Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Review Article

Review on Multifunctional Nanotherapeutics for Drug Delivery, Tumor Imaging, and Selective Tumor Targeting by Hyaluronic Acid Coupled Graphene Quantum Dots

Author(s): Dilip O. Morani and Pravin O. Patil*

Volume 20, Issue 1, 2024

Published on: 20 March, 2023

Page: [89 - 108] Pages: 20

DOI: 10.2174/1573413719666230210122445

Price: $65

conference banner
Abstract

Cancer is one of the most widespread life-threatening diseases, and among different types of cancers, breast cancer is the major disease affecting many women worldwide.

Background: Conventional chemotherapy using anticancer drugs has many drawbacks, like poor water solubility, poor bioavailability, rapid relapse, non-specific selectivity, effect on normal tissues, and rapid drug resistance. Thus, over the last few years, immense efforts have been made to fabricate nanotherapeutics that will release drugs in response to stimuli.

Objective: Nanotherapeutics based on graphene quantum dots have been acknowledged with much gratitude in the bioscience field and investigation applications because of their distinguishing chemical and physical properties, such as medicine delivery, biosensors, and bioimaging for the advancement invention of disease.

Conclusion: This paper analyzes the potential applications of graphene quantum dots for the modified and desired release of antitumor drugs. Also, it shows graphene quantum dots' capability to functionalize in the companionship of hyaluronic acid that operates regarding cancer cell directing matrix in bioimaging and multimodal therapy.

Keywords: Nanotherapeutics, graphene quantum dots, hyaluronic acid, fluorescent materials, imaging materials, pH triggered release.

Graphical Abstract
[1]
Jemal, A.; Miller, K.D.; Ma, J.; Siegel, R.L.; Fedewa, S.A.; Islami, F.; Devesa, S.S.; Thun, M.J. Higher lung cancer incidence in young women than young men in the United States. N. Engl. J. Med., 2018, 378(21), 1999-2009.
[http://dx.doi.org/10.1056/NEJMoa1715907] [PMID: 29791813]
[2]
Jemal, A.; Fedewa, S.A. Lung cancer screening with low-dose computed tomography in the United States-2010 to 2015. JAMA Oncol., 2017, 3(9), 1278-1281.
[http://dx.doi.org/10.1001/jamaoncol.2016.6416] [PMID: 28152136]
[3]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[4]
Davidson, A.; Chia, S.; Olson, R.; Nichol, A.; Speers, C.; Coldman, A.J.; Bajdik, C.; Woods, R.; Tyldesley, S. Stage, treatment and outcomes for patients with breast cancer in British Columbia in 2002: A population-based cohort study. CMAJ Open, 2013, 1(4), E134-E141.
[http://dx.doi.org/10.9778/cmajo.20130017] [PMID: 25077115]
[5]
Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161-171.
[http://dx.doi.org/10.1038/nrc1566] [PMID: 15738981]
[6]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin., 2015, 65(1), 5-29.
[http://dx.doi.org/10.3322/caac.21254] [PMID: 25559415]
[7]
Erttmann, R.; Erb, N.; Steinhoff, A.; Landbeck, G. Pharmacokinetics of doxorubicin in man: dose and schedule dependence. J. Cancer Res. Clin. Oncol., 1988, 114(5), 509-513.
[http://dx.doi.org/10.1007/BF00391502] [PMID: 3182911]
[8]
Wang, S.; Konorev, E.A.; Kotamraju, S.; Joseph, J.; Kalivendi, S.; Kalyanaraman, B. Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms. intermediacy of H2O2- and p53-dependent pathways. J. Biol. Chem., 2004, 279(24), 25535-25543.
[http://dx.doi.org/10.1074/jbc.M400944200] [PMID: 15054096]
[9]
Tian, J.; Luo, Y.; Huang, L.; Feng, Y.; Ju, H.; Yu, B.Y. Pegylated folate and peptide-decorated graphene oxide nanovehicle for in vivo targeted delivery of anticancer drugs and therapeutic self-monitoring. Biosens. Bioelectron., 2016, 80, 519-524.
[http://dx.doi.org/10.1016/j.bios.2016.02.018] [PMID: 26890827]
[10]
Lu, W.; Singh, A.K.; Khan, S.A.; Senapati, D.; Yu, H.; Ray, P.C. Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy. J. Am. Chem. Soc., 2010, 132(51), 18103-18114.
[http://dx.doi.org/10.1021/ja104924b] [PMID: 21128627]
[11]
Ardeshirpour, Y.; Chernomordik, V.; Hassan, M.; Zielinski, R.; Capala, J.; Gandjbakhche, A. In vivo fluorescence lifetime imaging for monitoring the efficacy of the cancer treatment. Clin. Cancer Res., 2014, 20(13), 3531-3539.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1826] [PMID: 24671949]
[12]
Davis, M.E.; Chen, Z.; Shin, D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7(9), 771-782.
[13]
Diamantis, N.; Banerji, U. Antibody-drug conjugates-an emerging class of cancer treatment. Br. J. Cancer, 2016, 114(4), 362-367.
[http://dx.doi.org/10.1038/bjc.2015.435] [PMID: 26742008]
[14]
Barreto, J.A.; O’Malley, W.; Kubeil, M.; Graham, B.; Stephan, H.; Spiccia, L. Nanomaterials: Applications in cancer imaging and therapy. Adv. Mater., 2011, 23(12), H18-H40.
[http://dx.doi.org/10.1002/adma.201100140] [PMID: 21433100]
[15]
Xie, J.; Lee, S.; Chen, X. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev., 2010, 62(11), 1064-1079.
[http://dx.doi.org/10.1016/j.addr.2010.07.009] [PMID: 20691229]
[16]
Parveen, S.; Misra, R.; Sahoo, S.K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine, 2012, 8(2), 147-166.
[http://dx.doi.org/10.1016/j.nano.2011.05.016] [PMID: 21703993]
[17]
Podsiadlo, P.; Sinani, V.A.; Bahng, J.H.; Kam, N.W.S.; Lee, J.; Kotov, N.A. Gold nanoparticles enhance the anti-leukemia action of a 6-mercaptopurine chemotherapeutic agent. Langmuir, 2008, 24(2), 568-574.
[http://dx.doi.org/10.1021/la702782k] [PMID: 18052300]
[18]
Yu, M.; Jambhrunkar, S.; Thorn, P.; Chen, J.; Gu, W.; Yu, C. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanoscale, 2013, 5(1), 178-183.
[http://dx.doi.org/10.1039/C2NR32145A] [PMID: 23076766]
[19]
Gonçalves, M.; Maciel, D.; Capelo, D.; Xiao, S.; Sun, W.; Shi, X.; Rodrigues, J.; Tomás, H.; Li, Y. Dendrimer-assisted formation of fluorescent nanogels for drug delivery and intracellular imaging. Biomacromolecules, 2014, 15(2), 492-499.
[http://dx.doi.org/10.1021/bm401400r] [PMID: 24432789]
[20]
Ogawara, K.; Un, K.; Minato, K.; Tanaka, K.; Higaki, K.; Kimura, T. Determinants for In vivo anti-tumor effects of PEG liposomal doxorubicin: Importance of vascular permeability within tumors. Int. J. Pharm., 2008, 359(1-2), 234-240.
[http://dx.doi.org/10.1016/j.ijpharm.2008.03.025] [PMID: 18448289]
[21]
Cheng, J.; Teply, B.; Sherifi, I.; Sung, J.; Luther, G.; Gu, F.; Levynissenbaum, E.; Radovicmoreno, A.; Langer, R.; Farokhzad, O. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials, 2007, 28(5), 869-876.
[http://dx.doi.org/10.1016/j.biomaterials.2006.09.047] [PMID: 17055572]
[22]
Song, S.; Chen, F.; Qi, H.; Li, F.; Xin, T.; Xu, J.; Ye, T.; Sheng, N.; Yang, X.; Pan, W. Multifunctional tumor-targeting nanocarriers based on hyaluronic acid-mediated and pH-sensitive properties for efficient delivery of docetaxel. Pharm. Res., 2014, 31(4), 1032-1045.
[http://dx.doi.org/10.1007/s11095-013-1225-y] [PMID: 24154802]
[23]
Wang, Y.; Guo, R.; Cao, X.; Shen, M.; Shi, X. Encapsulation of 2-methoxyestradiol within multifunctional poly(amidoamine) dendrimers for targeted cancer therapy. Biomaterials, 2011, 32(12), 3322-3329.
[http://dx.doi.org/10.1016/j.biomaterials.2010.12.060] [PMID: 21315444]
[24]
Liu, D.; Yang, F.; Xiong, F.; Gu, N. The smart drug delivery system and its clinical potential. Theranostics, 2016, 6(9), 1306-1323.
[http://dx.doi.org/10.7150/thno.14858] [PMID: 27375781]
[25]
Nazir, S.; Hussain, T.; Ayub, A.; Rashid, U.; MacRobert, A.J. Nanomaterials in combating cancer: Therapeutic applications and developments. Nanomedicine, 2014, 10(1), 19-34.
[http://dx.doi.org/10.1016/j.nano.2013.07.001] [PMID: 23871761]
[26]
Marchesan, S.; Prato, M. Nanomaterials for (Nano) medicine. ACS Med. Chem. Lett., 2012, 147-149.
[http://dx.doi.org/10.1021/ml3003742]
[27]
Necas, J.; Bartosikova, L.; Brauner, P.; Kolar, J. Hyaluronic acid (hyaluronan): A review. Vet. Med., 2008, 53(8), 397-411.
[http://dx.doi.org/10.17221/1930-VETMED]
[28]
Du, J.Z.; Du, X.J.; Mao, C.Q.; Wang, J. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J. Am. Chem. Soc., 2011, 133(44), 17560-17563.
[http://dx.doi.org/10.1021/ja207150n] [PMID: 21985458]
[29]
Aathimanikandan, S.V.; Savariar, E.N.; Thayumanavan, S. Temperature-sensitive dendritic micelles. J. Am. Chem. Soc., 2005, 127(42), 14922-14929.
[http://dx.doi.org/10.1021/ja054542y] [PMID: 16231948]
[30]
Zhang, R.; Tang, M.; Bowyer, A.; Eisenthal, R.; Hubble, J. A novel pH- and ionic-strength-sensitive carboxy methyl dextran hydrogel. Biomaterials, 2005, 26(22), 4677-4683.
[http://dx.doi.org/10.1016/j.biomaterials.2004.11.048] [PMID: 15722138]
[31]
Dutta, S.; Samanta, P.; Dhara, D. Temperature, pH and redox responsive cellulose based hydrogels for protein delivery. Int. J. Biol. Macromol., 2016, 87, 92-100.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.02.042] [PMID: 26896728]
[32]
Rao, J.; Khan, A. Enzyme sensitive synthetic polymer micelles based on the azobenzene motif. J. Am. Chem. Soc., 2013, 135(38), 14056-14059.
[http://dx.doi.org/10.1021/ja407514z] [PMID: 24033317]
[33]
Wang, H.; Liu, G.; Gao, H.; Wang, Y. A pH-responsive drug delivery system with an aggregation-induced emission feature for cell imaging and intracellular drug delivery. Polym. Chem., 2015, 6(26), 4715-4718.
[http://dx.doi.org/10.1039/C5PY00584A]
[34]
Koutroumanis, K.P.; Avgoustakis, K.; Bikiaris, D. Synthesis of cross-linked N-(2-carboxybenzyl)chitosan pH sensitive polyelectrolyte and its use for drug controlled delivery. Carbohydr. Polym., 2010, 82(1), 181-188.
[http://dx.doi.org/10.1016/j.carbpol.2010.04.044]
[35]
Thambi, T.; Deepagan, V.G.; Yoo, C.K.; Park, J.H. Synthesis and physicochemical characterization of amphiphilic block copolymers bearing acid-sensitive orthoester linkage as the drug carrier. Polymer, 2011, 52(21), 4753-4759.
[http://dx.doi.org/10.1016/j.polymer.2011.08.024]
[36]
Negi, L.M.; Jaggi, M.; Joshi, V.; Ronodip, K.; Talegaonkar, S. Hyaluronic acid decorated lipid nanocarrier for MDR modulation and CD-44 targeting in colon adeno-carcinoma. Int. J. Biol. Macromol., 2015, 72, 569-574.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.09.005] [PMID: 25220787]
[37]
Thomas, R.G.; Moon, M.; Lee, S.; Jeong, Y.Y. Paclitaxel loaded hyaluronic acid nanoparticles for targeted cancer therapy: In vitro and in vivo analysis. Int. J. Biol. Macromol., 2015, 72, 510-518.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.08.054] [PMID: 25224289]
[38]
Wu, X.; Sun, X.; Guo, Z.; Tang, J.; Shen, Y.; James, T.D.; Tian, H.; Zhu, W. In vivo and in situ tracking cancer chemotherapy by highly photostable NIR fluorescent theranostic prodrug. J. Am. Chem. Soc., 2014, 136(9), 3579-3588.
[http://dx.doi.org/10.1021/ja412380j] [PMID: 24524232]
[39]
Knudson, W. Tumor-associated hyaluronan. Providing an extracellular matrix that facilitates invasion. Am. J. Pathol., 1996, 148(6), 1721-1726.
[PMID: 8669457]
[40]
Akhavan, O.; Ghaderi, E. Graphene nanomesh promises extremely efficient in vivo photothermal therapy. Small, 2013, 9(21), 3593-3601.
[http://dx.doi.org/10.1002/smll.201203106] [PMID: 23625739]
[41]
Yang, K.; Wan, J.; Zhang, S.; Tian, B.; Zhang, Y.; Liu, Z. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials, 2012, 33(7), 2206-2214.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.064] [PMID: 22169821]
[42]
Dervisevic, M.; Senel, M.; Sagir, T.; Isik, S. Highly sensitive detection of cancer cells with an electrochemical cytosensor based on boronic acid functional polythiophene. Biosens. Bioelectron., 2017, 90, 6-12.
[http://dx.doi.org/10.1016/j.bios.2016.10.100] [PMID: 27866080]
[43]
Yadegari, A.; Omidi, M.; Yazdian, F.; Zali, H.; Tayebi, L. An electrochemical cytosensor for ultrasensitive detection of cancer cells using modified graphene–gold nanostructures. RSC Advances, 2017, 7(4), 2365-2372.
[http://dx.doi.org/10.1039/C6RA25938C]
[44]
Liang, C.; Xu, L.; Song, G.; Liu, Z. Emerging nanomedicine approaches fighting tumor metastasis: animal models, metastasis-targeted drug delivery, phototherapy, and immunotherapy. Chem. Soc. Rev., 2016, 45(22), 6250-6269.
[http://dx.doi.org/10.1039/C6CS00458J] [PMID: 27333329]
[45]
Li, Y.; Qiu, X.; Qian, Y.; Xiong, W.; Yang, D. pH-responsive lignin-based complex micelles: Preparation, characterization and application in oral drug delivery. Chem. Eng. J., 2017, 327, 1176-1183.
[http://dx.doi.org/10.1016/j.cej.2017.07.022]
[46]
Zhang, M.; Wang, W.; Zhou, N.; Yuan, P.; Su, Y.; Shao, M.; Chi, C.; Pan, F. Near-infrared light triggered photo-therapy, in combination with chemotherapy using magneto-fluorescent carbon quantum dots for effective cancer treating. Carbon, 2017, 118, 752-764.
[http://dx.doi.org/10.1016/j.carbon.2017.03.085]
[47]
Dawson, L.A.; Jaffray, D.A. Advances in image-guided radiation therapy. J. Clin. Oncol., 2007, 25(8), 938-946.
[http://dx.doi.org/10.1200/JCO.2006.09.9515] [PMID: 17350942]
[48]
Melancon, M.P.; Zhou, M.; Li, C. Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc. Chem. Res., 2011, 44(10), 947-956.
[http://dx.doi.org/10.1021/ar200022e] [PMID: 21848277]
[49]
Huang, Y.; He, S.; Cao, W.; Cai, K.; Liang, X.J. Biomedical nanomaterials for imaging-guided cancer therapy. Nanoscale, 2012, 4(20), 6135-6149.
[http://dx.doi.org/10.1039/c2nr31715j] [PMID: 22929990]
[50]
Chi, C.; Du, Y.; Ye, J.; Kou, D.; Qiu, J.; Wang, J.; Tian, J.; Chen, X. Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology. Theranostics, 2014, 4(11), 1072-1084.
[http://dx.doi.org/10.7150/thno.9899] [PMID: 25250092]
[51]
Wistuba, I.I.; Gelovani, J.G.; Jacoby, J.J.; Davis, S.E.; Herbst, R.S. Methodological and practical challenges for personalized cancer therapies. Nat. Rev. Clin. Oncol., 2011, 8(3), 135-141.
[http://dx.doi.org/10.1038/nrclinonc.2011.2] [PMID: 21364686]
[52]
Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P.L.; Urano, Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev., 2010, 110(5), 2620-2640.
[http://dx.doi.org/10.1021/cr900263j] [PMID: 20000749]
[53]
Michalet, X.; Pinaud, F.F.; Bentolila, L.A.; Tsay, J.M.; Doose, S.J.J.L.; Li, J.J.; Sundaresan, G.; Wu, A.M.; Gambhir, S.S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005, 307(5709), 538-544.
[http://dx.doi.org/10.1126/science.1104274] [PMID: 15681376]
[54]
Biju, V.; Itoh, T.; Ishikawa, M. Delivering quantum dots to cells: bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. Chem. Soc. Rev., 2010, 39(8), 3031-3056.
[http://dx.doi.org/10.1039/b926512k] [PMID: 20508886]
[55]
Gonçalves, M.S.T. Fluorescent labeling of biomolecules with organic probes. Chem. Rev., 2009, 109(1), 190-212.
[http://dx.doi.org/10.1021/cr0783840] [PMID: 19105748]
[56]
Yuan, L.; Lin, W.; Zheng, K.; He, L.; Huang, W. Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem. Soc. Rev., 2013, 42(2), 622-661.
[http://dx.doi.org/10.1039/C2CS35313J] [PMID: 23093107]
[57]
Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods, 2008, 5(9), 763-775.
[http://dx.doi.org/10.1038/nmeth.1248] [PMID: 18756197]
[58]
Volkov, Y. Quantum dots in nanomedicine: Recent trends, advances and unresolved issues. Biochem. Biophys. Res. Commun., 2015, 468(3), 419-427.
[http://dx.doi.org/10.1016/j.bbrc.2015.07.039] [PMID: 26168726]
[59]
Hardman, R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect., 2006, 114(2), 165-172.
[http://dx.doi.org/10.1289/ehp.8284] [PMID: 16451849]
[60]
Hazarika, A.; Pandey, A.; Sarma, D.D. Rainbow emission from an atomic transition in doped quantum dots. J. Phys. Chem. Lett., 2014, 5(13), 2208-2213.
[http://dx.doi.org/10.1021/jz500937x] [PMID: 26279535]
[61]
Iannazzo, D.; Pistone, A.; Ziccarelli, I.; Galvagno, S. Graphene-based materials for application in pharmaceutical nanotechnology. Fullerenes, Graphenes and Nanotubes: A Pharmaceutical Approach; Alexandru Mihai Grumezescu: Bucharest, Romania; Elsevier: Oxford, UK, 2018, pp. 297-329.
[62]
Mahler, B.; Spinicelli, P.; Buil, S.; Quelin, X.; Hermier, J.P.; Dubertret, B. Towards non-blinking colloidal quantum dots. Nat. Mater., 2008, 7, 659-664.
[http://dx.doi.org/10.1038/nmat2222] [PMID: 18568030]
[63]
Shi, Y.; He, P.; Zhu, X. Photoluminescence-enhanced biocompatible quantum dots by phospholipid functionalization. Mater. Res. Bull., 2008, 43, 2626-2635.
[http://dx.doi.org/10.1016/j.materresbull.2007.10.034]
[64]
Bodas, D.; Khan-Malek, C. Direct patterning of quantum dots on structured PDMS surface. Sens. Actuators B Chem., 2007, 128(1), 168-172.
[http://dx.doi.org/10.1016/j.snb.2007.05.043]
[65]
Yokota, H.; Tsunashima, K.; Iizuka, K.; Okamoto, H. Direct electron beam patterning and molecular beam epitaxy growth of In As: Site definition of quantum dots. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom., 2008, 26(3), 1097-1099.
[http://dx.doi.org/10.1116/1.2839675]
[66]
Wei, X.D.; Mao, L.; Soler-Crespo, R.A.; Paci, J.T.; Huang, J.X.; Nguyen, S.T.; Espinoza, H.D. Plasticity and ductility in graphene oxide through a mechano chemically induced damage tolerance mechanism. Nat. Commun., 2015, 6, 8029.
[http://dx.doi.org/10.1038/ncomms9029]
[67]
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater., 2007, 6(3), 183-191.
[http://dx.doi.org/10.1038/nmat1849] [PMID: 17330084]
[68]
Neto, A.H.C.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys., 2009, 81, 109.
[http://dx.doi.org/10.1103/RevModPhys.81.109]
[69]
Zhao, X.; Zhang, P.; Chen, Y.; Su, Z.; Wei, G. Recent advances in the fabrication and structure-specific applications of graphene-based inorganic hybrid membranes. Nanoscale, 2015, 7(12), 5080-5093.
[http://dx.doi.org/10.1039/C5NR00084J] [PMID: 25735233]
[70]
Zhang, P.; Wang, H.; Zhang, X.; Xu, W.; Li, Y.; Li, Q.; Wei, G.; Su, Z. Graphene film doped with silver nanoparticles: Self-assembly formation, structural characterizations, antibacterial ability, and biocompatibility. Biomater. Sci., 2015, 3(6), 852-860.
[http://dx.doi.org/10.1039/C5BM00058K] [PMID: 26221845]
[71]
Zhang, M.; Li, Y.; Su, Z.; Wei, G. Recent advances in the synthesis and applications of graphene–polymer nanocomposites. Polym. Chem., 2015, 6(34), 6107-6124.
[http://dx.doi.org/10.1039/C5PY00777A]
[72]
Zhang, P.; Huang, Y.; Lu, X.; Zhang, S.; Li, J.; Wei, G.; Su, Z. One-step synthesis of large-scale graphene film doped with gold nanoparticles at liquid-air interface for electrochemistry and Raman detection applications. Langmuir, 2014, 30(29), 8980-8989.
[http://dx.doi.org/10.1021/la5024086] [PMID: 25015184]
[73]
Rawat, P.S.; Srivastava, R.C.; Dixit, G.; Asokan, K. Structural, functional and magnetic ordering modifications in graphene oxide and graphite by 100 MeV gold ion irradiation. Vacuum, 2020, 182(December), 109700.
[http://dx.doi.org/10.1016/j.vacuum.2020.109700]
[74]
Arif, P.M.; Sabu, T. Carbon nanostructures for electromagnetic shielding applications. In: Sabu, T.; Yves, G.; Yasir, B.P.; (Eds.); Industrial Applications of Nanomaterials, 2019; Elsevier, Amsterdam, 2019, pp. 205-223.
[http://dx.doi.org/10.1016/B978-0-12-815749-7.00008-6]
[75]
Catania, F.; Marras, E.; Giorcelli, M.; Jagdale, P.; Lavagna, L.; Tagliaferro, A.; Bartoli, M. A review on recent advancements of graphene and graphene-related materials in biological applications. Appl. Sci., 2021, 11(2), 614.
[http://dx.doi.org/10.3390/app11020614]
[76]
Liu, W.W.; Feng, Y.Q.; Yan, X.B.; Chen, J.T.; Xue, Q.J. Superior micro-supercapacitors based on graphene quantum dots. Adv. Funct. Mater., 2013, 23(33), 4111-4122.
[http://dx.doi.org/10.1002/adfm.201203771]
[77]
Chao, D.; Zhu, C.; Xia, X.; Liu, J.; Zhang, X.; Wang, J.; Liang, P.; Lin, J.; Zhang, H.; Shen, Z.X.; Fan, H.J. Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett., 2015, 15(1), 565-573.
[http://dx.doi.org/10.1021/nl504038s] [PMID: 25531798]
[78]
Pan, D.; Xi, C.; Li, Z.; Wang, L.; Chen, Z.; Lu, B.; Wu, M. Electrophoretic fabrication of highly robust, efficient, and benign hetero-junction photo-electrocatalysts based on graphene-quantum-dot sensitized TiO2 nanotube arrays. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(11), 3551-3555.
[http://dx.doi.org/10.1039/c3ta00059a]
[79]
Tang, L.; Li, X.; Ji, R.; Teng, K.S.; Tai, G.; Ye, J.; Wei, C.; Lau, S.P. Bottom-up synthesis of large-scale graphene oxide nanosheets. J. Mater. Chem., 2012, 22(12), 5676.
[http://dx.doi.org/10.1039/c2jm15944a]
[80]
Xing, S-G.; Xiong, Q-R.; Zhong, Q.; Zhang, Y.; Bian, S-M.; Jin, Y.; Chu, X-G. Recent research advances of antibody-conjugated quantum dots. Chin. J. Anal. Chem., 2013, 41(6), 949-954.
[http://dx.doi.org/10.1016/S1872-2040(13)60663-5]
[81]
Haque, E.; Kim, J.; Malgras, V.; Reddy, K.R.; Ward, A.C.; You, J.; Bando, Y.; Hossain, M.S.A.; Yamauchi, Y. Recent advances in graphene quantum dots: synthesis, properties, and applications. Small Methods, 2018, 2(10), 1800050.
[http://dx.doi.org/10.1002/smtd.201800050]
[82]
Iannazzo, D.; Ziccarelli, I.; Pistone, A. Graphene quantum dots: Multifunctional nanoplatforms for anticancer therapy. J. Mater. Chem. B, 2017, 5(32), 6471-6489.
[http://dx.doi.org/10.1039/C7TB00747G] [PMID: 32264412]
[83]
Joshi, P.N.; Kundu, S.; Sanghi, S.K.; Sarkar, D. Graphene quantum dots-from emergence to nanotheranostic applications; Smart Drug Deliv. Syst. IntechOpen, 2016.
[http://dx.doi.org/10.5772/61932]
[84]
Iannazzo, D.; Pistone, A.; Celesti, C.; Triolo, C.; Patané, S.; Giofré, S.; Romeo, R.; Ziccarelli, I.; Mancuso, R.; Gabriele, B.; Visalli, G.; Facciolà, A.; Di Pietro, A. A smart nanovector for cancer targeted drug delivery based on graphene quantum dots. Nanomaterials, 2019, 9(2), 282.
[http://dx.doi.org/10.3390/nano9020282] [PMID: 30781623]
[85]
Iannazzo, D.; Pistone, A.; Salamò, M.; Galvagno, S.; Romeo, R.; Giofré, S.V.; Branca, C.; Visalli, G.; Di Pietro, A. Graphene quantum dots for cancer targeted drug delivery. Int. J. Pharm., 2017, 518(1-2), 185-192.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.060] [PMID: 28057464]
[86]
Kydd, J.; Jadia, R.; Velpurisiva, P.; Gad, A.; Paliwal, S.; Rai, P. Targeting strategies for the combination treatment of cancer using drug delivery systems. Pharmaceutics, 2017, 9(4), 46.
[http://dx.doi.org/10.3390/pharmaceutics9040046] [PMID: 29036899]
[87]
Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater., 2007, 6(9), 652-655.
[http://dx.doi.org/10.1038/nmat1967] [PMID: 17660825]
[88]
Castro, N.A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys., 2009, 81(1), 109-162.
[http://dx.doi.org/10.1103/RevModPhys.81.109]
[89]
Li, L.L.; Ji, J.; Fei, R.; Wang, C.Z.; Lu, Q.; Zhang, J.R.; Jiang, L.P.; Zhu, J.J. A facile microwave avenue to electro-chemiluminescent two‐color graphene quantum dots. Adv. Funct. Mater., 2012, 22(14), 2971-2979.
[http://dx.doi.org/10.1002/adfm.201200166]
[90]
Derfus, A.M.; Chan, W.C.W.; Bhatia, S.N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett., 2004, 4(1), 11-18.
[http://dx.doi.org/10.1021/nl0347334] [PMID: 28890669]
[91]
Lovrić J.; Cho, S.J.; Winnik, F.M.; Maysinger, D. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem. Biol., 2005, 12(11), 1227-1234.
[http://dx.doi.org/10.1016/j.chembiol.2005.09.008] [PMID: 16298302]
[92]
Zhang, J.; Yu, J.; Jaroniec, M.; Gong, J.R. Noble metal-free reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Lett., 2012, 12(9), 4584-4589.
[http://dx.doi.org/10.1021/nl301831h] [PMID: 22894686]
[93]
Xie, G.; Zhang, K.; Fang, H.; Guo, B.; Wang, R.; Yan, H.; Fang, L.; Gong, J.R. A photoelectrochemical investigation on the synergetic effect between CdS and reduced graphene oxide for solar-energy conversion. Chem. Asian J., 2013, 8(10), 2395-2400.
[http://dx.doi.org/10.1002/asia.201300524] [PMID: 23939939]
[94]
Li, Q.; Guo, B.; Yu, J.; Ran, J.; Zhang, B.; Yan, H.; Gong, J.R. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc., 2011, 133(28), 10878-10884.
[http://dx.doi.org/10.1021/ja2025454] [PMID: 21639097]
[95]
Guo, P.; Xiao, F.; Liu, Q.; Liu, H.; Guo, Y.; Gong, J.R.; Wang, S.; Liu, Y. One-pot microbial method to synthesize dual-doped graphene and its use as high-performance electrocatalyst. Sci. Rep., 2013, 3(1), 3499.
[http://dx.doi.org/10.1038/srep03499] [PMID: 24336153]
[96]
Bacon, M.; Bradley, S.J.; Nann, T. Graphene quantum dots. Part. Part. Syst. Charact., 2014, 31(4), 415-428.
[http://dx.doi.org/10.1002/ppsc.201300252]
[97]
Bodenmann, A.K.; MacDonald, A.H. Graphene: Exploring carbon flatland. Phys. Today, 2007, 60(8), 35-41.
[http://dx.doi.org/10.1063/1.2774096]
[98]
Jain, K.K. Personalised medicine for cancer: from drug development into clinical practice. Expert Opin. Pharmacother., 2005, 6(9), 1463-1476.
[http://dx.doi.org/10.1517/14656566.6.9.1463] [PMID: 16086635]
[99]
Gao, X.; Cui, Y.; Levenson, R.M.; Chung, L.W.K.; Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol., 2004, 22(8), 969-976.
[http://dx.doi.org/10.1038/nbt994] [PMID: 15258594]
[100]
Pene, F.; Courtine, E.; Cariou, A.; Mira, J.P. Toward theragnostics. Crit. Care Med., 2009, 37(1), S50-S58.
[http://dx.doi.org/10.1097/CCM.0b013e3181921349] [PMID: 19104225]
[101]
Ozdemir, V.; Williams-Jones, B.; Glatt, S.J.; Tsuang, M.T.; Lohr, J.B.; Reist, C. Shifting emphasis from pharmacogenomics to theragnostics. Nat. Biotechnol., 2006, 24(8), 942-946.
[http://dx.doi.org/10.1038/nbt0806-942] [PMID: 16900136]
[102]
Shubayev, V.I.; Pisanic, T.R., II; Jin, S. Magnetic nanoparticles for theragnostics. Adv. Drug Deliv. Rev., 2009, 61(6), 467-477.
[http://dx.doi.org/10.1016/j.addr.2009.03.007] [PMID: 19389434]
[103]
Del Vecchio, S.; Zannetti, A.; Fonti, R.; Pace, L.; Salvatore, M. Nuclear imaging in cancer theranostics. Q. J. Nucl. Med. Mol. Imaging, 2007, 51(2), 152-163.
[PMID: 17420716]
[104]
Lucignani, G. Nanoparticles for concurrent multimodality imaging and therapy: The dawn of new theragnostic synergies. Eur. J. Nucl. Med. Mol. Imaging, 2009, 36(5), 869-874.
[http://dx.doi.org/10.1007/s00259-009-1104-2] [PMID: 19288097]
[105]
Santra, S.; Kaittanis, C.; Grimm, J.; Perez, J.M. Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. Small, 2009, 5(16), 1862-1868.
[http://dx.doi.org/10.1002/smll.200900389] [PMID: 19384879]
[106]
Drake, P.; Cho, H.J.; Shih, P.S.; Kao, C.H.; Lee, K.F.; Kuo, C.H.; Lin, X.Z.; Lin, Y.J. Gd-doped iron-oxide nanoparticles for tumor therapy via magnetic field hyperthermia. J. Mater. Chem., 2007, 17(46), 4914.
[http://dx.doi.org/10.1039/b711962c]
[107]
Silva, A.C.; Oliveira, T.R.; Mamani, J.B.; Malheiros, S.M.; Malavolta, L.; Pavon, L.F.; Sibov, T.T.; Amaro, E., Jr; Tannús, A.; Vidoto, E.L.; Martins, M.J.; Santos, R.S.; Gamarra, L.F. Application of hyperthermia induced by super-paramagnetic iron oxide nanoparticles in glioma treatment. Int. J. Nanomedicine, 2011, 6, 591-603.
[PMID: 21674016]
[108]
Zhao, Q.; Wang, L.; Cheng, R.; Mao, L.; Arnold, R.D.; Howerth, E.W.; Chen, Z.G.; Platt, S. Magnetic nanoparticle-based hyperthermia for head & neck cancer in mouse models. Theranostics, 2012, 2(1), 113-121.
[http://dx.doi.org/10.7150/thno.3854] [PMID: 22287991]
[109]
Laurent, S.; Dutz, S.; Häfeli, U.O.; Mahmoudi, M. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci., 2011, 166(1-2), 8-23.
[http://dx.doi.org/10.1016/j.cis.2011.04.003] [PMID: 21601820]
[110]
Lee, J.H.; Lee, K.; Moon, S.H.; Lee, Y.; Park, T.G.; Cheon, J. All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew. Chem. Int. Ed., 2009, 48(23), 4174-4179.
[http://dx.doi.org/10.1002/anie.200805998] [PMID: 19408274]
[111]
Fan, Z.; Zhou, S.; Garcia, C.; Fan, L.; Zhou, J. pH-Responsive fluorescent graphene quantum dots for fluorescence-guided cancer surgery and diagnosis. Nanoscale, 2017, 9(15), 4928-4933.
[http://dx.doi.org/10.1039/C7NR00888K] [PMID: 28368056]
[112]
Kong, B.; Zhu, A.; Ding, C.; Zhao, X.; Li, B.; Tian, Y. Carbon dot-based inorganic-organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues. Adv. Mater., 2012, 24(43), 5844-5848.
[http://dx.doi.org/10.1002/adma.201202599] [PMID: 22933395]
[113]
Tang, J.; Kong, B.; Wu, H.; Xu, M.; Wang, Y.; Wang, Y.; Zhao, D.; Zheng, G. Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging. Adv. Mater., 2013, 25(45), 6569-6574.
[http://dx.doi.org/10.1002/adma.201303124] [PMID: 23996326]
[114]
Wang, H.; Zhang, Q.; Chu, X.; Chen, T.; Ge, J.; Yu, R. Graphene oxide-peptide conjugate as an intracellular protease sensor for caspase-3 activation imaging in live cells. Angew. Chem. Int. Ed., 2011, 50(31), 7065-7069.
[http://dx.doi.org/10.1002/anie.201101351] [PMID: 21681874]
[115]
Yang, K.; Feng, L.; Shi, X.; Liu, Z. Nano-graphene in biomedicine: Theranostic applications. Chem. Soc. Rev., 2013, 42(2), 530-547.
[http://dx.doi.org/10.1039/C2CS35342C] [PMID: 23059655]
[116]
Ardeshirpour, Y.; Chernomordik, V.; Hassan, M.; Zielinski, R.; Capala, J.; Gandjbakhche, A. In vivo fluorescence lifetime imaging for monitoring the efficacy of the cancer treatment. Clin. Cancer Res., 2014, 20(13), 3531-3539.
[117]
Shi, Y.; Jiang, R.; Liu, M.; Fu, L.; Zeng, G.; Wan, Q.; Mao, L.; Deng, F.; Zhang, X.; Wei, Y. Facile synthesis of polymeric fluorescent organic nanoparticles based on the self-polymerization of dopamine for biological imaging. Mater. Sci. Eng. C, 2017, 77, 972-977.
[http://dx.doi.org/10.1016/j.msec.2017.04.033] [PMID: 28532118]
[118]
Scida, K.; Stege, P.W.; Haby, G.; Messina, G.A.; García, C.D. Recent applications of carbon-based nanomaterials in analytical chemistry: Critical review. Anal. Chim. Acta, 2011, 691(1-2), 6-17.
[http://dx.doi.org/10.1016/j.aca.2011.02.025] [PMID: 21458626]
[119]
Yulong, Y.; Xinsheng, P. Recent advances in carbon-based dots for electro-analysis. Analyst, 2016, 141(9), 2619-2628.
[http://dx.doi.org/10.1039/C5AN02321A] [PMID: 26797087]
[120]
Tang, L.; Ji, R.; Cao, X.; Lin, J.; Jiang, H.; Li, X.; Teng, K.S.; Luk, C.M.; Zeng, S.; Hao, J.; Lau, S.P. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano, 2012, 6(6), 5102-5110.
[http://dx.doi.org/10.1021/nn300760g] [PMID: 22559247]
[121]
Wang, X.; Cao, L.; Lu, F.; Meziani, M.J.; Li, H.; Qi, G.; Zhou, B.; Harruff, B.A.; Kermarrec, F.; Sun, Y.P. Photoinduced electron transfers with carbon dots. Chem. Commun., 2009, (25), 3774-3776.
[http://dx.doi.org/10.1039/b906252a] [PMID: 19557278]
[122]
Benítez-Martínez, S.; Valcárcel, M. Graphene quantum dots in analytical science. Trends Analyt. Chem., 2015, 72, 93-113.
[http://dx.doi.org/10.1016/j.trac.2015.03.020]
[123]
Chandra, A.; Deshpande, S.; Shinde, D.B.; Pillai, V.K.; Singh, N. Mitigating the cytotoxicity of graphene quantum dots and enhancing their applications in bioimaging and drug delivery. ACS Macro Lett., 2014, 3(10), 1064-1068.
[http://dx.doi.org/10.1021/mz500479k] [PMID: 35610793]
[124]
Schroeder, K.L.; Goreham, R.V.; Nann, T. Graphene quantum dots for theranostics and bioimaging. Pharm. Res., 2016, 33(10), 2337-2357.
[http://dx.doi.org/10.1007/s11095-016-1937-x] [PMID: 27207272]
[125]
Wang, C.; Wu, C.; Zhou, X.; Han, T.; Xin, X.; Wu, J.; Zhang, J.; Guo, S. Enhancing cell nucleus accumulation and DNA cleavage activity of anti-cancer drug via graphene quantum dots. Sci. Rep., 2013, 3(1), 2852.
[http://dx.doi.org/10.1038/srep02852] [PMID: 24092333]
[126]
Yan, Q.L.; Gozin, M.; Zhao, F.Q.; Cohen, A.; Pang, S.P. Highly energetic compositions based on functionalized carbon nanomaterials. Nanoscale, 2016, 8(9), 4799-4851.
[http://dx.doi.org/10.1039/C5NR07855E] [PMID: 26880518]
[127]
Nurunnabi, M.; Parvez, K.; Nafiujjanan, Md.; Revuri, V.; Khan, H.A.; Fang, X.; Lee, Y. Bioapplication of graphene oxide derivatives: Drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges. RSC Advances, 2015, 5, 42141.
[http://dx.doi.org/10.1039/C5RA04756K]
[128]
Zhu, J.; Tang, Y.; Wang, G.; Mao, J.; Liu, Z.; Sun, T.; Wang, M.; Chen, D.; Yang, Y.; Li, J.; Deng, Y.; Yang, S. Green, rapid, and universal preparation approach of graphene quantum dots under ultraviolet irradiation. ACS Appl. Mater. Interfaces, 2017, 9(16), 14470-14477.
[http://dx.doi.org/10.1021/acsami.6b11525] [PMID: 28394560]
[129]
Zhang, N.; Zhang, L.; Ruan, Y.F.; Zhao, W.W.; Xu, J.J.; Chen, H.Y. Quantum-dots-based photoelectrochemical bioanalysis highlighted with recent examples. Biosens. Bioelectron., 2017, 94, 207-218.
[http://dx.doi.org/10.1016/j.bios.2017.03.011] [PMID: 28285198]
[130]
Zhou, X.; Gao, X.; Song, F.; Wang, C.; Chu, F.; Wu, S. A sensing approach for dopamine determination by boronic acid-functionalized molecularly imprinted graphene quantum dots composite. Appl. Surf. Sci., 2017, 423, 810-816.
