.; Mahadik, K.R.; Suryawanshi, M.R. Synthesis and anticancer screening of triazine analogues. Int. J. Pharm. Pharm. Sci., 2019, 11, 114-121.
[http://dx.doi.org/10.22159/ijpps.2019v11i4.28275]
[90]
Maira, S.M.; Pecchi, S.; Huang, A.; Burger, M.; Knapp, M.; Sterker, D.; Schnell, C.; Guthy, D.; Nagel, T.; Wiesmann, M.; Brachmann, S.; Fritsch, C.; Dorsch, M.; Chène, P.; Shoemaker, K.; De Pover, A.; Menezes, D.; Martiny-Baron, G.; Fabbro, D.; Wilson, C.J.; Schlegel, R.; Hofmann, F.; García-Echeverría, C.; Sellers, W.R.; Voliva, C.F. Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol. Cancer Ther., 2012, 11(2), 317-328.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0474] [PMID: 22188813]
[91]
Kong, D.; Yamori, T. ZSTK474 is an ATP-competitive inhibitor of class I phosphatidylinositol 3 kinase isoforms. Cancer Sci., 2007, 98(10), 1638-1642.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00580.x] [PMID: 17711503]
[92]
Zheng, M.; Xu, C.; Ma, J.; Sun, Y.; Du, F.; Liu, H.; Lin, L.; Li, C.; Ding, J.; Chen, K.; Jiang, H. Synthesis and antitumor evaluation of a novel series of triaminotriazine derivatives. Bioorg. Med. Chem., 2007, 15(4), 1815-1827.
[http://dx.doi.org/10.1016/j.bmc.2006.11.028] [PMID: 17157510]
[93]
Ahnert, J.R. Avapritinib for the treatment of CKIT or PDGFRA mutation-positive locally advanced or metastatic malignant solid tumors. NCT04771520, 2022.
[94]
Salhotra, A. Enasidenib as maintenance therapy in treating patients with acute myelod leukemia with IDH2 mutation after donor stem cell. NCT03728335, 2023.
[95]
Kasner, M. STAT inhibitor OPB-111077, decitabine and venetoclaxni treating patient with acute myeloid leukemia that is refractor, relapsed or newly diagnosed and ineligible for intensive chemotherapy. NCT03063944, 2022.
[96]
Gavai, A.V.; Fink, B.E.; Fairfax, D.J.; Martin, G.S.; Rossiter, L.M.; Holst, C.L.; Kim, S.H.; Leavitt, K.J.; Mastalerz, H.; Han, W.C.; Norris, D.; Goyal, B.; Swaminathan, S.; Patel, B.; Mathur, A.; Vyas, D.M.; Tokarski, J.S.; Yu, C.; Oppenheimer, S.; Zhang, H.; Marathe, P.; Fargnoli, J.; Lee, F.Y.; Wong, T.W.; Vite, G.D. Discovery and preclinical evaluation of [4-[[1-(3-fluorophenyl)methyl]-1H-indazol-5-ylamino]-5-methylpyrrolo[2,1-f][1,2,4]triazin-6-yl]carbamic acid, (3S)-3-morpholinylmethyl ester (BMS-599626), a selective and orally efficacious inhibitor of human epidermal growth factor receptor 1 and 2 kinases. J. Med. Chem., 2009, 52(21), 6527-6530.
[http://dx.doi.org/10.1021/jm9010065] [PMID: 19821562]
[97]
Phillips, R.M. Targeting the hypoxic fraction of tumours using hypoxia-activated prodrugs. Cancer Chemother. Pharmacol., 2016, 77(3), 441-457.
[http://dx.doi.org/10.1007/s00280-015-2920-7] [PMID: 26811177]
[98]
Brown, J.M. Imaging tumor sensitivity to a bioreductiveprodrug: Two for the price of one! imaging tumor drug sensitivity. Clin. Cancer Res., 2012, 18(6), 1487-1489.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-3267] [PMID: 22317761]
[99]
Takahashi, S. A study of ZSTK474 in Japanese patients with advanced solid tumors. NCT01682473, 2017.
[100]
Wisinki, K. Gedatolisib plus Talazoparib in advanced triple negative or BRCA1/2 positive, HER2 negative breast cancers. NCT03911973, 2022.
[101]
Park, K.H. Phase II study of Herzuma® plus Gedatolisib in patients with HER-2 positive metastatic breast cancer. NCT03698383, 2021.
[102]
Hammond, M.E.H.; Hayes, D.F.; Dowsett, M.; Allred, D.C.; Hagerty, K.L.; Badve, S.; Fitzgibbons, P.L.; Francis, G.; Goldstein, N.S.; Hayes, M.; Hicks, D.G.; Lester, S.; Love, R.; Mangu, P.B.; McShane, L.; Miller, K.; Osborne, C.K.; Paik, S.; Perlmutter, J.; Rhodes, A.; Sasano, H.; Schwartz, J.N.; Sweep, F.C.G.; Taube, S.; Torlakovic, E.E.; Valenstein, P.; Viale, G.; Visscher, D.; Wheeler, T.; Williams, R.B.; Wittliff, J.L.; Wolff, A.C. American society of clinical oncology/college of american pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version). Arch. Pathol. Lab. Med., 2010, 134(7), e48-e72.
[http://dx.doi.org/10.5858/134.7.e48] [PMID: 20586616]
[103]
Piccart-Gebhart, M.J.; Procter, M.; Leyland-Jones, B.; Goldhirsch, A.; Untch, M.; Smith, I.; Gianni, L.; Baselga, J.; Bell, R.; Jackisch, C.; Cameron, D.; Dowsett, M.; Barrios, C.H.; Steger, G.; Huang, C.S.; Andersson, M.; Inbar, M.; Lichinitser, M.; Láng, I.; Nitz, U.; Iwata, H.; Thomssen, C.; Lohrisch, C.; Suter, T.M.; Rüschoff, J.; Sütő, T.; Greatorex, V.; Ward, C.; Straehle, C.; McFadden, E.; Dolci, M.S.; Gelber, R.D. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med., 2005, 353(16), 1659-1672.
[http://dx.doi.org/10.1056/NEJMoa052306] [PMID: 16236737]
[104]
Denkert, C.; Liedtke, C.; Tutt, A.; von Minckwitz, G. Molecular alterations in triple-negative breast cancer—the road to new treatment strategies. Lancet, 2017, 389(10087), 2430-2442.
[http://dx.doi.org/10.1016/S0140-6736(16)32454-0] [PMID: 27939063]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy