Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Current Perspectives on Paclitaxel: Focus on Its Production, Delivery and Combination Therapy

Author(s): Yibin Liu, Fenglan Zhao, Qibao Wang, Qingjie Zhao*, Guige Hou* and Qingguo Meng*

Volume 23, Issue 18, 2023

Published on: 02 March, 2023

Page: [1780 - 1796] Pages: 17

DOI: 10.2174/1389557523666230210145150

Abstract

Paclitaxel is an anticancer drug first isolated from the bark of the Pacific yew tree. It has been widely used for the treatment of ovarian, breast, uterine and other cancers because of its low toxicity, high efficiency and broad-spectrum anticancer activity, and it is considered to be one of the most successful natural anticancer drugs available. Paclitaxel is a microtubule-targeting drug whose main molecular mechanism is to disrupt microtubule dynamics and induce mitotic arrest and cell death. Despite the many clinical successes of paclitaxel, the extraction of natural paclitaxel from Taxus species has proven to be environmentally unsustainable and economically unviable. As a result, researchers are constantly working to find innovative ways to meet society's need for this drug. Currently, many methods, including artificial cultivation, microbial fermentation, chemical synthesis, and tissue and cell culture, have been explored and developed to obtain paclitaxel. In addition, the poor water solubility of paclitaxel has led to significant limitations in its clinical application. Conventional paclitaxel formulations use Cremophor EL and ethanol to dissolve paclitaxel, which can lead to serious side effects. In recent decades, a series of new nanotechnology-based paclitaxel dosage forms have been developed, including albumin-bound paclitaxel, polymeric micellar paclitaxel, polymer-paclitaxel couples, and liposome-encapsulated paclitaxel. These nanoformulations can significantly reduce the toxicity of paclitaxel and greatly improve its anti-tumor efficiency. This paper reviews the development of the production, dosage form and combination therapy of paclitaxel in recent years and presents an outlook, with the aim of providing a theoretical basis and reference for further research on the production and application of paclitaxel in the future

Keywords: Paclitaxel, microtubule dynamics, microbial fermentation, tumor immunotherapy, anti-tumor efficiency, Taxus species.

Graphical Abstract
[1]
Zhang, H.; Zhao, Z.X.; Gao, W.; Deng, B.W. Analysis and Countermeasures of Taxol production Status. Zhongguo Xiandai Zhongyao, 2016, 18(01), 126-130.
[2]
Li, Y.P.; Lin, R.; Mu, R.H. Research progress of paclitaxel and its combination in antitumor. J. Jilin Med. Uni., 2021, 42(06), 440-442.
[3]
Schiff, P.B.; Fant, J.; Horwitz, S.B. Promotion of microtubule assembly in vitro by taxol. Nature, 1979, 277(5698), 665-667.
[http://dx.doi.org/10.1038/277665a0] [PMID: 423966]
[4]
Parness, J.; Horwitz, S.B. Taxol binds to polymerized tubulin in vitro. J. Cell Biol., 1981, 91(2), 479-487.
[http://dx.doi.org/10.1083/jcb.91.2.479] [PMID: 6118377]
[5]
Wang, Y. Overview of clinical application of paclitaxel anticancer drugs. Strait Pharma. J., 2007, 19(8), 97-99.
[6]
Shi, Q.W. Historical story on natural medicinal chemistry of Taxol. Chin. Tradit. Herbal Drugs, 2011, 42(10), 1878-1884.
[7]
Lv, Y.; Xu, C.; Zhao, X.; Lin, C.; Yang, X.; Xin, X.; Zhang, L.; Qin, C.; Han, X.; Yang, L.; He, W.; Yin, L. Nanoplatform assembled from a CD44-targeted prodrug and smart liposomes for dual targeting of tumor microenvironment and cancer cells. ACS Nano, 2018, 12(2), 1519-1536.
[http://dx.doi.org/10.1021/acsnano.7b08051] [PMID: 29350904]
[8]
Bakrania, A.K.; Variya, B.C.; Patel, S.S. Novel targets for paclitaxel nano formulations: Hopes and hypes in triple negative breast cancer. Pharmacol. Res., 2016, 111, 577-591.
[http://dx.doi.org/10.1016/j.phrs.2016.07.023] [PMID: 27461138]
[9]
Liu, Y.; Ng, Y.; Toh, M.R.; Chiu, G.N.C. Lipid-dendrimer hybrid nanosystem as a novel delivery system for paclitaxel to treat ovarian cancer. J. Control Release., 2015, 220(Pt A), 438-446.
[http://dx.doi.org/10.1016/j.jconrel.2015.11.004]
[10]
Band Horwitz, S. Mechanism of action of taxol. Trends Pharmacol. Sci., 1992, 13(4), 134-136.
[http://dx.doi.org/10.1016/0165-6147(92)90048-B] [PMID: 1350385]
[11]
Swindell, C.S.; Heerding, J.M.; Krauss, N.E.; Horwitz, S.B.; Rao, S.; Ringel, I. Characterization of two taxol photoaffinity analogues bearing azide and benzophenone-related photoreactive substituents in the A-ring side chain. J. Med. Chem., 1994, 37(10), 1446-1449.
[http://dx.doi.org/10.1021/jm00036a009] [PMID: 7910216]
[12]
McGrogan, B.T.; Gilmartin, B.; Carney, D.N.; McCann, A. Taxanes, microtubules and chemoresistant breast cancer. Biochim. Biophys. Acta, 2008, 1785(2), 96-132.
[PMID: 18068131]
[13]
Ringel, I.; Horwitz, S.B. Taxol is converted to 7-epitaxol, a biologically active isomer, in cell culture medium. J. Pharmacol. Exp. Ther., 1987, 242(2), 692-698.
[PMID: 2886648]
[14]
Liu, W.C.; Gong, T.; Zhu, P. Advances in exploring alternative Taxol sources. RSC Advances, 2016, 6(54), 48800-48809.
[http://dx.doi.org/10.1039/C6RA06640B]
[15]
Lou, J.; Niu, X.L.; Yan, F.; Pan, J.; Zhu, X.D. Recent progresses in the studies of taxol and taxane-producing fungi. Junwu Xuebao, 2011, 30, 158-167.
[16]
Nicolaou, K.C.; Yang, Z.; Liu, J.J.; Ueno, H.; Nantermet, P.G.; Guy, R.K.; Claiborne, C.F.; Renaud, J.; Couladouros, E.A.; Paulvannan, K.; Sorensen, E.J. Total synthesis of taxol. Nature, 1994, 367(6464), 630-634.
[http://dx.doi.org/10.1038/367630a0] [PMID: 7906395]
[17]
Holton, R.A.; Somoza, C.; Kim, H.B.; Liang, F.; Biediger, R.J.; Boatman, P.D.; Shindo, M.; Smith, C.C.; Kim, S.; Nadizadeh, H.; Suzuki, Y.; Tao, C.; Vu, P.H.; Tang, S.; Zhang, P.; Murthi, K.K.; Gentile, L.N.; Liu, J. First total synthesis of taxol. 1. Functionalization of the B ring. J. Am. Chem. Soc., 1994, 116(4), 1597-1598.
[http://dx.doi.org/10.1021/ja00083a066]
[18]
Holton, R.A.; Kim, H.B.; Somoza, C.; Liang, F.; Biediger, R.J.; Boatman, P.D.; Shindo, M.; Smith, C.C.; Kim, S.; Nadizadeh, H.; Suzuki, Y.; Tao, C.; Vu, P.; Tang, S.; Zhang, P.; Murthi, K.K.; Gentile, L.N.; Liu, J.H. ChemInform Abstract: First total synthesis of taxol. Part 2. Completion of the C and D Rings. ChemInform, 1994, 25(26), no.
[http://dx.doi.org/10.1002/chin.199426226]
[19]
Danishefsky, S.J.; Masters, J.J.; Young, W.B.; Link, J.T.; Snyder, L.B.; Magee, T.V.; Jung, D.K.; Isaacs, R.C.A.; Bornmann, W.G.; Alaimo, C.A.; Coburn, C.A.; Di Grandi, M.J. Total synthesis of baccatin iii and taxol. J. Am. Chem. Soc., 1996, 118(12), 2843-2859.
[http://dx.doi.org/10.1021/ja952692a]
[20]
Wender, P.A.; Badham, N.F.; Conway, S.P.; Floreancig, P.E.; Glass, T.E.; Gränicher, C.; Houze, J.B.; Jänichen, J.; Lee, D.; Marquess, D.G.; McGrane, P.L.; Meng, W.; Mucciaro, T.P.; Mühlebach, M.; Natchus, M.G.; Paulsen, H.; Rawlins, D.B.; Satkofsky, J.; Shuker, A.J.; Sutton, J.C.; Taylor, R.E.; Tomooka, K. The Pinene Path to Taxanes. 5. Stereocontrolled Synthesis of a Versatile Taxane Precursor. The pinene path to taxanes. 5. stereocontrolled synthesis of a versatile taxane precursor. J. Am. Chem. Soc., 1997, 119(11), 2755-2756.
[http://dx.doi.org/10.1021/ja9635387]
[21]
Wender, P.A.; Badham, N.F.; Conway, S.P.; Floreancig, P.E.; Glass, T.E.; Houze, J.B.; Krauss, N.E.; Lee, D.; Marquess, D.G.; McGrane, P.L.; Meng, W.; Natchus, M.G.; Shuker, A.J.; Sutton, J.C.; Taylor, R.E. The pinene path to taxanes. 6. A concise stereocontrolled synthesis of taxol. J. Am. Chem. Soc., 1997, 119(11), 2757-2758.
[http://dx.doi.org/10.1021/ja963539z]
[22]
Morihira, K.; Hara, R.; Kawahara, S.; Nishimori, T.; Nakamura, N.; Kusama, H.; Kuwajima, I. Enantioselective total synthesis of taxol. J. Am. Chem. Soc., 1998, 120(49), 12980-12981.
[http://dx.doi.org/10.1021/ja9824932]
[23]
Kusama, H.; Hara, R.; Kawahara, S.; Nishimori, T.; Kashima, H.; Nakamura, N.; Morihira, K.; Kuwajima, I. Enantioselective total synthesis of (−)- Taxol. J. Am. Chem. Soc., 2000, 122(16), 3811-3820.
[http://dx.doi.org/10.1021/ja9939439]
[24]
Mukaiyama, T.; Shiina, I.; Iwadare, H.; Saitoh, M.; Nishimura, T.; Ohkawa, N.; Sakoh, H.; Nishimura, K.; Tani, Y.; Hasegawa, M.; Yamada, K.; Saitoh, K. Asymmetric total synthesis of taxol. Chemistry, 1999, 5(1), 121-161.
[http://dx.doi.org/10.1002/(SICI)1521-3765(19990104)5:1<121:AID-CHEM121>3.0.CO;2-O]
[25]
Walji, A.M.; MacMillan, D.W. Strategies to bypass the taxol problem. Enantioselective cascade catalysis, a new approach for the efficient construction of molecular complexity. Synlett, 2007, 10, 1477-1489.
[26]
Doi, T.; Fuse, S.; Miyamoto, S.; Nakai, K.; Sasuga, D.; Takahashi, T. A formal total synthesis of taxol aided by an automated synthesizer. Chem. Asian J., 2006, 1(3), 370-383.
[http://dx.doi.org/10.1002/asia.200600156] [PMID: 17441074]
[27]
Kanda, Y.; Ishihara, Y.; Wilde, N.C.; Baran, P.S. Two-Phase Total Synthesis of Taxanes: Tactics and Strategies. J. Org. Chem., 2020, 85(16), 10293-10320.
[http://dx.doi.org/10.1021/acs.joc.0c01287] [PMID: 32663002]
[28]
Min, L.; Liu, X.; Li, C.C. total synthesis of natural products with bridged bicyclo[m.n.1] Ring Systems via Type II. [5 + 2] Cycloaddition. Acc. Chem. Res., 2020, 53(3), 703-718.
[http://dx.doi.org/10.1021/acs.accounts.9b00640] [PMID: 32069021]
[29]
Hu, Y.J.; Fan, J.H.; Li, S.; Zhao, J.; Li, C.C. Synthetic study toward the total synthesis of taxezopidines A and B. Org. Lett., 2018, 20(18), 5905-5909.
[http://dx.doi.org/10.1021/acs.orglett.8b02571] [PMID: 30192554]
[30]
Hu, Y.J.; Gu, C.C.; Wang, X.F.; Min, L.; Li, C.C. Asymmetric total synthesis of taxol. J. Am. Chem. Soc., 2021, 143(42), 17862-17870.
[http://dx.doi.org/10.1021/jacs.1c09637] [PMID: 34641680]
[31]
Denis, J.N.; Greene, A.E.; Guenard, D.; Gueritte-Voegelein, F.; Mangatal, L.; Potier, P. Highly efficient, practical approach to natural taxol. J. Am. Chem. Soc., 1988, 110(17), 5917-5919.
[http://dx.doi.org/10.1021/ja00225a063]
[32]
Guenard, D.; Gueritte-Voegelein, F.; Potier, P. Taxol and taxotere: discovery, chemistry, and structure-activity relationships. Acc. Chem. Res., 1993, 26(4), 160-167.
[http://dx.doi.org/10.1021/ar00028a005]
[33]
Ojima, I.; Habus, I.; Zhao, M.; Zucco, M.; Park, Y.H.; Sun, C.M.; Brigaud, T. New and efficient approaches to the semisynthesis of taxol and its C-13 side chain analogs by means of β-lactam synthon method. Tetrahedron, 1992, 48(34), 6985-7012.
[http://dx.doi.org/10.1016/S0040-4020(01)91210-4]
[34]
Yang, C.; Kong, L.Y.; Wang, J.S. Research progress of chemical composition of taxane in Taxus canadensis and medicine source crisis solution. Zhongguo Zhongyao Zazhi, 2014, 39(11), 1961-1971.
[PMID: 25272823]
[35]
Li, Y.; Zhang, G.; Pfeifer, B.A. Current and emerging options for taxol production. Adv. Biochem. Eng. Biotechnol., 2014, 148, 405-425.
[http://dx.doi.org/10.1007/10_2014_292] [PMID: 25528175]
[36]
Guerra-Bubb, J.; Croteau, R.; Williams, R.M. The early stages of taxol biosynthesis: An interim report on the synthesis and identification of early pathway metabolites. Nat. Prod. Rep., 2012, 29(6), 683-696.
[http://dx.doi.org/10.1039/c2np20021j] [PMID: 22547034]
[37]
Xiong, X.; Gou, J.; Liao, Q.; Li, Y.; Zhou, Q.; Bi, G.; Li, C.; Du, R.; Wang, X.; Sun, T.; Guo, L.; Liang, H.; Lu, P.; Wu, Y.; Zhang, Z.; Ro, D.K.; Shang, Y.; Huang, S.; Yan, J. The Taxus genome provides insights into paclitaxel biosynthesis. Nat. Plants, 2021, 7(8), 1026-1036.
[http://dx.doi.org/10.1038/s41477-021-00963-5] [PMID: 34267359]
[38]
Nazhand, A.; Durazzo, A.; Lucarini, M.; Mobilia, M.A.; Omri, B.; Santini, A. Rewiring cellular metabolism for heterologous biosynthesis of Taxol. Nat. Prod. Res., 2020, 34(1), 110-121.
[http://dx.doi.org/10.1080/14786419.2019.1630122] [PMID: 31298589]
[39]
Tabata, H. Production of paclitaxel and the related taxanes by cell suspension cultures of Taxus species. Curr. Drug Targets, 2006, 7(4), 453-461.
[http://dx.doi.org/10.2174/138945006776359368] [PMID: 16611032]
[40]
Kaspera, R.; Croteau, R. Cytochrome P450 oxygenases of Taxol biosynthesis. Phytochem. Rev., 2006, 5(2-3), 433-444.
[http://dx.doi.org/10.1007/s11101-006-9006-4] [PMID: 20622990]
[41]
Onrubia, M.; Cusidó, R.M.; Ramirez, K.; Hernández-Vázquez, L.; Moyano, E.; Bonfill, M.; Palazon, J. Bioprocessing of plant in vitro systems for the mass production of pharmaceutically important metabolites: paclitaxel and its derivatives. Curr. Med. Chem., 2013, 20(7), 880-891.
[PMID: 23210777]
[42]
Bringi, V.; Kadkade, P.G.; Prince, C.L.; Schubmehl, B.F.; Kane, E.J.; Roach, B. Enhanced production of tax01 and taxanes by cell cultures of tams species. U.S. Patent 5,407,816, 1995.
[43]
Sabzehzari, M.; Zeinali, M.; Naghavi, M.R. Alternative sources and metabolic engineering of Taxol: Advances and future perspectives. Biotechnol. Adv., 2020, 43107569
[http://dx.doi.org/10.1016/j.biotechadv.2020.107569] [PMID: 32446923]
[44]
Christen, A.A.; Gibson, D.M.; Bland, J. Production of taxol or taxollike compounds in cell culture. U.S. Patent 5,019,504, 1991.
[45]
Wildung, M.R.; Croteau, R. A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. J. Biol. Chem., 1996, 271(16), 9201-9204.
[http://dx.doi.org/10.1074/jbc.271.16.9201] [PMID: 8621577]
[46]
Walker, K.; Long, R.; Croteau, R. The final acylation step in Taxol biosynthesis: Cloning of the taxoid C13-side-chain N -benzoyltransferase from Taxus. Proc. Natl. Acad. Sci. USA, 2002, 99(14), 9166-9171.
[http://dx.doi.org/10.1073/pnas.082115799] [PMID: 12089320]
[47]
Howat, S.; Park, B.; Oh, I.S.; Jin, Y.W.; Lee, E.K.; Loake, G.J. Paclitaxel: biosynthesis, production and future prospects. N. Biotechnol., 2014, 31(3), 242-245.
[http://dx.doi.org/10.1016/j.nbt.2014.02.010] [PMID: 24614567]
[48]
Zhao, C.; Song, G.; Fu, C.; Dong, Y.; Xu, H.; Zhang, H.; Yu, L.J. A systematic approach to expound the variations in taxane production under different dissolved oxygen conditions in Taxus chinensis cells. Plant Cell Rep., 2016, 35(3), 541-559.
[http://dx.doi.org/10.1007/s00299-015-1902-x] [PMID: 26620815]
[49]
Lee, E.K.; Jin, Y.W.; Park, J.H.; Yoo, Y.M.; Hong, S.M.; Amir, R.; Yan, Z.; Kwon, E.; Elfick, A.; Tomlinson, S.; Halbritter, F.; Waibel, T.; Yun, B.W.; Loake, G.J. Cultured cambial meristematic cells as a source of plant natural products. Nat. Biotechnol., 2010, 28(11), 1213-1217.
[http://dx.doi.org/10.1038/nbt.1693] [PMID: 20972422]
[50]
Ochoa-Villarreal, M.; Howat, S.; Jang, M.O.; Kim, I.S.; Jin, Y.W.; Lee, E.K.; Loake, G.J. Cambial meristematic cells: a platform for the production of plant natural products. N. Biotechnol., 2015, 32(6), 581-587.
[http://dx.doi.org/10.1016/j.nbt.2015.02.003] [PMID: 25686717]
[51]
Strobel, G.A.; Stierle, A.A.; Stierle, D.B.; Hess, W.M. Taxomyces andreanae, a proposed new taxon for a bulbilliferous hyphomycete associated with Pacific yew (Taxus brevifolia). Mycotaxon, 1993, 47, 71-78.
[52]
Wang, X.S.; Sun, J.W.; Zang, W.; Fan, C.L.; Li, H. The future of plant endophyte research from the discovery of Strobel. Bull. Bio., 2012, 47(10), 1-3.
[53]
Zhang, P.; Zhou, P.P.; Yu, L.J. An endophytic taxol-producing fungus from Taxus media, Cladosporium cladosporioides MD2. Curr. Microbiol., 2009, 59(3), 227-232.
[http://dx.doi.org/10.1007/s00284-008-9270-1] [PMID: 19484305]
[54]
Liu, K.; Ding, X.; Deng, B.; Chen, W. Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis. J. Ind. Microbiol. Biotechnol., 2009, 36(9), 1171-1177.
[http://dx.doi.org/10.1007/s10295-009-0598-8] [PMID: 19484278]
[55]
Zhao, K.; Yu, L.; Jin, Y.; Ma, X.; Liu, D.; Wang, X.; Wang, X. Advances and prospects of taxol biosynthesis by endophytic fungi. Sheng Wu Gong Cheng Xue Bao, 2016, 32(8), 1038-1051.
[PMID: 29022305]
[56]
Miao, L.Y.; Mo, X.C.; Xi, X.Y.; Zhou, L.; De, G.; Ke, Y.S.; Liu, P.; Song, F.J.; Jin, W.W.; Zhang, P. Transcriptome analysis of a taxol-producing endophytic fungus Cladosporium cladosporioides MD2. AMB Express, 2018, 8(1), 41.
[http://dx.doi.org/10.1186/s13568-018-0567-6] [PMID: 29556854]
[57]
Jin, R.; Kang, J.C.; Wen, T.C.; He, J.; Lei, B.X. A study on optimal fermentation of an endophytic fungus producing taxol. Junwu Xuebao, 2011, 30(2), 235-241.
[58]
Julsing, M.K.; Koulman, A.; Woerdenbag, H.J.; Quax, W.J.; Kayser, O. Combinatorial biosynthesis of medicinal plant secondary metabolites. Biomol. Eng., 2006, 23(6), 265-279.
[http://dx.doi.org/10.1016/j.bioeng.2006.08.001] [PMID: 17049920]
[59]
Boghigian, B.A.; Myint, M.; Wu, J.; Pfeifer, B.A. Simultaneous production and partitioning of heterologous polyketide and isoprenoid natural products in an Escherichia coli two-phase bioprocess. J. Ind. Microbiol. Biotechnol., 2011, 38(11), 1809-1820.
[http://dx.doi.org/10.1007/s10295-011-0969-9] [PMID: 21487833]
[60]
Ajikumar, P.K.; Xiao, W.H.; Tyo, K.E.J.; Wang, Y.; Simeon, F.; Leonard, E.; Mucha, O.; Phon, T.H.; Pfeifer, B.; Stephanopoulos, G. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science, 2010, 330(6000), 70-74.
[http://dx.doi.org/10.1126/science.1191652] [PMID: 20929806]
[61]
Chen, J.J.; Liang, X.; Wang, F.; Wen, Y.H.; Chen, T.J.; Liu, W.C.; Gong, T.; Yang, J.L.; Zhu, P. Combinatorial mutation on the β-glycosidase specific to 7-β-xylosyltaxanes and increasing the mutated enzyme production by engineering the recombinant yeast. Acta Pharm. Sin. B, 2019, 9(3), 626-638.
[http://dx.doi.org/10.1016/j.apsb.2018.11.003] [PMID: 31193781]
[62]
Zhao, F.; Bai, P.; Liu, T.; Li, D.; Zhang, X.; Lu, W.; Yuan, Y. Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae. Biotechnol. Bioeng., 2016, 113(8), 1787-1795.
[http://dx.doi.org/10.1002/bit.25934] [PMID: 26757342]
[63]
Mazzaferro, L.S.; Hüttel, W.; Fries, A.; Müller, M. Cytochrome P450-catalyzed regio- and stereoselective phenol coupling of fungal natural products. J. Am. Chem. Soc., 2015, 137(38), 12289-12295.
[http://dx.doi.org/10.1021/jacs.5b06776] [PMID: 26389790]
[64]
DeJong, J.M.; Liu, Y.; Bollon, A.P.; Long, R.M.; Jennewein, S.; Williams, D.; Croteau, R.B. Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol. Bioeng., 2006, 93(2), 212-224.
[http://dx.doi.org/10.1002/bit.20694] [PMID: 16161138]
[65]
Rontein, D.; Onillon, S.; Herbette, G.; Lesot, A.; Werck-Reichhart, D.; Sallaud, C.; Tissier, A. CYP725A4 from yew catalyzes complex structural rearrangement of taxa-4(5),11(12)-diene into the cyclic ether 5(12)-oxa-3(11)-cyclotaxane. J. Biol. Chem., 2008, 283(10), 6067-6075.
[http://dx.doi.org/10.1074/jbc.M708950200] [PMID: 18167342]
[66]
Biggs, B.W.; Lim, C.G.; Sagliani, K.; Shankar, S.; Stephanopoulos, G.; De Mey, M.; Ajikumar, P.K. Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli. Proc. Natl. Acad. Sci. USA, 2016, 113(12), 3209-3214.
[http://dx.doi.org/10.1073/pnas.1515826113] [PMID: 26951651]
[67]
Huang, Q.; Roessner, C.A.; Croteau, R.; Scott, A.I. Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorg. Med. Chem., 2001, 9(9), 2237-2242.
[http://dx.doi.org/10.1016/S0968-0896(01)00072-4] [PMID: 11553461]
[68]
Gruchattka, E.; Hädicke, O.; Klamt, S.; Schütz, V.; Kayser, O. In silico profiling of Escherichia coli and Saccharomyces cerevisiae as terpenoid factories. Microb. Cell Fact., 2013, 12(1), 84.
[http://dx.doi.org/10.1186/1475-2859-12-84] [PMID: 24059635]
[69]
Engels, B.; Dahm, P.; Jennewein, S. Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metab. Eng., 2008, 10(3-4), 201-206.
[http://dx.doi.org/10.1016/j.ymben.2008.03.001] [PMID: 18485776]
[70]
Reider Apel, A.; d’Espaux, L.; Wehrs, M.; Sachs, D.; Li, R.A.; Tong, G.J.; Garber, M.; Nnadi, O.; Zhuang, W.; Hillson, N.J.; Keasling, J.D.; Mukhopadhyay, A.A. Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae. Nucleic Acids Res., 2017, 45(1), 496-508.
[http://dx.doi.org/10.1093/nar/gkw1023] [PMID: 27899650]
[71]
Ding, M.; Yan, H.; Li, L.; Zhai, F.; Shang, L.; Yin, Z.; Yuan, Y. Biosynthesis of Taxadiene in Saccharomyces cerevisiae: Selection of geranylgeranyl diphosphate synthase directed by a computer-aided docking strategy. PLoS One, 2014, 9(10)e109348
[http://dx.doi.org/10.1371/journal.pone.0109348] [PMID: 25295588]
[72]
El-Sayed, A.S.A.; Abdel-Ghany, S.E.; Ali, G.S. Genome editing approaches: manipulating of lovastatin and taxol synthesis of filamentous fungi by CRISPR/Cas9 system. Appl. Microbiol. Biotechnol., 2017, 101(10), 3953-3976.
[http://dx.doi.org/10.1007/s00253-017-8263-z] [PMID: 28389711]
[73]
Zhou, X.; Zhu, H.; Liu, L.; Lin, J.; Tang, K. A review: Recent advances and future prospects of taxol-producing endophytic fungi. Appl. Microbiol. Biotechnol., 2010, 86(6), 1707-1717.
[http://dx.doi.org/10.1007/s00253-010-2546-y] [PMID: 20358192]
[74]
Qiao, W.; Ling, F.; Yu, L.; Huang, Y.; Wang, T. Enhancing taxol production in a novel endophytic fungus, Aspergillus aculeatinus Tax-6, isolated from Taxus chinensis var. mairei. Fungal Biol., 2017, 121(12), 1037-1044.
[http://dx.doi.org/10.1016/j.funbio.2017.08.011] [PMID: 29122175]
[75]
Manfredi, J.J.; Parness, J.; Horwitz, S.B. Taxol binds to cellular microtubules. J. Cell Biol., 1982, 94(3), 688-696.
[http://dx.doi.org/10.1083/jcb.94.3.688] [PMID: 6127342]
[76]
Schiff, P.B.; Horwitz, S.B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc. Natl. Acad. Sci., 1980, 77(3), 1561-1565.
[http://dx.doi.org/10.1073/pnas.77.3.1561] [PMID: 6103535]
[77]
Scribano, C.M.; Wan, J.; Esbona, K.; Tucker, J.B.; Lasek, A.; Zhou, A.S.; Zasadil, L.M.; Molini, R.; Fitzgerald, J.; Lager, A.M.; Laffin, J.J.; Correia-Staudt, K.; Wisinski, K.B.; Tevaarwerk, A.J.; O’Regan, R.; McGregor, S.M.; Fowler, A.M.; Chappell, R.J.; Bugni, T.S.; Burkard, M.E.; Weaver, B.A. Chromosomal instability sensitizes patient breast tumors to multipolar divisions induced by paclitaxel. Sci. Transl. Med., 2021, 13(610)eabd4811
[http://dx.doi.org/10.1126/scitranslmed.abd4811] [PMID: 34516829]
[78]
Vassileva, V.; Allen, C.J.; Piquette-Miller, M. Effects of sustained and intermittent paclitaxel therapy on tumor repopulation in ovarian cancer. Mol. Cancer Ther., 2008, 7(3), 630-637.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2117] [PMID: 18347149]
[79]
Rovere, P.; Vallinoto, C.; Bondanza, A.; Crosti, M.C.; Rescigno, M.; Ricciardi-Castagnoli, P.; Rugarli, C.; Manfredi, A.A. Bystander apoptosis triggers dendritic cell maturation and antigen-presenting function. J. Immunol., 1998, 161(9), 4467-4471.
[PMID: 9794367]
[80]
Vicari, A.P.; Luu, R.; Zhang, N.; Patel, S.; Makinen, S.R.; Hanson, D.C.; Weeratna, R.D.; Krieg, A.M. Paclitaxel reduces regulatory T cell numbers and inhibitory function and enhances the anti-tumor effects of the TLR9 agonist PF-3512676 in the mouse. Cancer Immunol. Immunother., 2009, 58(4), 615-628.
[http://dx.doi.org/10.1007/s00262-008-0586-2] [PMID: 18802696]
[81]
Wang, J.; Kobayashi, M.; Han, M.; Choi, S.; Takano, M.; Hashino, S.; Tanaka, J.; Kondoh, T.; Kawamura, K.; Hosokawa, M. MyD88 is involved in the signalling pathway for Taxol-induced apoptosis and TNF-α expression in human myelomonocytic cells. Br. J. Haematol., 2002, 118(2), 638-645.
[http://dx.doi.org/10.1046/j.1365-2141.2002.03645.x] [PMID: 12139759]
[82]
Zhang, A.L.; Colmenero, P.; Purath, U.; Teixeira de Matos, C.; Hueber, W.; Klareskog, L.; Tarner, I.H.; Engleman, E.G.; Söderström, K. Natural killer cells trigger differentiation of monocytes into dendritic cells. Blood, 110 7, 2484-93. Natural killer cells trigger differentiation of monocytes into dendritic cells. Blood, 2007, 110(7), 2484-2493.
[http://dx.doi.org/10.1182/blood-2007-02-076364] [PMID: 17626840]
[83]
Markasz, L.; Stuber, G.; Vanherberghen, B.; Flaberg, E.; Oláh, É.; Carbone, E.; Eksborg, S.; Klein, E.; Skribek, H.; Szekely, L. Effect of frequently used chemotherapeutic drugs on the cytotoxic activity of human natural killer cells. Molecular Cancer Therapeutics, 6, 644-654. Effect of frequently used chemotherapeutic drugs on the cytotoxic activity of human natural killer cells. Mol. Cancer Ther., 2007, 6(2), 644-654.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0358] [PMID: 17308061]
[84]
Kubo, M.; Morisaki, T.; Matsumoto, K.; Tasaki, A.; Yamanaka, N.; Nakashima, H.; Kuroki, H.; Nakamura, K.; Nakamura, M.; Katano, M. Paclitaxel probably enhances cytotoxicity of natural killer cells against breast carcinoma cells by increasing perforin production. Cancer Immunol. Immunother., 2005, 54(5), 468-476.
[http://dx.doi.org/10.1007/s00262-004-0617-6] [PMID: 15592829]
[85]
Zhou, M.; Liu, Z.; Zhao, Y.; Ding, Y.; Liu, H.; Xi, Y.; Xiong, W.; Li, G.; Lu, J.; Fodstad, O.; Riker, A.I.; Tan, M. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J. Biol. Chem., 2010, 285(28), 21496-21507.
[http://dx.doi.org/10.1074/jbc.M109.083337] [PMID: 20460378]
[86]
Liu, N.; Zheng, Y.; Zhu, Y.; Xiong, S.; Chu, Y. Selective Impairment of CD4+CD25+Foxp3+Regulatory T cells by paclitaxel is explained by Bcl-2/Bax mediated apoptosis. Int. Immunopharmacol., 2011, 11(2), 212-219.
[http://dx.doi.org/10.1016/j.intimp.2010.11.021] [PMID: 21115120]
[87]
Zhang, L.; Dermawan, K.; Jin, M.; Liu, R.; Zheng, H.; Xu, L.; Zhang, Y.; Cai, Y.; Chu, Y.; Xiong, S. Differential impairment of regulatory T cells rather than effector T cells by paclitaxel-based chemotherapy. Clin. Immunol., 2008, 129(2), 219-229.
[http://dx.doi.org/10.1016/j.clim.2008.07.013] [PMID: 18771959]
[88]
Mullins, D.W.; Koci, M.D.; Burger, C.J.; Elgert, K.D. Interleukin-12 overcomes paclitaxel-mediated suppression of T-cell proliferation. Immunopharmacol. Immunotoxicol., 1998, 20(4), 473-492.
[http://dx.doi.org/10.3109/08923979809031511] [PMID: 9805229]
[89]
van der Most, R.G.; Currie, A.; Robinson, B.W.S.; Lake, R.A. Cranking the immunologic engine with chemotherapy: using context to drive tumor antigen cross-presentation towards useful antitumor immunity. Cancer Res., 2006, 66(2), 601-604.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2967] [PMID: 16423984]
[90]
Ferrantini, M.; Capone, I.; Belardelli, F. Dendritic cells and cytokines in immune rejection of cancer. Cytokine Growth Factor Rev., 2008, 19(1), 93-107.
[http://dx.doi.org/10.1016/j.cytogfr.2007.10.003] [PMID: 18054517]
[91]
Hanna, N.H.; Schneider, B.J.; Temin, S.; Baker, S., Jr; Brahmer, J.; Ellis, P.M.; Gaspar, L.E.; Haddad, R.Y.; Hesketh, P.J.; Jain, D.; Jaiyesimi, I.; Johnson, D.H.; Leighl, N.B.; Phillips, T.; Riely, G.J.; Robinson, A.G.; Rosell, R.; Schiller, J.H.; Singh, N.; Spigel, D.R.; Stabler, J.O.; Tashbar, J.; Masters, G. Therapy for stage iv non–small-cell lung cancer without driver alterations: ASCO and OH (CCO) joint guideline update. J. Clin. Oncol., 2020, 38(14), 1608-1632.
[http://dx.doi.org/10.1200/JCO.19.03022] [PMID: 31990617]
[92]
Schmid, P.; Rugo, H.S.; Adams, S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Henschel, V.; Molinero, L.; Chui, S.Y.; Maiya, V.; Husain, A.; Winer, E.P.; Loi, S.; Emens, L.A. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol., 2020, 21(1), 44-59.
[http://dx.doi.org/10.1016/S1470-2045(19)30689-8] [PMID: 31786121]
[93]
Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Hegg, R. Im, S.A.; Shaw Wright, G.; Henschel, V.; Molinero, L.; Chui, S.Y.; Funke, R.; Husain, A.; Winer, E.P.; Loi, S.; Emens, L.A. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med., 2018, 379(22), 2108-2121.
[http://dx.doi.org/10.1056/NEJMoa1809615] [PMID: 30345906]
[94]
Miles, D.; Gligorov, J.; André, F.; Cameron, D.; Schneeweiss, A.; Barrios, C.; Xu, B.; Wardley, A.; Kaen, D.; Andrade, L.; Semiglazov, V.; Reinisch, M.; Patel, S.; Patre, M.; Morales, L.; Patel, S.L.; Kaul, M.; Barata, T.; O’Shaughnessy, J.; Zhang, Q.; Xu, B.; Shao, Z.; Wang, X.; Geng, C.; Yan, X.; Tong, Z.; Shen, K.; Yin, Y.; Sun, T.; Yang, J.; Feng, J.; Yan, M.; Wang, Y.; Liu, Q.; Zhang, S.; De Laurentiis, M.; Santoro, A.; Guarneri, V.; Colleoni, M.; Natoli, C.; Cortesi, L.; Placido, S.; Gianni, L.; Ferrau, F.; Livi, L.; Zambelli, A.; Del Mastro, L.; Tonini, G.; Montemurro, F.; Bianchi, G.; Pedersini, R.; Prete, S.; Allegrini, G.; Naso, G.; Vici, P.; Loirat, D.; Mailliez, A.; Priou, F.; Tredan, O.; Dalenc, F.; Perrin, C.; Gligorov, J.; Timar David, M.; Dohollou, N.; Teixeira, L.; Brocard, F.; Arnaud, A.; Delaloge, S.; Spano, J-P.; Mansi, L.; Andrade, L.; Damian, F.; Pedrini, J.; Aleixo, S.; Hegg, R.; Junior, R.; Reinisch, M.; Schmidt, M.; Wenzel, C.; Grischke, E-M.; Schneeweiss, A.; Just, M.; Harbeck, N.; Schumacher, C.; Peters, U.; Fischer, D.; Forstbauer, H.; Liersch, R.; Warner, E.; Bouganim, N.; Doyle, C.; Price Hiller, J.; Vandenberg, T.; Pavic, M.; Robinson, A.; Roldan Urgoiti, G.; Califaretti, N.; Alacacioglu, A.; Gumus, M.; Yalcin, B.; Cicin, I.; Kose, F.; Uygun, K.; Kaplan, M.; Cubukcu, E.; Wardley, A.; Harries, M.; Miles, D.; Doval, D.; Gupta, S.; Mohapatra, P.; Chatterjee, S.; Ghadyalpatil, N.; Singhal, M.; Nag, S.; Agarwal, A.; Wolf, I.; Gal Yam, E.; Yerushalmi, R.; Peretz, T.; Fried, G.; Ben Baruch, N.; Katz, D.; Hamilton, E.; Kayali, F.; Brufsky, A.; Telli, M.; Wright, G.; Oyola, R.; Rakowski, T.; Graff, S.; Tjulandin, S.; Semiglazov, V.; Aparicio, A.; Ruiz Borrego, M.; Merino, L.; Guerra Martinez, J.; Lopez, E.; Yamashita, T.; Ohtani, S.; Inoue, K.; Ito, Y.; Niikura, N.; Nakayama, T.; Sagara, Y.; Yanagita, Y.; Kamada, Y.; Kaneko, K.; Kaen, D.; Nervo, A.; Eniu, A.; Schenker, M.; Priester, P.; Melichar, B.; Zimovjanova, M.; Sormova, P.; Sufliarsky, J.; Kakalejcik, M.; Belbaraka, R.; Errihani, H.; Le Than, D.; Pham, D.; Aravantinos, G.; Papadimitriou, C.; Koumakis, G.; Papandreou, C.; Podolski, P.; Tabane, K. Primary results from IMpassion131, a double-blind, placebo-controlled, randomised phase III trial of first-line paclitaxel with or without atezolizumab for unresectable locally advanced/metastatic triple-negative breast cancer. Ann. Oncol., 2021, 32(8), 994-1004.
[http://dx.doi.org/10.1016/j.annonc.2021.05.801] [PMID: 34219000]
[95]
Zhang, Y.; Chen, H.; Mo, H.; Hu, X.; Gao, R.; Zhao, Y.; Liu, B.; Niu, L.; Sun, X.; Yu, X.; Wang, Y.; Chang, Q.; Gong, T.; Guan, X.; Hu, T.; Qian, T.; Xu, B.; Ma, F.; Zhang, Z.; Liu, Z. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell, 2021, 39(12), 1578-1593.e8.
[http://dx.doi.org/10.1016/j.ccell.2021.09.010] [PMID: 34653365]
[96]
Li, B.W. T.; Z, S.H.; Q, Z.R.; J.F. Q.; L.F.; J, Z.F. Remarkable response withpembrolizumab plus albumin-bound paclitaxel in 2 cases of HER2-positivemetastatic breast cancer who have failed to multi-anti-HER2 targeted therapy. Cancer Biol. Ther., 2018, 19(4), 292-295.
[http://dx.doi.org/10.1080/15384047.2017.1414761] [PMID: 29333945]
[97]
Colombo, N.; Dubot, C.; Lorusso, D.; Caceres, M.V.; Hasegawa, K.; Shapira-Frommer, R.; Tewari, K.S.; Salman, P.; Hoyos Usta, E.; Yañez, E. Gümüş, M.; Olivera Hurtado de Mendoza, M.; Samouëlian, V.; Castonguay, V.; Arkhipov, A.; Toker, S.; Li, K.; Keefe, S.M.; Monk, B.J. KEYNOTE-826 Investigators. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for persistent, recurrent, or metastatic cervical cancer. N. Engl. J. Med., 2021, 385(20), 1856-1867.
[http://dx.doi.org/10.1056/NEJMoa2112435] [PMID: 34534429]
[98]
Coleman, R.L.; Lorusso, D.; Gennigens, C.; González-Martín, A.; Randall, L.; Cibula, D.; Lund, B.; Woelber, L.; Pignata, S.; Forget, F.; Redondo, A.; Vindeløv, S.D.; Chen, M.; Harris, J.R.; Smith, M.; Nicacio, L.V.; Teng, M.S.L.; Laenen, A.; Rangwala, R.; Manso, L.; Mirza, M.; Monk, B.J.; Vergote, I.; Raspagliesi, F.; Melichar, B.; Gaba Garcia, L.; Jackson, A.; Henry, S.; Kral, Z.; Harter, P.; De Giorgi, U.; Bjurberg, M.; Gold, M.; O’Malley, D.; Honhon, B.; Vulsteke, C.; De Cuypere, E.; Denys, H.; Baurain, J.F.; Zamagni, C.; Tenney, M.; Gordinier, M.; Bradley, W.; Schlumbrecht, M.; Spirtos, N.; Concin, N.; Mahner, S.; Scambia, G.; Leath, C.; Farias-Eisner, R.; Cohen, J.; Muller, C.; Bhatia, S. Efficacy and safety of tisotumab vedotin in previously treated recurrent or metastatic cervical cancer (innovaTV 204/GOG-3023/ENGOT-cx6): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol., 2021, 22(5), 609-619.
[http://dx.doi.org/10.1016/S1470-2045(21)00056-5] [PMID: 33845034]
[99]
Hoffmann-La Roche. A Phase III Trial of Carboplatin and Paclitaxel Plus Placebo Versus Carboplatin Paclitaxel Plus Concurrent and Extended Bevacizumab in Chinese Women With Newly Diagnosed, Previously Untreated, Stage III or Stage IV Epithelial Ovarian, Fallopian Tube, or Primary Peritoneal Cancer; Clinical trial registration NCT03635489; clinicaltrials.gov, 2022. https://clinicaltrials.gov/ct2/show/NCT03635489 (Accessed May 22, 2022).
[100]
Hoffmann-La Roche. A Phase III, Multicenter, Randomized, Study of Atezolizumab Versus Placebo Administered in Combination With Paclitaxel, Carboplatin, and Bevacizumab to Patients With Newly-Diagnosed Stage III or Stage IV Ovarian, Fallopian Tube, or Primary Peritoneal Cancer; Clinical trial registration NCT03038100; clinicaltrials.gov, 2023. https://clinicaltrials.gov/ct2/show/NCT03038100 (Accessed May 22, 2022).
[101]
MS, M. H., MD. Phase II Single Arm Study of Combination Pembrolizumab, Paclitaxel, and Carboplatin in Patients With Advanced Stage Ovarian, Fallopian Tube, or Peritoneal Carcinoma Receiving Neoadjuvant Chemotherapy; Clinical trial registration NCT02834975; clinicaltrials.gov, 2023. https://clinicaltrials.gov/ct2/show/NCT02834975 (Accessed May 22, 2022).
[102]
Sharma, P. Randomized Open Label Phase II Trial of Neoadjuvant Carboplatin Plus Docetaxel or Carboplatin Plus Paclitaxel Followed by Doxorubicin Plus Cyclophosphamide in Stage I-III Triple- Negative Breast Cancer; Clinical trial registration NCT02413320; clinicaltrials.gov, 2021. https://clinicaltrials.gov/ct2/show/NCT02413320 (Accessed May 22, 2022).
[103]
Seagen Inc. A Randomized, Double-Blind, Placebo-Controlled, Active Comparator Phase 2/3 Study of Tucatinib in Combination With Trastuzumab, Ramucirumab, and Paclitaxel in Subjects With Previously Treated, Locally-Advanced Unresectable or Metastatic HER2+ Gastric or Gastroesophageal Junction Adenocarcinoma (GEC); Clinical trial registration NCT04499924; clinicaltrials.gov, 2022. https://clinicaltrials.gov/ct2/show/NCT04499924 (Accessed May 22, 2022).
[104]
Grupo Español de Tratamiento de Tumores de Cabeza y Cuello. Phase II, Randomized Clinical Trial to Assess the Efficacy of Paclitaxel vs Paclitaxel + Cetuximab in Subjects With Recurrent and/or Metastatic Squamous Head & Neck Carcinoma After Failure of a 1o Line Chemotherapy EXTREME Type Treatment; Clinical trial registration NCT03887442; clinicaltrials.gov, 2020. https://clinicaltrials.gov/ct2/show/NCT03887442 (Accessed May 22, 2022).
[105]
FibroGen. A Phase 3, Randomized, Double-Blind Study of Pamrevlumab or Placebo in Combination With Either Gemcitabine Plus Nab-Paclitaxel or FOLFIRINOX as Neoadjuvant Treatment in Patients With Locally Advanced, Unresectable Pancreatic Cancer; Clinical trial registration NCT03941093; clinicaltrials.gov, 2022. https://clinicaltrials.gov/ct2/show/NCT03941093 (Accessed May 22, 2022).
[106]
Oncology, D. of R. Phase I Study of Concurrent Nab-Paclitaxel + Gemcitabine With Hypofractionated, Ablative Proton Therapy for Locally Advanced Pancreatic Cancer; Clinical trial registration NCT03652428; clinicaltrials.gov, 2022. https://clinicaltrials.gov/ct2/show/NCT03652428 (Accessed May 22, 2022).
[107]
Miolo, G.; Muraro, E.; Caruso, D.; Crivellari, D.; Ash, A.; Scalone, S.; Lombardi, D.; Rizzolio, F.; Giordano, A.; Corona, G. Pharmacometabolomics study identifies circulating spermidine and tryptophan as potential biomarkers associated with the complete pathological response to trastuzumab-paclitaxel neoadjuvant therapy in HER-2 positive breast cancer. Oncotarget, 2016, 7(26), 39809-39822.
[http://dx.doi.org/10.18632/oncotarget.9489] [PMID: 27223427]
[108]
Sparreboom, A.; van Tellingen, O.; Nooijen, W.J.; Beijnen, J.H. Nonlinear pharmacokinetics of paclitaxel in mice results from the pharmaceutical vehicle Cremophor EL. Cancer Res., 1996, 56(9), 2112-2115.
[PMID: 8616858]
[109]
Wiernik, P.H.; Schwartz, E.L.; Strauman, J.J.; Dutcher, J.P.; Lipton, R.B.; Paietta, E. Phase I clinical and pharmacokinetic study of taxol. Cancer Res., 1987, 47(9), 2486-2493.
[PMID: 2882837]
[110]
Zhang, X.J.; Zhang, P. Advances in clinical research and development of new form of paclitaxel. Oncol. Prog., 2007, 5(1), 66-72.
[111]
Wang, X.; Song, L.; Li, N.; Qiu, Z.; Zhou, S.; Li, C.; Zhao, J.; Song, H.; Chen, X. Pharmacokinetics and biodistribution study of paclitaxel liposome in Sprague-Dawley rats and Beagle dogs by liquid chromatography-tandem mass spectrometry. Drug Res., 2013, 63(11), 603-606.
[http://dx.doi.org/10.1055/s-0033-1349126] [PMID: 23842945]
[112]
Zhang, Q.; Huang, X.E.; Gao, L.L. A clinical study on the premedication of paclitaxel liposome in the treatment of solid tumors. Biomed. Pharmacother., 2009, 63(8), 603-607.
[http://dx.doi.org/10.1016/j.biopha.2008.10.001] [PMID: 19019625]
[113]
Koudelka, Š.; Turánek, J. Liposomal paclitaxel formulations. J. Control. Release, 2012, 163(3), 322-334.
[http://dx.doi.org/10.1016/j.jconrel.2012.09.006] [PMID: 22989535]
[114]
Zhang, J.A.; Anyarambhatla, G.; Ma, L.; Ugwu, S.; Xuan, T.; Sardone, T.; Ahmad, I. Development and characterization of a novel Cremophor® EL free liposome-based paclitaxel (LEP-ETU) formulation. Eur. J. Pharm. Biopharm., 2005, 59(1), 177-187.
[http://dx.doi.org/10.1016/j.ejpb.2004.06.009] [PMID: 15567316]
[115]
Kudlowitz, D.; Muggia, F. Nanoparticle albumin-bound paclitaxel (nab-paclitaxel): extending its indications. Expert Opin. Drug Saf., 2014, 13(6), 1-5.
[http://dx.doi.org/10.1517/14740338.2014.910193] [PMID: 24749649]
[116]
Gradishar, W.J.; Tjulandin, S.; Davidson, N.; Shaw, H.; Desai, N.; Bhar, P.; Hawkins, M.; O’Shaughnessy, J. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol., 2005, 23(31), 7794-7803.
[http://dx.doi.org/10.1200/JCO.2005.04.937] [PMID: 16172456]
[117]
Park, I.H.; Sohn, J.H.; Kim, S.B.; Lee, K.S.; Chung, J.S.; Lee, S.H.; Kim, T.Y.; Jung, K.H.; Cho, E.K.; Kim, Y.S.; Song, H.S.; Seo, J.H.; Ryoo, H.M.; Lee, S.A.; Yoon, S.Y.; Kim, C.S.; Kim, Y.T.; Kim, S.Y.; Jin, M.R.; Ro, J. An open-label, randomized, parallel, phase iii trial evaluating the efficacy and safety of polymeric micelle-formulated paclitaxel compared to conventional cremophor EL-based Paclitaxel for recurrent or metastatic HER2-negative breast cancer. Cancer Res. Treat., 2017, 49(3), 569-577.
[http://dx.doi.org/10.4143/crt.2016.289] [PMID: 27618821]
[118]
Borgå, O.; Lilienberg, E.; Bjermo, H.; Hansson, F.; Heldring, N.; Dediu, R. Pharmacokinetics of total and unbound paclitaxel after administration of paclitaxel micellar or nab-paclitaxel: An open, randomized, cross-over, explorative study in breast cancer patients. Adv. Ther., 2019, 36(10), 2825-2837.
[http://dx.doi.org/10.1007/s12325-019-01058-6] [PMID: 31432461]
[119]
Shi, M.; Sun, J.; Zhou, J.; Yu, H.; Yu, S.; Xia, G.; Wang, L.; Teng, Y.; Liu, G.; Yu, C.; Feng, J.; Shen, Y. Phase I dose escalation and pharmacokinetic study on the nanoparticle formulation of polymeric micellar paclitaxel for injection in patients with advanced solid malignancies. Invest. New Drugs, 2018, 36(2), 269-277.
[http://dx.doi.org/10.1007/s10637-017-0506-4] [PMID: 28868573]
[120]
Shi, M.; Gu, A.; Tu, H.; Huang, C.; Wang, H.; Yu, Z.; Wang, X.; Cao, L.; Shu, Y.; Wang, H.; Yang, R.; Li, X.; Chang, J.; Hu, Y.; Shen, P.; Hu, Y.; Guo, Z.; Tao, M.; Zhang, Y.; Liu, X.; Sun, Q.; Zhang, X.; Jiang, Z.; Zhao, J.; Chen, F.; Yu, H.; Zhang, W.; Sun, J.; Li, D.; Zhou, J.; Han, B.; Wu, Y.L. Comparing nanoparticle polymeric micellar paclitaxel and solvent-based paclitaxel as first-line treatment of advanced non-small-cell lung cancer: an open-label, randomized, multicenter, phase III trial. Ann. Oncol., 2021, 32(1), 85-96.
[http://dx.doi.org/10.1016/j.annonc.2020.10.479] [PMID: 33130217]
[121]
Ahadian, S.; Finbloom, J.A.; Mofidfar, M.; Diltemiz, S.E.; Nasrollahi, F.; Davoodi, E.; Hosseini, V.; Mylonaki, I.; Sangabathuni, S.; Montazerian, H.; Fetah, K.; Nasiri, R.; Dokmeci, M.R.; Stevens, M.M.; Desai, T.A.; Khademhosseini, A. Micro and nanoscale technologies in oral drug delivery. Adv. Drug Deliv. Rev., 2020, 157, 37-62.
[http://dx.doi.org/10.1016/j.addr.2020.07.012] [PMID: 32707147]
[122]
Abuhelwa, A.Y.; Williams, D.B.; Upton, R.N.; Foster, D.J.R. Food, gastrointestinal pH, and models of oral drug absorption. Eur. J. Pharm. Biopharm., 2017, 112, 234-248.
[http://dx.doi.org/10.1016/j.ejpb.2016.11.034] [PMID: 27914234]
[123]
Athenex, Inc. An Open-Label, Crossover Study of the Effect of Food on the Pharmacokinetics of Paclitaxel Administered Orally as Oraxol; Clinical trial registration NCT03892018; clinicaltrials.gov, 2022. https://clinicaltrials.gov/ct2/show/NCT03892018 (Accessed May 22, 2022).
[124]
Lee, K.W.; Lee, K.H.; Zang, D.Y.; Park, Y.I.; Shin, D.B.; Kim, J.W. Im, S.A.; Koh, S.A.; Yu, K.S.; Cho, J.Y.; Jung, J.A.; Bang, Y.J. Im, S.A.; Koh, S.A.; Yu, K.S.; Cho, J.Y.; Jung, J.A.; Bang, Y.J. Phase I/II study of weekly oraxol for the second-line treatment of patients with metastatic or recurrent gastric cancer. Oncologist, 2015, 20(8), 896-897.
[http://dx.doi.org/10.1634/theoncologist.2015-0202] [PMID: 26112004]
[125]
Lundberg, B.B. Preparation and characterization of polymeric pH-sensitive STEALTH® nanoparticles for tumor delivery of a lipophilic prodrug of paclitaxel. Int. J. Pharm., 2011, 408(1-2), 208-212.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.061] [PMID: 21296135]
[126]
Zhao, S.H.; Yang, X.Q.; Zhu, W.; Zheng, P.C.; Wang, J.J.; Shan, L.L. Preparation of anti-cancer water-soluble paclitaxel prodrug and its anti-cancer effect. Zhongguo Yaolixue Tongbao, 2016, 32(12), 1711.
[127]
Zhang, P.; Huang, Y.; Liu, H.; Marquez, R.T.; Lu, J.; Zhao, W.; Zhang, X.; Gao, X.; Li, J.; Venkataramanan, R.; Xu, L.; Li, S. A PEG-Fmoc conjugate as a nanocarrier for paclitaxel. Biomaterials, 2014, 35(25), 7146-7156.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.108] [PMID: 24856103]
[128]
Wang, X.; Yang, B.; Li, L.; Liu, T.; Zuo, S.; Chi, D.; He, Z.; Sun, B.; Sun, J. Probing the fluorination effect on the self-assembly characteristics, in vivo fate and antitumor efficacy of paclitaxel prodrug nanoassemblies. Theranostics, 2021, 11(16), 7896-7910.
[http://dx.doi.org/10.7150/thno.61337] [PMID: 34335971]
[129]
Desai, N. Challenges in development of nanoparticle-based therapeutics. AAPS J., 2012, 14(2), 282-295.
[http://dx.doi.org/10.1208/s12248-012-9339-4] [PMID: 22407288]
[130]
Ranade, A.A.; Joshi, D.A.; Phadke, G.K.; Patil, P.P.; Kasbekar, R.B.; Apte, T.G.; Dasare, R.R.; Mengde, S.D.; Parikh, P.M.; Bhattacharyya, G.S.; Lopes, G.L. Clinical and economic implications of the use of nanoparticle paclitaxel (Nanoxel) in India. Ann. Oncol., 2013, 24(Suppl. 5), v6-v12.
[http://dx.doi.org/10.1093/annonc/mdt322] [PMID: 23975704]
[131]
Giodini, L.; Re, F.L.; Campagnol, D.; Marangon, E.; Posocco, B.; Dreussi, E.; Toffoli, G. Nanocarriers in cancer clinical practice: a pharmacokinetic issue. Nanomedicine, 2017, 13(2), 583-599.
[http://dx.doi.org/10.1016/j.nano.2016.07.012] [PMID: 27520727]
[132]
Jang, Y.; Ko, M.K.; Park, Y.E.; Hong, J.W.; Lee, I.H.; Chung, H.J.; Chung, H. Effect of paclitaxel content in the DHP107 oral formulation on oral bioavailability and antitumor activity. J. Drug Deliv. Sci. Technol., 2018, 48, 183-192.
[http://dx.doi.org/10.1016/j.jddst.2018.09.014]

© 2024 Bentham Science Publishers | Privacy Policy