[http://dx.doi.org/10.1016/j.apsusc.2017.06.199]
[131]
Lim, C.S.; Hola, K.; Ambrosi, A.; Zboril, R.; Pumera, M. Graphene and carbon quantum dots electrochemistry. Electrochem. Commun., 2015, 52, 75-79.
[http://dx.doi.org/10.1016/j.elecom.2015.01.023]
[132]
Zhao, H.; Ding, R.; Zhao, X.; Li, Y.; Qu, L.; Pei, H.; Yildirimer, L.; Wu, Z.; Zhang, W. Graphene-based nanomaterials for drug and/or gene delivery, bioimaging, and tissue engineering. Drug Discov. Today, 2017, 22(9), 1302-1317.
[http://dx.doi.org/10.1016/j.drudis.2017.04.002] [PMID: 28869820]
[133]
Gong, P.; Wang, J.; Hou, K.; Yang, Z.; Wang, Z.; Liu, Z.; Han, X.; Yang, S. Small but strong: The influence of fluorine atoms on formation and performance of graphene quantum dots using a gradient F-sacrifice strategy. Carbon, 2017, 112, 63-71.
[http://dx.doi.org/10.1016/j.carbon.2016.10.091]
[134]
Cai, N.; Tan, L.; Li, Y.; Xia, T.; Hu, T.; Su, X. Biosensing platform for the detection of uric acid based on graphene quantum dots and G-quadruplex/hemin DNAzyme. Anal. Chim. Acta, 2017, 965, 96-102.
[http://dx.doi.org/10.1016/j.aca.2017.01.067] [PMID: 28366217]
[135]
Guo, J.; Chan, E.W.C.; Chen, S.; Zeng, Z. Development of a novel quantum dots and graphene oxide based FRET assay for rapid detection of invA gene of Salmonella. Front. Microbiol., 2017, 8, 8.
[http://dx.doi.org/10.3389/fmicb.2017.00008] [PMID: 28144237]
[136]
Huang, H.; Wang, B.; Chen, M.; Liu, M.; Leng, Y.; Liu, X.; Li, Y.; Liu, Z. Fluorescence turn-on sensing of ascorbic acid and alkaline phosphatase activity based on graphene quantum dots. Sens. Actuators B Chem., 2016, 235, 356-361.
[http://dx.doi.org/10.1016/j.snb.2016.05.080]
[137]
Qian, Z.S.; Shan, X.Y.; Chai, L.J.; Chen, J.R.; Feng, H. A fluorescent nanosensor based on graphene quantum dots–aptamer probe and graphene oxide platform for detection of lead (II) ion. Biosens. Bioelectron., 2015, 68, 225-231.
[http://dx.doi.org/10.1016/j.bios.2014.12.057] [PMID: 25574861]
[138]
Zhao, J.; Zhao, L.; Lan, C.; Zhao, S. Graphene quantum dots as effective probes for label-free fluorescence detection of dopamine. Sens. Actuators B Chem., 2016, 223, 246-251.
[http://dx.doi.org/10.1016/j.snb.2015.09.105]
[139]
Iannazzo, D.; Pistone, A.; Salamò, M.; Galvagno, S.; Romeo, R.; Giofré, S.V.; Branca, C.; Visalli, G.; Di Pietro, A. Graphene quantum dots for cancer targeted drug delivery. Int. J. Pharm., 2017, 518(1-2), 185-192.
[140]
Baker, S.N.; Baker, G.A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed., 2010, 49(38), 6726-6744.
[http://dx.doi.org/10.1002/anie.200906623] [PMID: 20687055]
[141]
Lee, C.H.; Lee, G.H.; van der Zande, A.M.; Chen, W.; Li, Y.; Han, M.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T.F.; Guo, J.; Hone, J.; Kim, P. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol., 2014, 9(9), 676-681.
[http://dx.doi.org/10.1038/nnano.2014.150] [PMID: 25108809]
[142]
Zhang, M.; Bai, L.; Shang, W.; Xie, W.; Ma, H.; Fu, Y.; Fang, D.; Sun, H.; Fan, L.; Han, M.; Liu, C.; Yang, S. Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J. Mater. Chem., 2012, 22(15), 7461-7467.
[http://dx.doi.org/10.1039/c2jm16835a]
[143]
Fan, Z.; Li, Y.; Li, X.; Fan, L.; Zhou, S.; Fang, D.; Yang, S. Surrounding media sensitive photoluminescence of boron-doped graphene quantum dots for highly fluorescent dyed crystals, chemical sensing and bioimaging. Carbon, 2014, 70, 149-156.
[http://dx.doi.org/10.1016/j.carbon.2013.12.085]
[144]
a) Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater., 2010, 22(35), 3906-3924.
[http://dx.doi.org/10.1002/adma.201001068] [PMID: 20706983];
b) Boruah, S.K. Spectroscopic and electrochemical studies on vanadium IV and ruthenium complexes of tetradentate ligands as non-enzymatic dioxygenase catalyst encapsulated in surfactant micelles., ;
c) Eda, G.; Chhowalla, M. Chemically derived graphene oxide: towards large area thin film electronics and optoelectronics. Adv. Mater., 2010, 22(22), 2392-2415.
[http://dx.doi.org/10.1002/adma.200903689] [PMID: 20432408]
[145]
Loh, K.P.; Bao, Q.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem., 2010, 2(12), 1015-1024.
[http://dx.doi.org/10.1038/nchem.907] [PMID: 21107364]
[146]
Das, S.K.; Luk, C.M.; Martin, W.E.; Tang, L.; Kim, D.Y.; Lau, S.P.; Richards, C.I. Size and dopant dependent single particle fluorescence properties of graphene quantum dots. J. Phys. Chem. C, 2015, 119(31), 17988-17994.
[http://dx.doi.org/10.1021/acs.jpcc.5b05969]
[147]
(a) Zeng, Q.; Shao, D.; He, X.; Ren, Z.; Ji, W.; Shan, C.; Qu, S.; Li, J.; Chen, L.; Li, Q. Carbon dots as a trackable drug delivery carrier for localized cancer therapy in vivo. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(30), 5119-5126.
[http://dx.doi.org/10.1039/C6TB01259K] [PMID: 32263509];
(b) Nigam, P.; Waghmode, S.; Louis, M.; Wangnoo, S.; Chavan, P.; Sarkar, D. Graphene quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(21), 3190-3195.
[http://dx.doi.org/10.1039/C4TB00015C] [PMID: 32261580]
[148]
Zhang, Z.; Zhang, J.; Chen, N.; Qu, L. Graphene quantum dots: An emerging material for energy-related applications and beyond. Energy Environ. Sci., 2012, 5(10), 8869-8890.
[http://dx.doi.org/10.1039/c2ee22982j]
[149]
Shen, J.; Zhu, Y.; Yang, X.; Li, C. Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun., 2012, 48(31), 3686-3699.
[http://dx.doi.org/10.1039/c2cc00110a] [PMID: 22410424]
[150]
Liu, W.W.; Feng, Y.Q.; Yan, X.B.; Chen, J.T.; Xue, Q.J. Superior micro‐supercapacitors based on graphene quantum dots. Adv. Funct. Mater., 2013, 23(33), 4111-4122.
[http://dx.doi.org/10.1002/adfm.201203771]
[151]
Chao, D.; Zhu, C.; Xia, X.; Liu, J.; Zhang, X.; Wang, J.; Liang, P.; Lin, J.; Zhang, H.; Shen, Z.X.; Fan, H.J. Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett., 2014, 15(1), 565-573.
[152]
Pan, D.; Xi, C.; Li, Z.; Wang, L.; Chen, Z.; Lu, B.; Wu, M. Electrophoretic fabrication of highly robust, efficient, and benign heterojunction photoelectrocatalysts based on graphene-quantum-dot sensitized TiO2 nanotube arrays. J. Mater. Chem. A, 2013, 1(11), 3551-3555.
[153]
Yan, X.; Cui, X.; Li, B.; Li, L. Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett., 2010, 10(5), 1869-1873.
[http://dx.doi.org/10.1021/nl101060h] [PMID: 20377198]
[154]
Bak, S.; Kim, D.; Lee, H. Graphene quantum dots and their possible energy applications: A review. Curr. Appl. Phys., 2016, 16(9), 1192-1201.
[http://dx.doi.org/10.1016/j.cap.2016.03.026]
[155]
Ding, H.; Wei, J.S.; Xiong, H.M. Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale, 2014, 6(22), 13817-13823.
[http://dx.doi.org/10.1039/C4NR04267K] [PMID: 25297983]
[156]
Jiang, F.; Chen, D.; Li, R.; Wang, Y.; Zhang, G.; Li, S.; Zheng, J.; Huang, N.; Gu, Y.; Wang, C.; Shu, C. Eco-friendly synthesis of size-controllable amine-functionalized graphene quantum dots with anti-mycoplasma properties. Nanoscale, 2013, 5(3), 1137-1142.
[http://dx.doi.org/10.1039/c2nr33191h] [PMID: 23282851]
[157]
Huang, C.L.; Huang, C.C.; Mai, F.D.; Yen, C.L.; Tzing, S.H.; Hsieh, H.T.; Ling, Y.C.; Chang, J.Y. Application of paramagnetic graphene quantum dots as a platform for simultaneous dual-modality bioimaging and tumor-targeted drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(4), 651-664.
[http://dx.doi.org/10.1039/C4TB01650E] [PMID: 32262348]
[158]
Yuan, X.; Liu, Z.; Guo, Z.; Ji, Y.; Jin, M.; Wang, X. Cellular distribution and cytotoxicity of graphene quantum dots with different functional groups. Nanoscale Res. Lett., 2014, 9(1), 108.
[http://dx.doi.org/10.1186/1556-276X-9-108] [PMID: 24597852]
[159]
Zheng, X.T.; Than, A.; Ananthanaraya, A.; Kim, D.H.; Chen, P. Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes. ACS Nano, 2013, 7(7), 6278-6286.
[http://dx.doi.org/10.1021/nn4023137] [PMID: 23799995]
[160]
Chandra, A.; Deshpande, S.; Shinde, D.B.; Pillai, V.K.; Singh, N. Mitigating the cytotoxicity of graphene quantum dots and enhancing their applications in bioimaging and drug delivery. ACS Macro Lett., 2014, 3(10), 1064-1068.
[161]
Zhu, S.; Shao, J.; Song, Y.; Zhao, X.; Du, J.; Wang, L.; Wang, H.; Zhang, K.; Zhang, J.; Yang, B. Investigating the surface state of graphene quantum dots. Nanoscale, 2015, 7(17), 7927-7933.
[http://dx.doi.org/10.1039/C5NR01178G] [PMID: 25865229]
[162]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[163]
Li, J.; Liu, F.; Gupta, S.; Li, C. Interventional Nanotheranostics of pancreatic ductal adeno-carcinoma. Theranostics, 2016, 6(9), 1393-1402.
[http://dx.doi.org/10.7150/thno.15122] [PMID: 27375787]
[164]
Din, F.U.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine, 2017, 12, 7291-7309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[165]
Merino, S.; Martín, C.; Kostarelos, K.; Prato, M.; Vázquez, E. Nanocomposite hydrogels: 3D polymer–nanoparticle synergies for on-demand drug delivery. ACS Nano, 2015, 9(5), 4686-4697.
[http://dx.doi.org/10.1021/acsnano.5b01433] [PMID: 25938172]
[166]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[167]
Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M.A.; Alkawareek, M.Y.; Dreaden, E.C.; Brown, D.; Alkilany, A.M.; Farokhzad, O.C.; Mahmoudi, M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev., 2017, 46(14), 4218-4244.
[http://dx.doi.org/10.1039/C6CS00636A] [PMID: 28585944]
[168]
Pistone, A.; Iannazzo, D.; Ansari, S.; Milone, C.; Salamò, M.; Galvagno, S.; Cirmi, S.; Navarra, M. Tunable doxorubicin release from polymer-gated multi-walled carbon nanotubes. Int. J. Pharm., 2016, 515(1-2), 30-36.
[http://dx.doi.org/10.1016/j.ijpharm.2016.10.010] [PMID: 27720871]
[169]
Chen, M.L.; He, Y.J.; Chen, X.W.; Wang, J.H. Quantum-dot-conjugated graphene as a probe for simultaneous cancer-targeted fluorescent imaging, tracking, and monitoring drug delivery. Bioconjug. Chem., 2013, 24(3), 387-397.
[http://dx.doi.org/10.1021/bc3004809] [PMID: 23425155]
[170]
Ghorpade, V.S.; Yadav, A.V.; Dias, R.J. Citric acid cross-linked β-cyclodextrin/carboxy methyl cellulose hydrogel films for controlled delivery of poorly soluble drugs. Carbohydr. Polym., 2017, 164, 339-348.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.005] [PMID: 28325334]
[171]
Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release, 2012, 157(2), 168-182.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.031] [PMID: 21839127]
[172]
Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[173]
Sun, L.; Wang, Y.; Jiang, T.; Zheng, X.; Zhang, J.; Sun, J.; Sun, C.; Wang, S. Novel chitosan-functionalized spherical nanosilica matrix as an oral sustained drug delivery system for poorly water-soluble drug carvedilol. ACS Appl. Mater. Interfaces, 2013, 5(1), 103-113.
[http://dx.doi.org/10.1021/am302246s] [PMID: 23237208]
[174]
Zhao, J.; Lu, C.; He, X.; Zhang, X.; Zhang, W.; Zhang, X. Polyethylenimine-grafted cellulose nanofibril aerogels as versatile vehicles for drug delivery. ACS Appl. Mater. Interfaces, 2015, 7(4), 2607-2615.
[http://dx.doi.org/10.1021/am507601m] [PMID: 25562313]
[175]
Lee, D.E.; Koo, H.; Sun, I.C.; Ryu, J.H.; Kim, K.; Kwon, I.C. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev., 2012, 41(7), 2656-2672.
[http://dx.doi.org/10.1039/C2CS15261D] [PMID: 22189429]
[176]
Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods, 2008, 5(9), 763.
[177]
Du, J.Z.; Du, X.J.; Mao, C.Q.; Wang, J. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J. Am. Chem. Soc., 2011, 133(44), 17560-17563.
[178]
Aathimanikandan, S.V.; Savariar, E.N.; Thayumanavan, S. Temperature-sensitive dendritic micelles. J. Am. Chem. Soc., 2005, 127(42), 14922-14929.
[179]
Zhang, R.; Tang, M.; Bowyer, A.; Eisenthal, R.; Hubble, J. A novel pH-and ionic-strength-sensitive carboxy methyl dextran hydrogel. Biomaterials, 2005, 26(22), 4677-4683.
[180]
Dutta, S.; Samanta, P.; Dhara, D. Temperature, pH and redox responsive cellulose based hydrogels for protein delivery. Int. J. Biol. Macromol., 2016, 87, 92-100.
[181]
Rao, J.; Khan, A. Enzyme sensitive synthetic polymer micelles based on the azobenzene motif. J. Am. Chem. Soc., 2013, 135(38), 14056-14059.
[182]
Wang, H.B.; Liu, G.Y.; Gao, H.Q.; Wang, Y.B. A pH-responsive drug delivery system with an aggregation-induced emission feature for cell imaging and intracellular drug delivery. Polym. Chem., 2015, 6(26), 4715-4718.
[183]
Koutroumanis, K.P.; Avgoustakis, K.; Bikiaris, D. Synthesis of cross-linked N-(2-carboxybenzyl) chitosan pH sensitive polyelectrolyte and its use for drug controlled delivery. Carbohydr. Polym., 2010, 82(1), 181-188.
[184]
Thambi, T.; Deepagan, V.G.; Yoo, C.K.; Park, J.H. Synthesis and physicochemical characterization of amphiphilic block copolymers bearing acid-sensitive orthoester linkage as the drug carrier. Polymer, 2011, 52(21), 4753-4759.
[185]
Negi, L.M.; Jaggi, M.; Joshi, V.; Ronodip, K.; Talegaonkar, S. Hyaluronic acid decorated lipid nanocarrier for MDR modulation and CD-44 targeting in colon adenocarcinoma. Int. J. Biol. Macromol., 2015, 72, 569-574.
[186]
Wang, X.; Sun, X.; Lao, J.; He, H.; Cheng, T.; Wang, M.; Wang, S.; Huang, F. Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery. Colloids Surf. B Biointerfaces, 2014, 122, 638-644.
[http://dx.doi.org/10.1016/j.colsurfb.2014.07.043] [PMID: 25129696]
[187]
Mozafari, M.R. Liposomes: An overview of manufacturing techniques. Cell. Mol. Biol. Lett., 2005, 10(4), 711-719.
[PMID: 16341279]
[188]
Maherani, B.; Arab-Tehrany, E.; Mozafari, M.R.; Gaiani, C.; Linder, M. Liposomes: A review of manufacturing techniques and targeting strategies. Curr. Nanosci., 2011, 7, 436-452.
[http://dx.doi.org/10.2174/157341311795542453]
[189]
Mozafari, M.R.; Mortazavi, S.M. Nanoliposomes: From fundamentals to recent developments; Trafford Pub. Ltd.: Oxford, UK, 2005.
[190]
Azhar Shekoufeh Bahari, L.; Hamishehkar, H. The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; A comparative literature review. Adv. Pharm. Bull., 2016, 6(2), 143-151.
[http://dx.doi.org/10.15171/apb.2016.021] [PMID: 27478775]
[191]
Nobbmann, U.L. Polydispersity-what does it mean for DLS and chromatography. 2014. Available from: www.materials-talks.com/blog/2014/10/23/polydispersity-what-does-it-mean-for-dls-and-chromatography/
[192]
Bera, B. Nanoporous silicon prepared by vapour phase strain etch and sacrificial technique. Proceedings of the International Conference on Microelectronic Circuit and System (Micro), Kolkata, India2015, pp. 42-45.
[193]
Tadic, M.; Kralj, S.; Jagodic, M.; Hanzel, D.; Makovec, D. Magnetic properties of novel superparamagnetic iron oxide nanoclusters and their peculiarity under annealingtreatment. Appl. Surface Sci., 2014, 322, 255, 264.
[http://dx.doi.org/10.1016/j.apsusc.2014.09.181]
[194]
Magnetic nanomaterials. Royal Society of Chemistry: Cambridge, 2017. Available from: https://pubs.rsc.org/en/content/ebook/978-1-78801-037-5
[195]
Kralj, S.; Makovec, D. Magnetic assembly of super-paramagnetic iron oxide nanoparticle clusters into nanochains and nanobundles. ACS Nano, 2015, 9(10), 9700-9707.
[http://dx.doi.org/10.1021/acsnano.5b02328] [PMID: 26394039]
[196]
Lu, A.H.; Schmidt, W.; Matoussevitch, N.; Bönnemann, H.; Spliethoff, B.; Tesche, B.; Bill, E.; Kiefer, W.; Schüth, F. Nanoengineering of a magnetically separable hydrogenation catalyst. Angew. Chem. Int. Ed., 2004, 43(33), 4303-4306.
[http://dx.doi.org/10.1002/anie.200454222] [PMID: 15368378]
[197]
Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18), 3995-4021.
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.012] [PMID: 15626447]
[198]
Ramaswamy, B.; Kulkarni, S.D.; Villar, P.S.; Smith, R.S.; Eberly, C.; Araneda, R.C.; Depireux, D.A.; Shapiro, B. Movement of magnetic nanoparticles in brain tissue: Mechanisms and safety. Nanomedicine, 2015, 11(7), 1821-1829.
[http://dx.doi.org/10.1016/j.nano.2015.06.003] [PMID: 26115639]
[199]
He, L.; Wang, M.; Ge, J.; Yin, Y. Magnetic assembly route to colloidal responsive photonic nanostructures. Accounts Chem. Res., 2012, 45(9), 1431-1440.
[http://dx.doi.org/10.1021/ar200276t] [PMID: 22578015]
[200]
Kavre, I.; Kostevc, G.; Kralj, S.; Vilfan, A. Babič D. Fabrication of magneto-responsive microgears based on magnetic nanoparticle embedded PDMS. RSC Advances, 2014, 4(72), 38316-38322.
[http://dx.doi.org/10.1039/C4RA05602G]
[201]
Mornet, S.; Vasseur, S.; Grasset, F.; Veverka, P.; Goglio, G.; Demourgues, A.; Portier, J.; Pollert, E.; Duguet, E. Magnetic nanoparticle design for medical applications. Prog. Solid State Chem., 2006, 34(2-4), 237-247.
[http://dx.doi.org/10.1016/j.progsolidstchem.2005.11.010]
[202]
Khoo; KuanShiong, C.; Wen Yi, Y.; Ying, S.; Pau-Loke, K.W.; Chew, C.; Wei-Hsin, C. Nanomaterials utilization in biomass for biofuel and bioenergy production. Energies, 2020, 13, 892.
[http://dx.doi.org/10.3390/en13040892]
[203]
Marycz, K. Marędziak, M.; Lewandowski, D.; Zachanowicz, E.; Zięcina, A.; Wiglusz, R.J.; Pązik, R. The effect of Co0.2Mn0.8Fe2O4 ferrite nanoparticles on the c2 canine mastocytoma cell line and adipose-derived mesenchymal stromal stem cells (ASCS) cultured under a static magnetic field: possible implications in the treatment of dog mastocytoma. Cell. Mol. Bioeng., 2017, 10(3), 209-222.
[http://dx.doi.org/10.1007/s12195-017-0480-0] [PMID: 28580034]
[204]
Ansari, S.; Ficiarà, E.; Ruffinatti, F.; Stura, I.; Argenziano, M.; Abollino, O.; Cavalli, R.; Guiot, C.; D’Agata, F. Magnetic iron oxide nanoparticles: Synthesis, characterization and functionalization for biomedical applications in the central nervous system. Materials, 2019, 12(3), 465.
[http://dx.doi.org/10.3390/ma12030465] [PMID: 30717431]
[205]
Nakamae, T.; Adachi, N.; Kobayashi, T.; Nagata, Y.; Nakasa, T.; Tanaka, N.; Ochi, M. The effect of an external magnetic force on cell adhesion and proliferation of magnetically labeled mesenchymal stem cells. BMC Sports Sci. Med. Rehabil., 2010, 2(1), 5.
[http://dx.doi.org/10.1186/1758-2555-2-5] [PMID: 20152029]
[206]
Kurlyandskaya, G.; Litvinova, L.; Safronov, A.; Schupletsova, V.; Tyukova, I.; Khaziakhmatova, O.; Slepchenko, G.; Yurova, K.; Cherempey, E.; Kulesh, N.; Andrade, R.; Beketov, I.; Khlusov, I. Water-based suspensions of iron oxide nanoparticles with electrostatic or steric stabilization by chitosan: Fabrication, characterization and biocompatibility. Sensors, 2017, 17(11), 2605.
[http://dx.doi.org/10.3390/s17112605] [PMID: 29137198]
[207]
de la Encarnación, C.; Lenzi, E.; Henriksen-Lacey, M.; Molina, B.; Jenkinson, K.; Herrero, A.; Colás, L.; Ramos-Cabrer, P.; Toro-Mendoza, J.; Orue, I.; Langer, J.; Bals, S. Jimenez de, A.D.; Liz-Marzán, L.M. Hybrid magnetic–plasmonic nanoparticle probes for multimodal bioimaging. J. Phys. Chem. C, 2022, 126(45), 19519-19531.
[http://dx.doi.org/10.1021/acs.jpcc.2c06299]
[208]
Tran, N.; Webster, T. J. Magnetic nanoparticles: Biomedical applications and challenges. J. Mater. Chem., 2010, 20(40), 8760-8767.
[http://dx.doi.org/10.1039/c0jm00994f]
[209]
Lu, A.H.; Salabas, E.L.; Schüth, F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed., 2007, 46(8), 1222-1244.
[http://dx.doi.org/10.1002/anie.200602866] [PMID: 17278160]
[210]
Tang, C.; He, Z.; Liu, H.; Xu, Y.; Huang, H.; Yang, G.; Xiao, Z.; Li, S.; Liu, H.; Deng, Y.; Chen, Z.; Chen, H.; He, N. Application of magnetic nanoparticles in nucleic acid detection. J. Nanobiotechnology, 2020, 18(1), 62.
[http://dx.doi.org/10.1186/s12951-020-00613-6] [PMID: 32316985]
[211]
Bedanta, S.; Barman, A.; Kleemann, W.; Petracic, O.; Seki, T. Magnetic nanoparticles: A subject for both fundamental research and applications. J. Nanomater., 2013, 2013, 1-22.
[http://dx.doi.org/10.1155/2013/952540]
[212]
Issa, B.; Obaidat, I.; Albiss, B.; Haik, Y. Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int. J. Mol. Sci., 2013, 14(11), 21266-21305.
[http://dx.doi.org/10.3390/ijms141121266] [PMID: 24232575]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy