Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

Advances in Ovarian Cancer Treatment Beyond PARP Inhibitors

Author(s): Fine Aliyuda, Michele Moschetta, Aruni Ghose, Kathrine Sofia Rallis, Matin Sheriff, Elisabet Sanchez, Elie Rassy and Stergios Boussios*

Volume 23, Issue 6, 2023

Published on: 13 March, 2023

Page: [433 - 446] Pages: 14

DOI: 10.2174/1568009623666230209121732

Price: $65

Open Access Journals Promotions 2
Abstract

Ovarian cancer has become the largest cause of gynaecological cancer-related mortality. It is typically diagnosed at a late stage and has no effective screening strategy. Ovarian cancer is a highly heterogeneous disease that can be subdivided into several molecular subsets. As a result of a greater understanding of molecular pathways involved in carcinogenesis and tumor growth, targeted agents have been approved or are in several stages of development. Poly(ADP-ribose) polymerase (PARP) inhibitors and the anti-vascular endothelial growth factor (VEGF)-A antibodies are two types of approved and most effective targeted drugs for ovarian cancer at present. With the success of bevacizumab, tyrosine kinase inhibitors which could target alternate angiogenic pathways are being studied. Furthermore, many treatments targeting the PI3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathways, are being developed or are already in clinical studies. MicroRNAs have also become novel biomarkers for the therapy and clinical diagnosis of ovarian cancer. This manuscript reviews the molecular, preclinical and clinical evidence supporting the targeting of growth-dependent pathways in ovarian cancer and assesses current data related to targeted treatments beyond PARP inhibitors.

Keywords: Ovarian cancer, angiogenesis inhibitors, EGFR inhibitors, PI3K inhibitors, AKT inhibitors, miRNA-related targets.

Graphical Abstract
[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Prat, J. New insights into ovarian cancer pathology. Ann. Oncol., 2012, 23(10)(Suppl. 10), x111-x117.
[http://dx.doi.org/10.1093/annonc/mds300] [PMID: 22987944]
[3]
Brett, M.R.; Brett, M.R.; Jennifer, B.P.; Thomas, A.S.; Jennifer, B.P.; Thomas, A.S. Epidemiology of ovarian cancer: a review. Cancer Biol. Med., 2017, 14(1), 9-32.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0084] [PMID: 28443200]
[4]
Boussios, S.; Rassy, E.; Moschetta, M.; Ghose, A.; Adeleke, S.; Sanchez, E.; Sheriff, M.; Chargari, C.; Pavlidis, N. BRCA Mutations in Ovarian and Prostate Cancer: Bench to Bedside. Cancers (Basel), 2022, 14(16), 3888.
[http://dx.doi.org/10.3390/cancers14163888] [PMID: 36010882]
[5]
Pavlidis, N.; Rassy, E.; Vermorken, J.B.; Assi, T.; Kattan, J.; Boussios, S.; Smith-Gagen, J. The outcome of patients with serous papillary peritoneal cancer, fallopian tube cancer, and epithelial ovarian cancer by treatment eras: 27 years data from the SEER registry. Cancer Epidemiol., 2021, 75, 102045.
[http://dx.doi.org/10.1016/j.canep.2021.102045] [PMID: 34638085]
[6]
Ghose, A.; Gullapalli, S.V.N.; Chohan, N.; Bolina, A.; Moschetta, M.; Rassy, E.; Boussios, S. Applications of proteomics in ovarian cancer: Dawn of a new era. Proteomes, 2022, 10(2), 16.
[http://dx.doi.org/10.3390/proteomes10020016] [PMID: 35645374]
[7]
Cheung, A.; Shah, S.; Parker, J.; Soor, P.; Limbu, A.; Sheriff, M.; Boussios, S. Non-epithelial ovarian cancers: How much do we really know? Int. J. Environ. Res. Public Health, 2022, 19(3), 1106.
[http://dx.doi.org/10.3390/ijerph19031106] [PMID: 35162125]
[8]
Boussios, S.; Moschetta, M.; Zarkavelis, G.; Papadaki, A.; Kefas, A.; Tatsi, K. Ovarian sex-cord stromal tumours and small cell tumours: Pathological, genetic and management aspects. Crit. Rev. Oncol. Hematol., 2017, 120, 43-51.
[http://dx.doi.org/10.1016/j.critrevonc.2017.10.007] [PMID: 29198337]
[9]
Boussios, S.; Karathanasi, A.; Zakynthinakis-Kyriakou, N.; Tsiouris, A.K.; Chatziantoniou, A.A.; Kanellos, F.S.; Tatsi, K. Ovarian carcinosarcoma: Current developments and future perspectives. Crit. Rev. Oncol. Hematol., 2019, 134, 46-55.
[http://dx.doi.org/10.1016/j.critrevonc.2018.12.006] [PMID: 30771873]
[10]
Boussios, S.; Attygalle, A.; Hazell, S.; Moschetta, M.; McLachlan, J.; Okines, A.; Banerjee, S. Malignant ovarian germ cell tumors in postmenopausal patients: The royal marsden experience and literature review. Anticancer Res., 2015, 35(12), 6713-6722.
[PMID: 26637887]
[11]
Colombo, N.; Sessa, C.; du Bois, A.; Ledermann, J.; McCluggage, W.G.; McNeish, I.; Morice, P.; Pignata, S.; Ray-Coquard, I.; Vergote, I.; Baert, T.; Belaroussi, I.; Dashora, A.; Olbrecht, S.; Planchamp, F.; Querleu, D.; Baert, T.; Banerjee, S.; Belaroussi, I.; Blecharz, P.; Bruchim, I.; Cibula, D.; Colombo, N.; Concin, N.; Davidson, B.; Dashora, A.; Devouassoux-Shisheboran, M.; du Bois, A.; Ferrero, A.; Glasspool, R.; González-Martin, A.; Heinzelmann-Schwarz, V.; Joly, F.; Kim, J.W.; Kridelka, F.; Ledermann, J.; Lorusso, D.; Mahner, S.; McCluggage, W.G.; McNeish, I.; Mikami, M.; Mirza, M.R.; Morice, P.; Nicum, S.; Olbrecht, S.; O’Donnell, D.M.; Pautier, P.; Planchamp, F.; Pignata, S.; Querleu, D.; Ray-Coquard, I.; Rodolakis, A.; Sehouli, J.; Selcukbiricik, F.; Sessa, C.; Singh, N.; Tan, D.S.P.; Timmerman, D.; Tognon, G.; van der Velden, J.; Vergote, I.; Witteveen, P.O.; Zeimet, A.G. ESMO-ESGO consensus conference recommendations on ovarian cancer: pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease. Ann. Oncol., 2019, 30(5), 672-705.
[http://dx.doi.org/10.1093/annonc/mdz062] [PMID: 31046081]
[12]
Doubeni, C.A.; Doubeni, A.R.; Myers, A.E. Diagnosis and management of ovarian cancer. Am. Fam. Physician, 2016, 93(11), 937-944.
[PMID: 27281838]
[13]
Gaona-Luviano, P.; Medina-Gaona, L.A.; Magaña-Pérez, K. Epidemiology of ovarian cancer. Chin. Clin. Oncol, 2020, 9(4), 47.
[http://dx.doi.org/10.21037/cco-20-34] [PMID: 32648448]
[14]
Shah, S.; Cheung, A.; Kutka, M.; Sheriff, M.; Boussios, S. Epithelial ovarian cancer: Providing evidence of predisposition genes. Int. J. Environ. Res. Public Health, 2022, 19(13), 8113.
[http://dx.doi.org/10.3390/ijerph19138113] [PMID: 35805770]
[15]
Boussios, S.; Rassy, E.; Shah, S.; Ioannidou, E.; Sheriff, M.; Pavlidis, N. Aberrations of DNA repair pathways in prostate cancer: a cornerstone of precision oncology. Expert Opin. Ther. Targets, 2021, 25(5), 329-333.
[http://dx.doi.org/10.1080/14728222.2021.1951226] [PMID: 34225539]
[16]
Boussios, S.; Mikropoulos, C.; Samartzis, E.; Karihtala, P.; Moschetta, M.; Sheriff, M.; Karathanasi, A.; Sadauskaite, A.; Rassy, E.; Pavlidis, N. Wise management of ovarian cancer: On the cutting edge. J. Pers. Med., 2020, 10(2), 41.
[http://dx.doi.org/10.3390/jpm10020041] [PMID: 32455595]
[17]
Boussios, S.; Karihtala, P.; Moschetta, M.; Abson, C.; Karathanasi, A.; Zakynthinakis-Kyriakou, N.; Ryan, J.E.; Sheriff, M.; Rassy, E.; Pavlidis, N. Veliparib in ovarian cancer: a new synthetically lethal therapeutic approach. Invest. New Drugs, 2020, 38(1), 181-193.
[http://dx.doi.org/10.1007/s10637-019-00867-4] [PMID: 31650446]
[18]
Querleu, D.; Planchamp, F.; Chiva, L.; Fotopoulou, C.; Barton, D.; Cibula, D.; Aletti, G.; Carinelli, S.; Creutzberg, C.; Davidson, B.; Harter, P.; Lundvall, L.; Marth, C.; Morice, P.; Rafii, A.; Ray-Coquard, I.; Rockall, A.; Sessa, C.; van der Zee, A.; Vergote, I.; duBois, A. European society of gynaecological oncology (ESGO) guidelines for ovarian cancer surgery. Int. J. Gynecol. Cancer, 2017, 27(7), 1534-1542.
[http://dx.doi.org/10.1097/IGC.0000000000001041] [PMID: 30814245]
[19]
Moschetta, M.; Boussios, S.; Rassy, E.; Samartzis, E.P.; Funingana, G.; Uccello, M. Neoadjuvant treatment for newly diagnosed advanced ovarian cancer: where do we stand and where are we going? Ann. Transl. Med., 2020, 8(24), 1710.
[http://dx.doi.org/10.21037/atm-20-1683] [PMID: 33490222]
[20]
Boussios, S.; Moschetta, M.; Tatsi, K.; Tsiouris, A.K.; Pavlidis, N. A review on pregnancy complicated by ovarian epithelial and non-epithelial malignant tumors: Diagnostic and therapeutic perspectives. J. Adv. Res., 2018, 12, 1-9.
[http://dx.doi.org/10.1016/j.jare.2018.02.006] [PMID: 29988841]
[21]
Boussios, S.; Abson, C.; Moschetta, M.; Rassy, E.; Karathanasi, A.; Bhat, T.; Ghumman, F.; Sheriff, M.; Pavlidis, N. Poly (ADP-Ribose) polymerase inhibitors: Talazoparib in ovarian cancer and beyond. Drugs R D., 2020, 20(2), 55-73.
[http://dx.doi.org/10.1007/s40268-020-00301-8] [PMID: 32215876]
[22]
Revythis, A.; Limbu, A.; Mikropoulos, C.; Ghose, A.; Sanchez, E.; Sheriff, M.; Boussios, S. Recent insights into PARP and immuno-checkpoint inhibitors in epithelial ovarian cancer. Int. J. Environ. Res. Public Health, 2022, 19(14), 8577.
[http://dx.doi.org/10.3390/ijerph19148577] [PMID: 35886427]
[23]
Pignata, S.C; Cecere, S.; Du Bois, A.; Harter, P.; Heitz, F. Treatment of recurrent ovarian cancer. Ann. Oncol., 2017, 28(8), viii51-viii56.
[http://dx.doi.org/10.1093/annonc/mdx441]
[24]
Grunewald, T.; Ledermann, J.A. Targeted therapies for ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol., 2017, 41, 139-152.
[http://dx.doi.org/10.1016/j.bpobgyn.2016.12.001] [PMID: 28111228]
[25]
Boussios, S.; Ozturk, M.; Moschetta, M.; Karathanasi, A.; Zakynthinakis-Kyriakou, N.; Katsanos, K.; Christodoulou, D.; Pavlidis, N. The developing story of predictive biomarkers in colorectal cancer. J. Pers. Med., 2019, 9(1), 12.
[http://dx.doi.org/10.3390/jpm9010012] [PMID: 30736475]
[26]
Revythis, A.; Shah, S.; Kutka, M.; Moschetta, M.; Ozturk, M.A.; Pappas-Gogos, G.; Ioannidou, E.; Sheriff, M.; Rassy, E.; Boussios, S. Unraveling the wide spectrum of melanoma biomarkers. Diagnostics (Basel), 2021, 11(8), 1341.
[http://dx.doi.org/10.3390/diagnostics11081341] [PMID: 34441278]
[27]
Saxby, H.; Mikropoulos, C.; Boussios, S. An update on the prognostic and predictive serum biomarkers in metastatic prostate cancer. Diagnostics, (Basel), 2020, 10(8), 549.
[28]
Cortez, A.J.; Tudrej, P.; Kujawa, K.A.; Lisowska, K.M. Advances in ovarian cancer therapy. Cancer Chemother. Pharmacol., 2018, 81(1), 17-38.
[http://dx.doi.org/10.1007/s00280-017-3501-8] [PMID: 29249039]
[29]
Ioannidou, E.; Moschetta, M.; Shah, S.; Parker, J.S.; Ozturk, M.A.; Pappas-Gogos, G.; Sheriff, M.; Rassy, E.; Boussios, S. Angiogenesis and anti-angiogenic treatment in prostate cancer: Mechanisms of action and molecular Targets. Int. J. Mol. Sci., 2021, 22(18), 9926.
[http://dx.doi.org/10.3390/ijms22189926] [PMID: 34576107]
[30]
McClung, E.C.; Wenham, R.M. Profile of bevacizumab in the treatment of platinum-resistant ovarian cancer: current perspectives. Int. J. Womens Health, 2016, 8, 59-75.
[PMID: 27051317]
[31]
Kommoss, S.; Winterhoff, B.; Oberg, A.L.; Konecny, G.E.; Wang, C.; Riska, S.M.; Fan, J.B.; Maurer, M.J.; April, C.; Shridhar, V.; Kommoss, F.; du Bois, A.; Hilpert, F.; Mahner, S.; Baumann, K.; Schroeder, W.; Burges, A.; Canzler, U.; Chien, J.; Embleton, A.C.; Parmar, M.; Kaplan, R.; Perren, T.; Hartmann, L.C.; Goode, E.L.; Dowdy, S.C.; Pfisterer, J. Bevacizumab may differentially improve ovarian cancer outcome in patients with proliferative and mesenchymal molecular subtypes. Clin. Cancer Res., 2017, 23(14), 3794-3801.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2196] [PMID: 28159814]
[32]
Armstrong, D.K.; Alvarez, R.D.; Bakkum-Gamez, J.N.; Barroilhet, L.; Behbakht, K.; Berchuck, A.; Chen, L.; Cristea, M.; DeRosa, M.; Eisenhauer, E.L.; Gershenson, D.M.; Gray, H.J.; Grisham, R.; Hakam, A.; Jain, A.; Karam, A.; Konecny, G.E.; Leath, C.A.; Liu, J.; Mahdi, H.; Martin, L.; Matei, D.; McHale, M.; McLean, K.; Miller, D.S.; O’Malley, D.M.; Percac-Lima, S.; Ratner, E.; Remmenga, S.W.; Vargas, R.; Werner, T.L.; Zsiros, E.; Burns, J.L.; Engh, A.M. Ovarian Cancer, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw., 2021, 19(2), 191-226.
[http://dx.doi.org/10.6004/jnccn.2021.0007] [PMID: 33545690]
[33]
Burger, R.A.; Brady, M.F.; Bookman, M.A.; Fleming, G.F.; Monk, B.J.; Huang, H.; Mannel, R.S.; Homesley, H.D.; Fowler, J.; Greer, B.E.; Boente, M.; Birrer, M.J.; Liang, S.X. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N. Engl. J. Med., 2011, 365(26), 2473-2483.
[http://dx.doi.org/10.1056/NEJMoa1104390] [PMID: 22204724]
[34]
Perren, T.J.; Swart, A.M.; Pfisterer, J.; Ledermann, J.A.; Pujade-Lauraine, E.; Kristensen, G.; Carey, M.S.; Beale, P.; Cervantes, A.; Kurzeder, C.; Bois, A.; Sehouli, J.; Kimmig, R.; Stähle, A.; Collinson, F.; Essapen, S.; Gourley, C.; Lortholary, A.; Selle, F.; Mirza, M.R.; Leminen, A.; Plante, M.; Stark, D.; Qian, W.; Parmar, M.K.B.; Oza, A.M. A phase 3 trial of bevacizumab in ovarian cancer. N. Engl. J. Med., 2011, 365(26), 2484-2496.
[http://dx.doi.org/10.1056/NEJMoa1103799] [PMID: 22204725]
[35]
Aghajanian, C.; Goff, B.; Nycum, L.R.; Wang, Y.V.; Husain, A.; Blank, S.V. Final overall survival and safety analysis of OCEANS, a phase 3 trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent ovarian cancer. Gynecol. Oncol., 2015, 139(1), 10-16.
[http://dx.doi.org/10.1016/j.ygyno.2015.08.004] [PMID: 26271155]
[36]
Coleman, R.L.; Brady, M.F.; Herzog, T.J.; Sabbatini, P.; Armstrong, D.K.; Walker, J.L.; Kim, B.G.; Fujiwara, K.; Tewari, K.S.; O’Malley, D.M.; Davidson, S.A.; Rubin, S.C.; DiSilvestro, P.; Basen-Engquist, K.; Huang, H.; Chan, J.K.; Spirtos, N.M.; Ashfaq, R.; Mannel, R.S. Bevacizumab and paclitaxel-carboplatin chemotherapy and secondary cytoreduction in recurrent, platinum-sensitive ovarian cancer (NRG Oncology/Gynecologic Oncology Group study GOG-0213): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol., 2017, 18(6), 779-791.
[http://dx.doi.org/10.1016/S1470-2045(17)30279-6] [PMID: 28438473]
[37]
Pujade-Lauraine, E. New treatments in ovarian cancer. Ann. Oncol., 2017, 28(8), viii57-viii60.
[http://dx.doi.org/10.1093/annonc/mdx442]
[38]
Rouzier, R.; Gouy, S.; Selle, F.; Lambaudie, E.; Floquet, A.; Fourchotte, V.; Pomel, C.; Colombo, P.E.; Kalbacher, E.; Martin-Francoise, S.; Fauvet, R.; Follana, P.; Lesoin, A.; Lecuru, F.; Ghazi, Y.; Dupin, J.; Chereau, E.; Zohar, S.; Cottu, P.; Joly, F. Efficacy and safety of bevacizumab-containing neoadjuvant therapy followed by interval debulking surgery in advanced ovarian cancer: Results from the ANTHALYA trial. Eur. J. Cancer, 2017, 70, 133-142.
[http://dx.doi.org/10.1016/j.ejca.2016.09.036] [PMID: 27914243]
[39]
Garcia Garcia, Y.; De Juan, A.; Mendiola, C.; Barretina-Ginesta, M.P.; Prat, A.; Santaballa, A.; Bover, I.; Gil-Martin, M.; Manzano, A.; Rubio, M.J.; Romeo, M.; Arqueros, C.; Garcia Martinez, E.; Gonzalez Martin, A. Phase II randomized trial of neoadjuvant (NA) chemotherapy (CT) with or without bevacizumab (Bev) in advanced epithelial ovarian cancer (EOC)‏ (GEICO 1205/NOVA TRIAL). J. Clin. Oncol., 2017, 35(Suppl. 15), 5508.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.5508]
[40]
Tewari, K.S.; Burger, R.A.; Enserro, D.; Norquist, B.M.; Swisher, E.M.; Brady, M.F.; Bookman, M.A.; Fleming, G.F.; Huang, H.; Homesley, H.D.; Fowler, J.M.; Greer, B.E.; Boente, M.; Liang, S.X.; Ye, C.; Bais, C.; Randall, L.M.; Chan, J.K.; Ferriss, J.S.; Coleman, R.L.; Aghajanian, C.; Herzog, T.J.; DiSaia, P.J.; Copeland, L.J.; Mannel, R.S.; Birrer, M.J.; Monk, B.J. Final overall survival of a randomized trial of bevacizumab for primary treatment of ovarian Cancer. J. Clin. Oncol., 2019, 37(26), 2317-2328.
[http://dx.doi.org/10.1200/JCO.19.01009] [PMID: 31216226]
[41]
Boussios, S.; Karathanasi, A.; Cooke, D.; Neille, C.; Sadauskaite, A.; Moschetta, M.; Zakynthinakis-Kyriakou, N.; Pavlidis, N. PARP inhibitors in ovarian cancer: The route to “Ithaca”. Diagnostics (Basel), 2019, 9(2), 55.
[http://dx.doi.org/10.3390/diagnostics9020055] [PMID: 31109041]
[42]
Ciombor, K.K.; Berlin, J.; Chan, E. Aflibercept. Clin. Cancer Res., 2013, 19(8), 1920-1925.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2911] [PMID: 23444216]
[43]
Hu, L.; Hofmann, J.; Holash, J.; Yancopoulos, G.D.; Sood, A.K.; Jaffe, R.B. Vascular endothelial growth factor trap combined with paclitaxel strikingly inhibits tumor and ascites, prolonging survival in a human ovarian cancer model. Clin. Cancer Res., 2005, 11(19), 6966-6971.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0910] [PMID: 16203789]
[44]
Huang, J.; Hu, W.; Hu, L.; Previs, R.A.; Dalton, H.J.; Yang, X.Y.; Sun, Y.; McGuire, M.; Rupaimoole, R.; Nagaraja, A.S.; Kang, Y.; Liu, T.; Nick, A.M.; Jennings, N.B.; Coleman, R.L.; Jaffe, R.B.; Sood, A.K. Dll4 inhibition plus aflibercept markedly reduces ovarian tumor growth. Mol. Cancer Ther., 2016, 15(6), 1344-1352.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0144] [PMID: 27009216]
[45]
Chiorean, E.G.; LoRusso, P.; Strother, R.M.; Diamond, J.R.; Younger, A.; Messersmith, W.A.; Adriaens, L.; Liu, L.; Kao, R.J.; DiCioccio, A.T.; Kostic, A.; Leek, R.; Harris, A.; Jimeno, A. A Phase I First-in-human study of Enoticumab (REGN421), a fully human Delta-like Ligand 4 (Dll4) monoclonal antibody in patients with advanced solid tumors. Clin. Cancer Res., 2015, 21(12), 2695-2703.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2797] [PMID: 25724527]
[46]
Matulonis, U.A.; Berlin, S.; Ivy, P.; Tyburski, K.; Krasner, C.; Zarwan, C.; Berkenblit, A.; Campos, S.; Horowitz, N.; Cannistra, S.A.; Lee, H.; Lee, J.; Roche, M.; Hill, M.; Whalen, C.; Sullivan, L.; Tran, C.; Humphreys, B.D.; Penson, R.T. Cediranib, an oral inhibitor of vascular endothelial growth factor receptor kinases, is an active drug in recurrent epithelial ovarian, fallopian tube, and peritoneal cancer. J. Clin. Oncol., 2009, 27(33), 5601-5606.
[http://dx.doi.org/10.1200/JCO.2009.23.2777] [PMID: 19826113]
[47]
Tang, W.; McCormick, A.; Li, J.; Masson, E. Clinical pharmacokinetics and pharmacodynamics of Cediranib. Clin. Pharmacokinet., 2017, 56(7), 689-702.
[http://dx.doi.org/10.1007/s40262-016-0488-y] [PMID: 27943222]
[48]
Liu, J.F.; Barry, W.T.; Birrer, M.; Lee, J.M.; Buckanovich, R.J.; Fleming, G.F.; Rimel, B.J.; Buss, M.K.; Nattam, S.R.; Hurteau, J.; Luo, W.; Curtis, J.; Whalen, C.; Kohn, E.C.; Ivy, S.P.; Matulonis, U.A. Overall survival and updated progression-free survival outcomes in a randomized phase II study of combination cediranib and olaparib versus olaparib in relapsed platinum-sensitive ovarian cancer. Ann. Oncol., 2019, 30(4), 551-557.
[http://dx.doi.org/10.1093/annonc/mdz018] [PMID: 30753272]
[49]
Hamberg, P.; Verweij, J.; Sleijfer, S. (Pre-)clinical pharmacology and activity of pazopanib, a novel multikinase angiogenesis inhibitor. Oncologist, 2010, 15(6), 539-547.
[http://dx.doi.org/10.1634/theoncologist.2009-0274] [PMID: 20511320]
[50]
McLachlan, J.; Banerjee, S. Pazopanib in ovarian cancer. Expert Rev. Anticancer Ther., 2015, 15(9), 995-1005.
[http://dx.doi.org/10.1586/14737140.2015.1081383] [PMID: 26296187]
[51]
Richardson, D.L.; Sill, M.W.; Coleman, R.L.; Sood, A.K.; Pearl, M.L.; Kehoe, S.M.; Carney, M.E.; Hanjani, P.; Van Le, L.; Zhou, X.C.; Alvarez Secord, A.; Gray, H.J.; Landrum, L.M.; Lankes, H.A.; Hu, W.; Aghajanian, C. Paclitaxel with and without pazopanib for persistent or recurrent ovarian cancer. JAMA Oncol., 2018, 4(2), 196-202.
[http://dx.doi.org/10.1001/jamaoncol.2017.4218] [PMID: 29242937]
[52]
Roth, G.J.; Binder, R.; Colbatzky, F.; Dallinger, C.; Schlenker-Herceg, R.; Hilberg, F.; Wollin, S.L.; Kaiser, R. Nintedanib: from discovery to the clinic. J. Med. Chem., 2015, 58(3), 1053-1063.
[http://dx.doi.org/10.1021/jm501562a] [PMID: 25474320]
[53]
McCormack, P.L. Nintedanib: first global approval. Drugs, 2015, 75(1), 129-139.
[http://dx.doi.org/10.1007/s40265-014-0335-0] [PMID: 25430078]
[54]
Secord, A.A.; McCollum, M.; Davidson, B.A.; Broadwater, G.; Squatrito, R.; Havrilesky, L.J.; Gabel, A.C.; Starr, M.D.; Brady, J.C.; Nixon, A.B.; Duska, L.R. Phase II trial of nintedanib in patients with bevacizumab-resistant recurrent epithelial ovarian, tubal, and peritoneal cancer. Gynecol. Oncol., 2019, 153(3), 555-561.
[http://dx.doi.org/10.1016/j.ygyno.2019.03.246] [PMID: 30929823]
[55]
du Bois, A.; Floquet, A.; Kim, J.W.; Rau, J.; del Campo, J.M.; Friedlander, M.; Pignata, S.; Fujiwara, K.; Vergote, I.; Colombo, N.; Mirza, M.R.; Monk, B.J.; Kimmig, R.; Ray-Coquard, I.; Zang, R.; Diaz-Padilla, I.; Baumann, K.H.; Mouret-Reynier, M.A.; Kim, J.H.; Kurzeder, C.; Lesoin, A.; Vasey, P.; Marth, C.; Canzler, U.; Scambia, G.; Shimada, M.; Calvert, P.; Pujade-Lauraine, E.; Kim, B.G.; Herzog, T.J.; Mitrica, I.; Schade-Brittinger, C.; Wang, Q.; Crescenzo, R.; Harter, P. Incorporation of pazopanib in maintenance therapy of ovarian cancer. J. Clin. Oncol., 2014, 32(30), 3374-3382.
[http://dx.doi.org/10.1200/JCO.2014.55.7348] [PMID: 25225436]
[56]
Dinkic, C.; Eichbaum, M.; Schmidt, M.; Grischke, E.M.; Gebauer, G.; Fricke, H.C.; Lenz, F.; Wallwiener, M.; Marme, F.; Schneeweiss, A.; Sohn, C.; Rom, J. Pazopanib (GW786034) and cyclophosphamide in patients with platinum-resistant, recurrent, pre-treated ovarian cancer - Results of the PACOVAR-trial. Gynecol. Oncol., 2017, 146(2), 279-284.
[http://dx.doi.org/10.1016/j.ygyno.2017.05.013] [PMID: 28528917]
[57]
Stark, D.P.; Cook, A.; Brown, J.M.; Brundage, M.D.; Embleton, A.C.; Kaplan, R.S.; Raja, F.A.; Swart, A.M.W.; Velikova, G.; Qian, W.; Ledermann, J.A. Quality of life with cediranib in relapsed ovarian cancer: The ICON6 phase 3 randomized clinical trial. Cancer, 2017, 123(14), 2752-2761.
[http://dx.doi.org/10.1002/cncr.30657] [PMID: 28339098]
[58]
Ray-Coquard, I.; Cibula, D.; Mirza, M.R.; Reuss, A.; Ricci, C.; Colombo, N.; Koch, H.; Goffin, F.; González-Martin, A.; Ottevanger, P.B.; Baumann, K.; Bjørge, L.; Lesoin, A.; Burges, A.; Rosenberg, P.; Gropp-Meier, M.; Harrela, M.; Harter, P.; Frenel, J.S.; Minarik, T.; Pisano, C.; Hasenburg, A.; Merger, M.; Bois, A. Final results from GCIG/ENGOT/AGO‐OVAR 12, a randomised placebo‐controlled phase III trial of nintedanib combined with chemotherapy for newly diagnosed advanced ovarian cancer. Int. J. Cancer, 2020, 146(2), 439-448.
[http://dx.doi.org/10.1002/ijc.32606] [PMID: 31381147]
[59]
Dufraine, J.; Funahashi, Y.; Kitajewski, J. Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene, 2008, 27(38), 5132-5137.
[http://dx.doi.org/10.1038/onc.2008.227] [PMID: 18758482]
[60]
Xie, Q.; Cheng, Z.; Chen, X.; Lobe, C.G.; Liu, J. The role of Notch signalling in ovarian angiogenesis. J. Ovarian Res., 2017, 10(1), 13.
[http://dx.doi.org/10.1186/s13048-017-0308-5] [PMID: 28284219]
[61]
Perez-Fidalgo, J.A.; Ortega, B.; Simon, S.; Samartzis, E.P.; Boussios, S. NOTCH signalling in ovarian cancer angiogenesis. Ann. Transl. Med., 2020, 8(24), 1705.
[http://dx.doi.org/10.21037/atm-20-4497] [PMID: 33490217]
[62]
Hu, W.; Lu, C.; Dong, H.H.; Huang, J.; Shen, D.; Stone, R.L.; Nick, A.M.; Shahzad, M.M.K.; Mora, E.; Jennings, N.B.; Lee, S.J.; Roh, J.W.; Matsuo, K.; Nishimura, M.; Goodman, B.W.; Jaffe, R.B.; Langley, R.R.; Deavers, M.T.; Lopez-Berestein, G.; Coleman, R.L.; Sood, A.K. Biological roles of the Delta family Notch ligand Dll4 in tumor and endothelial cells in ovarian cancer. Cancer Res., 2011, 71(18), 6030-6039.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2719] [PMID: 21795478]
[63]
Feng, Z.; Xu, W.; Zhang, C.; Liu, M.; Wen, H. Inhibition of gamma-secretase in Notch1 signaling pathway as a novel treatment for ovarian cancer. Oncotarget, 2017, 8(5), 8215-8225.
[http://dx.doi.org/10.18632/oncotarget.14152] [PMID: 28030808]
[64]
McCaw, T.R.; Inga, E.; Chen, H.; Jaskula-Sztul, R.; Dudeja, V.; Bibb, J.A.; Ren, B.; Rose, J.B. Gamma Secretase inhibitors in cancer: A current perspective on clinical performance. Oncologist, 2021, 26(4), e608-e621.
[http://dx.doi.org/10.1002/onco.13627] [PMID: 33284507]
[65]
Shah, M.M.; Zerlin, M.; Li, B.Y.; Herzog, T.J.; Kitajewski, J.K.; Wright, J.D. The role of Notch and gamma-secretase inhibition in an ovarian cancer model. Anticancer Res., 2013, 33(3), 801-808.
[PMID: 23482747]
[66]
Kuhnert, F.; Chen, G.; Coetzee, S.; Thambi, N.; Hickey, C.; Shan, J.; Kovalenko, P.; Noguera-Troise, I.; Smith, E.; Fairhurst, J.; Andreev, J.; Kirshner, J.R.; Papadopoulos, N.; Thurston, G. Dll4 blockade in stromal cells mediates antitumor effects in preclinical models of ovarian cancer. Cancer Res., 2015, 75(19), 4086-4096.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3773] [PMID: 26377940]
[67]
Traxler, P.; Furet, P. Strategies toward the design of novel and selective protein tyrosine kinase inhibitors. Pharmacol. Ther., 1999, 82(2-3), 195-206.
[http://dx.doi.org/10.1016/S0163-7258(98)00044-8] [PMID: 10454197]
[68]
Mubeen, M.; Kini, S.G. A review on: The design and development of EGFR tyrosine kinase inhibitors in cancer therapy. Int. J. Ther. Appl., 2012, 5, 29-37.
[69]
Katopodis, P.; Chudasama, D.; Wander, G.; Sales, L.; Kumar, J.; Pandhal, M.; Anikin, V.; Chatterjee, J.; Hall, M.; Karteris, E. Kinase inhibitors and ovarian cancer. Cancers (Basel), 2019, 11(9), 1357.
[http://dx.doi.org/10.3390/cancers11091357] [PMID: 31547471]
[70]
Bareschino, M.A.; Schettino, C.; Troiani, T.; Martinelli, E.; Morgillo, F.; Ciardiello, F. Erlotinib in cancer treatment. Ann. Oncol., 2007, 18(6)(Suppl. 6), vi35-vi41.
[http://dx.doi.org/10.1093/annonc/mdm222] [PMID: 17591829]
[71]
Blank, S.V.; Christos, P.; Curtin, J.P.; Goldman, N.; Runowicz, C.D.; Sparano, J.A.; Liebes, L.; Chen, H.X.; Muggia, F.M. Erlotinib added to carboplatin and paclitaxel as first-line treatment of ovarian cancer: A phase II study based on surgical reassessment. Gynecol. Oncol., 2010, 119(3), 451-456.
[http://dx.doi.org/10.1016/j.ygyno.2010.08.008] [PMID: 20837357]
[72]
Vergote, I.B.; Jimeno, A.; Joly, F.; Katsaros, D.; Coens, C.; Despierre, E.; Marth, C.; Hall, M.; Steer, C.B.; Colombo, N.; Lesoin, A.; Casado, A.; Reinthaller, A.; Green, J.; Buck, M.; Ray-Coquard, I.; Ferrero, A.; Favier, L.; Reed, N.S.; Curé, H.; Pujade-Lauraine, E. Randomized phase III study of erlotinib versus observation in patients with no evidence of disease progression after first-line platin-based chemotherapy for ovarian carcinoma: a European Organisation for Research and Treatment of Cancer-Gynaecological Cancer Group, and Gynecologic Cancer Intergroup study. J. Clin. Oncol., 2014, 32(4), 320-326.
[http://dx.doi.org/10.1200/JCO.2013.50.5669] [PMID: 24366937]
[73]
Sanford, M.; Scott, L.J. Gefitinib. Drugs, 2009, 69(16), 2303-2328.
[http://dx.doi.org/10.2165/10489100-000000000-00000] [PMID: 19852530]
[74]
Cohen, M.H.; Williams, G.A.; Sridhara, R.; Chen, G.; Pazdur, R. FDA drug approval summary: gefitinib (ZD1839) (Iressa) tablets. Oncologist, 2003, 8(4), 303-306.
[http://dx.doi.org/10.1634/theoncologist.8-4-303] [PMID: 12897327]
[75]
Thibault, B.; Jean-Claude, B. Dasatinib + Gefitinib, a non platinum-based combination with enhanced growth inhibitory, anti-migratory and anti-invasive potency against human ovarian cancer cells. J. Ovarian Res., 2017, 10(1), 31.
[http://dx.doi.org/10.1186/s13048-017-0319-2] [PMID: 28446239]
[76]
Medina, P.; Goodin, S. Lapatinib: A dual inhibitor of human epidermal growth factor receptor tyrosine kinases. Clin. Ther., 2008, 30(8), 1426-1447.
[http://dx.doi.org/10.1016/j.clinthera.2008.08.008] [PMID: 18803986]
[77]
Moy, B.; Kirkpatrick, P.; Kar, S.; Goss, P. Lapatinib. Nat. Rev. Drug Discov., 2007, 6(6), 431-432.
[http://dx.doi.org/10.1038/nrd2332] [PMID: 17633789]
[78]
Yang, Y.; Zhang, H.; Chen, W.; Chen, X.; Yu, X. Lapatinib promotes ovarian cancer cell apoptosis through mROS-HtrA2/Omi pathways. Eur. J. Gynaecol. Oncol., 2020, 41(4), 598-603.
[http://dx.doi.org/10.31083/j.ejgo.2020.04.5247]
[79]
McCorkle, R.; Gorski, J.W.; Anderson, A.; Kolesar, J.M. Abstract A50: Lapatinib potentiates the antitumor effects of paclitaxel treatment in resistant ovarian cancer cells. Clin. Cancer Res., 2020, 26(13)(Supplement.), A50.
[http://dx.doi.org/10.1158/1557-3265.OVCA19-A50]
[80]
Dienstmann, R.; Rodon, J.; Serra, V.; Tabernero, J. Picking the point of inhibition: a comparative review of PI3K/AKT/mTOR pathway inhibitors. Mol. Cancer Ther., 2014, 13(5), 1021-1031.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0639] [PMID: 24748656]
[81]
Huang, T.T.; Lampert, E.J.; Coots, C.; Lee, J.M. Targeting the PI3K pathway and DNA damage response as a therapeutic strategy in ovarian cancer. Cancer Treat. Rev., 2020, 86, 102021.
[http://dx.doi.org/10.1016/j.ctrv.2020.102021] [PMID: 32311593]
[82]
Dobbin, Z.; Landen, C. The importance of the PI3K/AKT/MTOR pathway in the progression of ovarian cancer. Int. J. Mol. Sci., 2013, 14(4), 8213-8227.
[http://dx.doi.org/10.3390/ijms14048213] [PMID: 23591839]
[83]
van der Ploeg, P.; Uittenboogaard, A.; Thijs, A.M.J.; Westgeest, H.M.; Boere, I.A.; Lambrechts, S.; van de Stolpe, A.; Bekkers, R.L.M.; Piek, J.M.J. The effectiveness of monotherapy with PI3K/AKT/mTOR pathway inhibitors in ovarian cancer: A meta-analysis. Gynecol. Oncol., 2021, 163(2), 433-444.
[http://dx.doi.org/10.1016/j.ygyno.2021.07.008] [PMID: 34253390]
[84]
Hong, D.S.; Bowles, D.W.; Falchook, G.S.; Messersmith, W.A.; George, G.C.; O’Bryant, C.L.; Vo, A.C.H.; Klucher, K.; Herbst, R.S.; Eckhardt, S.G.; Peterson, S.; Hausman, D.F.; Kurzrock, R.; Jimeno, A. A multicenter phase I trial of PX-866, an oral irreversible phosphatidylinositol 3-kinase inhibitor, in patients with advanced solid tumors. Clin. Cancer Res., 2012, 18(15), 4173-4182.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0714] [PMID: 22693357]
[85]
Hu, L.; Zaloudek, C.; Mills, G.B.; Gray, J.; Jaffe, R.B. In vivo and in vitro ovarian carcinoma growth inhibition by a phosphatidylinositol 3-kinase inhibitor (LY294002). Clin. Cancer Res., 2000, 6(3), 880-886.
[PMID: 10741711]
[86]
Bedard, P.L.; Tabernero, J.; Janku, F.; Wainberg, Z.A.; Paz-Ares, L.; Vansteenkiste, J.; Van Cutsem, E.; Pérez-García, J.; Stathis, A.; Britten, C.D.; Le, N.; Carter, K.; Demanse, D.; Csonka, D.; Peters, M.; Zubel, A.; Nauwelaerts, H.; Sessa, C. A phase Ib dose-escalation study of the oral pan-PI3K inhibitor buparlisib (BKM120) in combination with the oral MEK1/2 inhibitor trametinib (GSK1120212) in patients with selected advanced solid tumors. Clin. Cancer Res., 2015, 21(4), 730-738.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1814] [PMID: 25500057]
[87]
Nitulescu, G.M.; Margina, D.; Juzenas, P.; Peng, Q.; Olaru, O.T.; Saloustros, E.; Fenga, C.; Spandidos, D.A.; Libra, M.; Tsatsakis, A.M. Akt inhibitors in cancer treatment: The long journey from drug discovery to clinical use (Review). Int. J. Oncol., 2016, 48(3), 869-885.
[http://dx.doi.org/10.3892/ijo.2015.3306] [PMID: 26698230]
[88]
Brown, J.S.; Banerji, U. Maximising the potential of AKT inhibitors as anti-cancer treatments. Pharmacol. Ther., 2017, 172, 101-115.
[http://dx.doi.org/10.1016/j.pharmthera.2016.12.001] [PMID: 27919797]
[89]
Fu, S.; Hennessy, B.T.; Ng, C.S.; Ju, Z.; Coombes, K.R.; Wolf, J.K.; Sood, A.K.; Levenback, C.F.; Coleman, R.L.; Kavanagh, J.J.; Gershenson, D.M.; Markman, M.; Dice, K.; Howard, A.; Li, J.; Li, Y.; Stemke-Hale, K.; Dyer, M.; Atkinson, E.; Jackson, E.; Kundra, V.; Kurzrock, R.; Bast, R.C., Jr; Mills, G.B. Perifosine plus docetaxel in patients with platinum and taxane resistant or refractory high-grade epithelial ovarian cancer. Gynecol. Oncol., 2012, 126(1), 47-53.
[http://dx.doi.org/10.1016/j.ygyno.2012.04.006] [PMID: 22487539]
[90]
Hu, X.; Xia, M.; Wang, J.; Yu, H.; Chai, J.; Zhang, Z.; Sun, Y.; Su, J.; Sun, L. Dual PI3K/mTOR inhibitor PKI-402 suppresses the growth of ovarian cancer cells by degradation of Mcl-1 through autophagy. Biomed. Pharmacother., 2020, 129, 110397.
[http://dx.doi.org/10.1016/j.biopha.2020.110397] [PMID: 32585451]
[91]
Choi, H.J.; Heo, J.H.; Park, J.Y.; Jeong, J.Y.; Cho, H.J.; Park, K.S.; Kim, S.H.; Moon, Y.W.; Kim, J.S.; An, H.J. A novel PI3K/mTOR dual inhibitor, CMG002, overcomes the chemoresistance in ovarian cancer. Gynecol. Oncol., 2019, 153(1), 135-148.
[http://dx.doi.org/10.1016/j.ygyno.2019.01.012] [PMID: 30686552]
[92]
Urpilainen, E.; Puistola, U.; Boussios, S.; Karihtala, P. Metformin and ovarian cancer: the evidence. Ann. Transl. Med., 2020, 8(24), 1711.
[http://dx.doi.org/10.21037/atm-20-1060] [PMID: 33490223]
[93]
Tang, G.; Guo, J.; Zhu, Y.; Huang, Z.; Liu, T.; Cai, J.; Yu, L.; Wang, Z. Metformin inhibits ovarian cancer via decreasing H3K27 trimethylation. Int. J. Oncol., 2018, 52(6), 1899-1911.
[http://dx.doi.org/10.3892/ijo.2018.4343] [PMID: 29620187]
[94]
Brown, J.R.; Chan, D.K.; Shank, J.J.; Griffith, K.A.; Fan, H.; Szulawski, R.; Yang, K.; Reynolds, R.K.; Johnston, C.; McLean, K.; Uppal, S.; Liu, J.R.; Cabrera, L.; Taylor, S.E.; Orr, B.C.; Modugno, F.; Mehta, P.; Bregenzer, M.; Mehta, G.; Shen, H.; Coffman, L.; Buckanovich, R.J. Phase II clinical trial of metformin as a cancer stem cell-targeting agent in ovarian cancer. JCI Insight, 2020, 5(11), e133247.
[http://dx.doi.org/10.1172/jci.insight.133247] [PMID: 32369446]
[95]
Wu, B.; Li, S.; Sheng, L.; Zhu, J.; Gu, L.; Shen, H.; La, D.; Hambly, B.D.; Bao, S.; Di, W. Metformin inhibits the development and metastasis of ovarian cancer. Oncol. Rep., 2012, 28(3), 903-908.
[http://dx.doi.org/10.3892/or.2012.1890] [PMID: 22752027]
[96]
Kinose, Y.; Sawada, K.; Nakamura, K.; Kimura, T. The role of microRNAs in ovarian cancer. BioMed Res. Int., 2014, 2014, 249393.
[http://dx.doi.org/10.1155/2014/249393] [PMID: 25295252]
[97]
Chen, S.N.; Chang, R.; Lin, L.T.; Chern, C.U.; Tsai, H.W.; Wen, Z.H.; Li, Y.H.; Li, C.J.; Tsui, K.H. MicroRNA in ovarian cancer: Biology, pathogenesis, and therapeutic opportunities. Int. J. Environ. Res. Public Health, 2019, 16(9), 1510.
[http://dx.doi.org/10.3390/ijerph16091510] [PMID: 31035447]
[98]
Zaman, M.S.; Maher, D.M.; Khan, S.; Jaggi, M.; Chauhan, S.C. Current status and implications of microRNAs in ovarian cancer diagnosis and therapy. J. Ovarian Res., 2012, 5(1), 44.
[http://dx.doi.org/10.1186/1757-2215-5-44] [PMID: 23237306]
[99]
Zhang, L.; Huang, J.; Yang, N.; Greshock, J.; Megraw, M.S.; Giannakakis, A.; Liang, S.; Naylor, T.L.; Barchetti, A.; Ward, M.R.; Yao, G.; Medina, A.; O’Brien-Jenkins, A.; Katsaros, D.; Hatzigeorgiou, A.; Gimotty, P.A.; Weber, B.L.; Coukos, G. microRNAs exhibit high frequency genomic alterations in human cancer. Proc. Natl. Acad. Sci. USA, 2006, 103(24), 9136-9141.
[http://dx.doi.org/10.1073/pnas.0508889103] [PMID: 16754881]
[100]
Iorio, M.V.; Visone, R.; Di Leva, G.; Donati, V.; Petrocca, F.; Casalini, P.; Taccioli, C.; Volinia, S.; Liu, C.G.; Alder, H.; Calin, G.A.; Ménard, S.; Croce, C.M. MicroRNA signatures in human ovarian cancer. Cancer Res., 2007, 67(18), 8699-8707.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1936] [PMID: 17875710]
[101]
Zhang, S.; Lu, Z.; Unruh, A.K.; Ivan, C.; Baggerly, K.A.; Calin, G.A.; Li, Z.; Bast, R.C., Jr; Le, X.F. Clinically relevant microRNAs in ovarian cancer. Mol. Cancer Res., 2015, 13(3), 393-401.
[http://dx.doi.org/10.1158/1541-7786.MCR-14-0424] [PMID: 25304686]
[102]
Zhang, L.; Conejo-Garcia, J.R.; Katsaros, D.; Gimotty, P.A.; Massobrio, M.; Regnani, G.; Makrigiannakis, A.; Gray, H.; Schlienger, K.; Liebman, M.N.; Rubin, S.C.; Coukos, G. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med., 2003, 348(3), 203-213.
[http://dx.doi.org/10.1056/NEJMoa020177] [PMID: 12529460]
[103]
Sadelain, M.; Rivière, I.; Riddell, S. Therapeutic T cell engineering. Nature, 2017, 545(7655), 423-431.
[http://dx.doi.org/10.1038/nature22395] [PMID: 28541315]
[104]
Rezvani, K.; Rouce, R.; Liu, E.; Shpall, E. Engineering natural killer cells for cancer immunotherapy. Mol. Ther., 2017, 25(8), 1769-1781.
[http://dx.doi.org/10.1016/j.ymthe.2017.06.012] [PMID: 28668320]
[105]
Pang, Z.; Wang, Z.; Li, F.; Feng, C.; Mu, X. Current progress of CAR-NK therapy in cancer treatment. Cancers (Basel), 2022, 14(17), 4318.
[http://dx.doi.org/10.3390/cancers14174318] [PMID: 36077853]
[106]
Albinger, N.; Hartmann, J.; Ullrich, E. Current status and perspective of CAR-T and CAR-NK cell therapy trials in Germany. Gene Ther., 2021, 28(9), 513-527.
[http://dx.doi.org/10.1038/s41434-021-00246-w] [PMID: 33753909]
[107]
Ebrahimiyan, H.; Tamimi, A.; Shokoohian, B.; Minaei, N.; Memarnejadian, A.; Hossein-Khannazer, N.; Hassan, M.; Vosough, M. Novel insights in CAR-NK cells beyond CAR-T cell technology; promising advantages. Int. Immunopharmacol., 2022, 106, 108587.
[http://dx.doi.org/10.1016/j.intimp.2022.108587] [PMID: 35149294]
[108]
Hombach, A.; Hombach, A.A.; Abken, H. Adoptive immunotherapy with genetically engineered T cells: modification of the IgG1 Fc ‘spacer’ domain in the extracellular moiety of chimeric antigen receptors avoids ‘off-target’ activation and unintended initiation of an innate immune response. Gene Ther., 2010, 17(10), 1206-1213.
[http://dx.doi.org/10.1038/gt.2010.91] [PMID: 20555360]
[109]
Hudecek, M.; Sommermeyer, D.; Kosasih, P.L.; Silva-Benedict, A.; Liu, L.; Rader, C.; Jensen, M.C.; Riddell, S.R. The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol. Res., 2015, 3(2), 125-135.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0127] [PMID: 25212991]
[110]
Cao, B.; Liu, M.; Wang, L.; Liang, B.; Feng, Y.; Chen, X.; Shi, Y.; Zhang, J.; Ye, X.; Tian, Y.; Zhi, C.; Li, J.; Lian, H.; Wu, Q.; Zhang, Z. Use of chimeric antigen receptor NK-92 cells to target mesothelin in ovarian cancer. Biochem. Biophys. Res. Commun., 2020, 524(1), 96-102.
[http://dx.doi.org/10.1016/j.bbrc.2020.01.053] [PMID: 31980173]
[111]
Ao, X.; Yang, Y.; Li, W.; Tan, Y.; Guo, W.; Ao, L.; He, X.; Wu, X.; Xia, J.; Xu, X.; Guo, J. Anti-αFR CAR-engineered NK-92 cellsdisplay potent cytotoxicity against αFR-positive ovarian cancer J.Immunother., 2019, 42(8), 284-296.
[http://dx.doi.org/10.1097/CJI.0000000000000286] [PMID: 31261167]
[112]
Zhu, X.; Cai, H.; Zhao, L.; Ning, L.; Lang, J. CAR-T cell therapy in ovarian cancer: from the bench to the bedside. Oncotarget,. 2017, 8(38), 64607-64621.
[http://dx.doi.org/10.18632/oncotarget.19929] [PMID: 28969098]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy