Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Mini-Review Article

Evolution of Probiotic Usage in the Global Food Industry: A Comprehensive Review

Author(s): Gammadde Hewa Hishara Jayasekara*, Madhura Jayasinghe and Jagath Jayasinghe

Volume 19, Issue 9, 2023

Published on: 10 March, 2023

Page: [875 - 887] Pages: 13

DOI: 10.2174/1573401319666230208094849

Price: $65

Open Access Journals Promotions 2
Abstract

Food fermentation is one of the oldest food preservation and processing methods that uses live microorganisms and dates back thousands of years in human civilization. From those days, human society has used them without knowing the true value of these live microorganisms. But later, they understood the beneficial health effects of some organisms used in fermentation. Later they were named probiotics. With the advancement of science, the taxonomic and morphological details of probiotic bacteria and fungi were identified. In the early stage of human civilization, probiotics were used only for the preservation of excess food stuff, but now they have been used for many other aspects. Encapsulated probiotics and dried probiotics enhance the benefits of probiotics while reducing the major drawback of survivability in harsh conditions. Genetically engineered probiotics organisms open new avenues in the nutraceutical industry, having maximum benefits to the host. In modern medicine, probiotic functional foods have been used as nutraceuticals for multi-drug resisting organisms and as transport vectors. In the near future, Super probiotic organisms will be the new step in human civilization in terms of food and therapeutic medicine.

Keywords: Probiotic organisms, emerging trends in probiotics, functional foods, paraprobiotics, encapsulated probio tics, evolution.

Graphical Abstract
[1]
Guarner F, Perdigon G, Corthier G, Salminen S, Koletzko B, Morelli L. Should yoghurt cultures be considered probiotic? Br J Nutr 2005; 93(6): 783-6.
[http://dx.doi.org/10.1079/BJN20051428] [PMID: 16022746]
[2]
Roobab U, Batool Z, Manzoor MF, Shabbir MA, Khan MR, Aadil RM. Sources, formulations, advanced delivery and health benefits of probiotics. Curr Opin Food Sci 2020; 32: 17-28.
[http://dx.doi.org/10.1016/j.cofs.2020.01.003]
[3]
Rasika DMD, Vidanarachchi JK, Rocha RS, et al. Plant-based milk substitutes as emerging probiotic carriers. Curr Opin Food Sci 2021; 38: 8-20.
[http://dx.doi.org/10.1016/j.cofs.2020.10.025]
[4]
Stasiak-Różańska L, Berthold-Pluta A, Pluta AS, Dasiewicz K, Garbowska M. Effect of simulated gastrointestinal tract conditions on survivability of probiotic bacteria present in commercial preparations. Int J Environ Res Public Health 2021; 18(3): 1108.
[http://dx.doi.org/10.3390/ijerph18031108] [PMID: 33513771]
[5]
Karelakis C, Zevgitis P, Galanopoulos K, Mattas K. Consumer trends and attitudes to functional foods. J Int Food Agribus Mark 2020; 32(3): 266-94.
[http://dx.doi.org/10.1080/08974438.2019.1599760]
[6]
Pimentel TC, Costa WKA, Barão CE, Rosset M, Magnani M. Vegan probiotic products: A modern tendency or the newest challenge in functional foods. Food Res Int 2021; 140: 110033.
[http://dx.doi.org/10.1016/j.foodres.2020.110033] [PMID: 33648260]
[7]
Tamang JP, Cotter PD, Endo A, et al. Fermented foods in a global age: East meets West. Compr Rev Food Sci Food Saf 2020; 19(1): 184-217.
[http://dx.doi.org/10.1111/1541-4337.12520] [PMID: 33319517]
[8]
Ilango S, Antony U. Probiotic microorganisms from non-dairy traditional fermented foods. Trends Food Sci Technol 2021; 118: 617-38.
[http://dx.doi.org/10.1016/j.tifs.2021.05.034]
[9]
Galimberti A, Bruno A, Agostinetto G, Casiraghi M, Guzzetti L, Labra M. Fermented food products in the era of globalization: tradition meets biotechnology innovations. Curr Opin Biotechnol 2021; 70: 36-41.
[http://dx.doi.org/10.1016/j.copbio.2020.10.006] [PMID: 33232845]
[10]
Anadón A, Ares I, Martínez-Larrañaga M-R, Martínez M-A. Probiotics: safety and toxicity considerations. Nutraceuticals. Elsevier. 2021; pp. 1081-105.
[http://dx.doi.org/10.1016/B978-0-12-821038-3.00065-3]
[11]
Cebeci A, Gürakan C. Properties of potential probiotic Lactobacillus plantarum strains. Food Microbiol 2003; 20(5): 511-8.
[http://dx.doi.org/10.1016/S0740-0020(02)00174-0]
[12]
Mercenier A, Pavan S, Pot B. Probiotics as biotherapeutic agents: present knowledge and future prospects. Curr Pharm Des 2003; 9(2): 175-91.
[http://dx.doi.org/10.2174/1381612033392224] [PMID: 12570667]
[13]
Soccol CR, Vandenberghe LP de S, Spier MR, et al. The potential of probiotics: a review. Food Technol Biotechnol 2010; 48(4): 413-34.
[14]
Fuller R. Probiotics in human medicine. Gut 1991; 32(4): 439-42.
[http://dx.doi.org/10.1136/gut.32.4.439] [PMID: 1902810]
[15]
Torino MI, Font de Valdez G, Mozzi F. Biopolymers from lactic acid bacteria. Novel applications in foods and beverages. Front Microbiol 2015; 6: 834.
[http://dx.doi.org/10.3389/fmicb.2015.00834] [PMID: 26441845]
[16]
Kumura H, Tanoue Y, Tsukahara M, Tanaka T, Shimazaki K. Screening of dairy yeast strains for probiotic applications. J Dairy Sci 2004; 87(12): 4050-6.
[http://dx.doi.org/10.3168/jds.S0022-0302(04)73546-8] [PMID: 15545365]
[17]
Hammes WP, Vogel RF. The genus Lactobacillus The genera of lactic acid bacteria. Springer 1995; pp. 19-54.
[http://dx.doi.org/10.1007/978-1-4615-5817-0_3]
[18]
Zheng J, Wittouck S, Salvetti E, et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 2020; 70(4): 2782-858.
[19]
Vanderhoof JA, Young RJ. Current and potential uses of probiotics. Ann Allergy Asthma Immunol 2004; 93(5)(S3): S33-7.
[http://dx.doi.org/10.1016/S1081-1206(10)61730-9] [PMID: 15562872]
[20]
Salvetti E, Torriani S, Felis GE. The genus Lactobacillus: a taxonomic update. Probiotics Antimicrob Proteins 2012; 4(4): 217-26.
[http://dx.doi.org/10.1007/s12602-012-9117-8] [PMID: 26782181]
[21]
Nowak R, Nowacka-Jechalke N, Juda M, Malm A. The preliminary study of prebiotic potential of Polish wild mushroom polysaccharides: the stimulation effect on Lactobacillus strains growth. Eur J Nutr 2018; 57(4): 1511-21.
[http://dx.doi.org/10.1007/s00394-017-1436-9] [PMID: 28353071]
[22]
Wu Z, Wang G, Wang W, Pan D, Peng L, Lian L. Proteomics analysis of the adhesion activity of Lactobacillus acidophilus ATCC 4356 upon growth in an intestine‐like pH environment. Proteomics 2018; 18(5-6): 1700308.
[http://dx.doi.org/10.1002/pmic.201700308] [PMID: 29412508]
[23]
Gharbi Y, Fhoula I, Ruas-Madiedo P, et al. In-vitro characterization of potentially probiotic Lactobacillus strains isolated from human microbiota: interaction with pathogenic bacteria and the enteric cell line HT29. Ann Microbiol 2019; 69(1): 61-72.
[http://dx.doi.org/10.1007/s13213-018-1396-1]
[24]
De Wolfe TJ, Eggers S, Barker AK, et al. Oral probiotic combination of Lactobacillus and Bifidobacterium alters the gastrointestinal microbiota during antibiotic treatment for Clostridium difficile infection. PLoS One 2018; 13(9): e0204253.
[http://dx.doi.org/10.1371/journal.pone.0204253] [PMID: 30265691]
[25]
Zhuo Q, Yu B, Zhou J, et al. Lysates of Lactobacillus acidophilus combined with CTLA-4-blocking antibodies enhance antitumor immunity in a mouse colon cancer model. Sci Rep 2019; 9(1): 20128.
[http://dx.doi.org/10.1038/s41598-019-56661-y] [PMID: 31882868]
[26]
Ciobanu L, Tefas C, Oancea D, et al. Effect of Lactobacillus plantarum ACTT 8014 on 5 fluorouracil induced intestinal mucositis in Wistar rats. Exp Ther Med 2020; 20(6): 1.
[http://dx.doi.org/10.3892/etm.2020.9339] [PMID: 33149773]
[27]
Chee WJY, Chew SY, Than LTL. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb Cell Fact 2020; 19(1): 203.
[http://dx.doi.org/10.1186/s12934-020-01464-4] [PMID: 33160356]
[28]
Hassan A, Din AU, Zhu Y, et al. Anti-atherosclerotic effects of Lactobacillus plantarum ATCC 14917 in ApoE−/− mice through modulation of proinflammatory cytokines and oxidative stress. Appl Microbiol Biotechnol 2020; 104(14): 6337-50.
[http://dx.doi.org/10.1007/s00253-020-10693-x] [PMID: 32472174]
[29]
Vemuri R, Gundamaraju R, Shinde T, et al. Lactobacillus acidophilus DDS-1 modulates intestinal-specific microbiota, short-chain fatty acid and immunological profiles in aging mice. Nutrients 2019; 11(6): 1297.
[http://dx.doi.org/10.3390/nu11061297] [PMID: 31181695]
[30]
Yamasaki M, Minesaki M, Iwakiri A, et al. Lactobacillus plantarum 06CC2 reduces hepatic cholesterol levels and modulates bile acid deconjugation in Balb/c mice fed a high‐cholesterol diet. Food Sci Nutr 2020; 8(11): 6164-73.
[http://dx.doi.org/10.1002/fsn3.1909] [PMID: 33282267]
[31]
Sneath PHA, Mair NS, Sharpe ME, Holt JG. Bergey’s manual of systematic bacteriology. Williams & Wilkins 1986; Vol. 2.
[32]
Leahy SC, Higgins DG, Fitzgerald GF, Sinderen D. Getting better with bifidobacteria. J Appl Microbiol 2005; 98(6): 1303-15.
[http://dx.doi.org/10.1111/j.1365-2672.2005.02600.x] [PMID: 15916644]
[33]
Robinson RK. Encyclopedia of food microbiology. Academic press 2014.
[34]
Bezkorovainy A. Classification of bifidobacteria. Biochemistry and physiology of bifidobacteria. CRC Press. 2020; pp. 1-28.
[http://dx.doi.org/10.1201/9780367811723-1]
[35]
Ventura M, van Sinderen D, Fitzgerald GF, Zink R. Insights into the taxonomy, genetics and physiology of bifidobacteria. Antonie van Leeuwenhoek 2004; 86(3): 205-23.
[http://dx.doi.org/10.1023/B:ANTO.0000047930.11029.ec] [PMID: 15539925]
[36]
Pedret A, Valls RM, Calderón-Pérez L, et al. Effects of daily consumption of the probiotic Bifidobacterium animalis subsp. lactis CECT 8145 on anthropometric adiposity biomarkers in abdominally obese subjects: a randomized controlled trial. Int J Obes 2019; 43(9): 1863-8.
[http://dx.doi.org/10.1038/s41366-018-0220-0] [PMID: 30262813]
[37]
Andlid TA, D’Aimmo MR, Jastrebova J. Folate and Bifidobacteria. In: The Bifidobacteria and Related Organisms. Amsterdam: Elsevier 2018; pp. 195-212.
[http://dx.doi.org/10.1016/B978-0-12-805060-6.00011-9]
[38]
Sakurai T, Yamada A, Hashikura N, Odamaki T, Xiao JZ. Degradation of food-derived opioid peptides by bifidobacteria. Benef Microbes 2018; 9(4): 675-82.
[http://dx.doi.org/10.3920/BM2017.0165] [PMID: 29633643]
[39]
Wong CB, Sakurai T, Odamaki T, Xiao J. Potential effects of indole-3-lactic acid, a metabolite of human-residential bifidobacteria (HRB) on neuronal differentiation. Microorganisms 2020; 8(3): 398.
[40]
Xu R, Shen Q, Wu R, Li P. Structural analysis and mucosal immune regulation of exopolysaccharide fraction from Bifidobacterium animalis RH. Food Agric Immunol 2017; 28(6): 1226-41.
[http://dx.doi.org/10.1080/09540105.2017.1333578]
[41]
Yuan Z, Xiao S, Li S, et al. The impact of Helicobacter pylori infection, eradication therapy, and probiotics intervention on gastric microbiota in young adults. Helicobacter 2021; 26(6): e12848.
[http://dx.doi.org/10.1111/hel.12848] [PMID: 34448282]
[42]
van Laack RLJM, Schillinger U, Holzapfel WH. Characterization and partial purification of a bacteriocin produced by Leuconostoc carnosum LA44A. Int J Food Microbiol 1992; 16(3): 183-95.
[http://dx.doi.org/10.1016/0168-1605(92)90079-I] [PMID: 1445765]
[43]
Dellaglio F, Dicks LMT, Torriani S. The genus leuconostoc. In: The Genera of Lactic Acid Bacteria. Springer 1995; pp. 235-78.
[http://dx.doi.org/10.1007/978-1-4615-5817-0_7]
[44]
Otgonbayar GE, Eom HJ, Kim BS, Ko JH, Han NS. Mannitol production by Leuconostoc citreum KACC 91348P isolated from Kimchi. J Microbiol Biotechnol 2011; 21(9): 968-71.
[http://dx.doi.org/10.4014/jmb.1105.05034] [PMID: 21952374]
[45]
McDonald LC, Fleming HP, Hassan HM. Acid tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Appl Environ Microbiol 1990; 56(7): 2120-4.
[http://dx.doi.org/10.1128/aem.56.7.2120-2124.1990] [PMID: 16348238]
[46]
Esmaeilnejad-Moghadam B, Mokarram RR, Hejazi MA, Khiabani MS, Keivaninahr F. Low molecular weight dextran production by Leuconostoc mesenteroides strains: Optimization of a new culture medium and the rheological assessments. Bioactive Carbohydrates and Dietary Fibre 2019; 18: 100181.
[http://dx.doi.org/10.1016/j.bcdf.2019.100181]
[47]
Castro-Rodríguez DC, Juárez-Pilares G, Cano-Cano L, et al. Impact of Leuconostoc SD23 intake in obese pregnant rats: benefits for maternal metabolism. J Dev Orig Health Dis 2020; 11(5): 533-9.
[http://dx.doi.org/10.1017/S2040174420000367] [PMID: 32425146]
[48]
Kothari D, Tingirikari JMR, Goyal A. In vitro analysis of dextran from Leuconostoc mesenteroides NRRL B-1426 for functional food application. Bioact carbohydrates Diet Fibre 2015; 6(2): 55-61.
[49]
Lahiri D, Chakraborti S, Jasu A, et al. Production and purification of bacteriocin from Leuconostoc lactis SM 2 strain. Biocatal Agric Biotechnol 2020; 30: 101845.
[http://dx.doi.org/10.1016/j.bcab.2020.101845]
[50]
Woo C, Jung S, Fugaban JII, Bucheli JEV, Holzapfel WH, Todorov SD. Bacteriocin production by Leuconostoc citreum ST110LD isolated from organic farm soil, a promising biopreservative. J Appl Microbiol 2021; 131(3): 1226-39.
[http://dx.doi.org/10.1111/jam.15042] [PMID: 33590587]
[51]
Son J, Jang SH, Cha JW, Jeong KJ. Development of CRISPR interference (CRISPRi) platform for metabolic engineering of Leuconostoc citreum and its application for engineering riboflavin biosynthesis. Int J Mol Sci 2020; 21(16): 5614.
[http://dx.doi.org/10.3390/ijms21165614] [PMID: 32764465]
[52]
Cutting SM. Bacillus probiotics. Food Microbiol 2011; 28(2): 214-20.
[http://dx.doi.org/10.1016/j.fm.2010.03.007] [PMID: 21315976]
[53]
Lee NK, Kim WS, Paik HD. Bacillus strains as human probiotics: characterization, safety, microbiome, and probiotic carrier. Food Sci Biotechnol 2019; 28(5): 1297-305.
[http://dx.doi.org/10.1007/s10068-019-00691-9] [PMID: 31695928]
[54]
Konuray G, Erginkaya Z. Potential use of Bacillus coagulans in the food industry. Foods 2018; 7(6): 92.
[http://dx.doi.org/10.3390/foods7060092] [PMID: 29899254]
[55]
Ianiro G, Rizzatti G, Plomer M, et al. Bacillus clausii for the treatment of acute diarrhea in children: a systematic review and meta-analysis of randomized controlled trials. Nutrients 2018; 10(8): 1074.
[http://dx.doi.org/10.3390/nu10081074] [PMID: 30103531]
[56]
Catinean A, Neag AM, Nita A, Buzea M, Buzoianu AD. Bacillus spp. spores—a promising treatment option for patients with irritable bowel syndrome. Nutrients 2019; 11(9): 1968.
[http://dx.doi.org/10.3390/nu11091968] [PMID: 31438618]
[57]
Lefevre M, Racedo SM, Denayrolles M, et al. Safety assessment of Bacillus subtilis CU1 for use as a probiotic in humans. Regul Toxicol Pharmacol 2017; 83: 54-65.
[http://dx.doi.org/10.1016/j.yrtph.2016.11.010] [PMID: 27825987]
[58]
Mahdinia E, Demirci A, Berenjian A. Implementation of fed-batch strategies for vitamin K (menaquinone-7) production by Bacillus subtilis natto in biofilm reactors. Appl Microbiol Biotechnol 2018; 102(21): 9147-57.
[http://dx.doi.org/10.1007/s00253-018-9340-7] [PMID: 30218375]
[59]
Czerucka D, Piche T, Rampal P. Review article: yeast as probiotics -Saccharomyces boulardii. Aliment Pharmacol Ther 2007; 26(6): 767-78.
[http://dx.doi.org/10.1111/j.1365-2036.2007.03442.x] [PMID: 17767461]
[60]
Elghandour MMY, Tan ZL, Abu Hafsa SH, et al. Saccharomyces cerevisiae as a probiotic feed additive to non and pseudo‐ruminant feeding: a review. J Appl Microbiol 2020; 128(3): 658-74.
[http://dx.doi.org/10.1111/jam.14416] [PMID: 31429174]
[61]
Pais P, Almeida V. Yılmaz M, Teixeira MC. Saccharomyces boulardii: what makes it tick as successful probiotic? J Fungi 2020; 6(2): 78.
[http://dx.doi.org/10.3390/jof6020078] [PMID: 32512834]
[62]
Wombwell E, Patterson ME, Bransteitter B, Gillen LR. The effect of Saccharomyces boulardii primary prevention on risk of hospital-onset Clostridioides difficile infection in hospitalized patients administered antibiotics frequently associated with C. difficile infection. Clin Infect Dis 2021; 73(9): e2512-8.
[http://dx.doi.org/10.1093/cid/ciaa808] [PMID: 32575126]
[63]
Allahyari S, Dibazar SP, Pakbin B, et al. Anticancer effect of probiotic Saccharomyces boulardii supernatant on human Caco-2 cells; an in vitro study. Carpathian J Food Sci Technol 2020; 12(5): 181-9.
[64]
Oliveira DR, Lopes ACA, Pereira RA, Cardoso PG, Duarte WF. Selection of potentially probiotic Kluyveromyces lactis for the fermentation of cheese whey–based beverage. Ann Microbiol 2019; 69(13): 1361-72.
[http://dx.doi.org/10.1007/s13213-019-01518-y]
[65]
Gadaga T, Mutukumira AN, Narvhus JA, Feresu SB. A review of traditional fermented foods and beverages of Zimbabwe. Int J Food Microbiol 1999; 53(1): 1-11.
[http://dx.doi.org/10.1016/S0168-1605(99)00154-3] [PMID: 10598109]
[66]
Rezac S, Kok CR, Heermann M, Hutkins R. Fermented foods as a dietary source of live organisms. Front Microbiol 2018; 9: 1785.
[http://dx.doi.org/10.3389/fmicb.2018.01785] [PMID: 30197628]
[67]
Şanlier N, Gökcen BB, Sezgin AC. Health benefits of fermented foods. Crit Rev Food Sci Nutr 2019; 59(3): 506-27.
[http://dx.doi.org/10.1080/10408398.2017.1383355] [PMID: 28945458]
[68]
Sankaran R. Fermented foods of the Indian subcontinent. Microbiology of fermented foods. Springer 1998; pp. 753-89.
[http://dx.doi.org/10.1007/978-1-4613-0309-1_24]
[69]
Wood BJ. In: Microbiology of Fermented Foods. Springer Science & Business Media. 2012.
[70]
Blandino A, Al-Aseeri ME, Pandiella SS, Cantero D, Webb C. Cereal-based fermented foods and beverages. Food Res Int 2003; 36(6): 527-43.
[http://dx.doi.org/10.1016/S0963-9969(03)00009-7]
[71]
Adams MR. Fermented weaning foods. In: Microbiology of Fermented Foods. Springer 1998; pp. 790-811.
[http://dx.doi.org/10.1007/978-1-4613-0309-1_25]
[72]
Sarao LK, Arora M. Probiotics, prebiotics, and microencapsulation: A review. Crit Rev Food Sci Nutr 2017; 57(2): 344-71.
[http://dx.doi.org/10.1080/10408398.2014.887055] [PMID: 25848935]
[73]
de Araújo Etchepare M, Nunes GL, Nicoloso BR, et al. Improvement of the viability of encapsulated probiotics using whey proteins. Lebensm Wiss Technol 2020; 117: 108601.
[http://dx.doi.org/10.1016/j.lwt.2019.108601]
[74]
da Silva TM, de Deus C, de Souza Fonseca B, et al. The effect of enzymatic crosslinking on the viability of probiotic bacteria (Lactobacillus acidophilus) encapsulated by complex coacervation. Food Res Int 2019; 125: 108577.
[http://dx.doi.org/10.1016/j.foodres.2019.108577] [PMID: 31554127]
[75]
De Prisco A, Mauriello G. Probiotication of foods: A focus on microencapsulation tool. Trends Food Sci Technol 2016; 48: 27-39.
[http://dx.doi.org/10.1016/j.tifs.2015.11.009]
[76]
Colín-Cruz MA, Pimentel-González DJ, Carrillo-Navas H, Alvarez-Ramírez J, Guadarrama-Lezama AY. Co-encapsulation of bioactive compounds from blackberry juice and probiotic bacteria in biopolymeric matrices. Lebensm Wiss Technol 2019; 110: 94-101.
[http://dx.doi.org/10.1016/j.lwt.2019.04.064]
[77]
Saberi Riseh R, Skorik YA, Thakur VK, Moradi Pour M, Tamanadar E, Noghabi SS. Encapsulation of plant biocontrol bacteria with alginate as a main polymer material. Int J Mol Sci 2021; 22(20): 11165.
[http://dx.doi.org/10.3390/ijms222011165] [PMID: 34681825]
[78]
Frakolaki G, Katsouli M, Giannou V, Tzia C. Novel encapsulation approach for Bifidobacterium subsp. lactis (BB-12) viability enhancement through its incorporation into a double emulsion prior to the extrusion process. Lebensm Wiss Technol 2020; 130: 109671.
[http://dx.doi.org/10.1016/j.lwt.2020.109671]
[79]
Frakolaki G, Giannou V, Kekos D, Tzia C. A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods. Crit Rev Food Sci Nutr 2021; 61(9): 1515-36.
[http://dx.doi.org/10.1080/10408398.2020.1761773] [PMID: 32400195]
[80]
Timilsena YP, Akanbi TO, Khalid N, Adhikari B, Barrow CJ. Complex coacervation: Principles, mechanisms and applications in microencapsulation. Int J Biol Macromol 2019; 121: 1276-86.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.144] [PMID: 30352231]
[81]
Li Z, Yin X, Qin J, Zhu L. Preparation and hemocompatibility of electrospun bacteria cellulose sulfate/polyvinyl alcohol nanofibrous composite membrane. IOP Conference Series: Materials Science and Engineering 2018; 382(2): 22005.
[http://dx.doi.org/10.1088/1757-899X/382/2/022005]
[82]
Gunzburg WH, Aung MM, Toa P, et al. Efficient protection of microorganisms for delivery to the intestinal tract by cellulose sulphate encapsulation. Microb Cell Fact 2020; 19(1): 216.
[http://dx.doi.org/10.1186/s12934-020-01465-3] [PMID: 33243224]
[83]
Ardiansah I, Sholiha K, Sjofjan O. Dietary supplementation of powdered and encapsulated probiotic: in vivo study on relative carcass, giblet weight and intestinal morphometry of local duck. Acta Sci Anim Sci 2020; 42: e47140.
[http://dx.doi.org/10.4025/actascianimsci.v42i1.47140]
[84]
Gholam-Zhiyan A, Amiri S, Rezazadeh-Bari M, Pirsa S. Stability of Bacillus coagulans IBRC-M 10807 and Lactobacillus plantarum PTCC 1058 in milk proteins concentrate (mpc)-based edible film. J Pack Technol Res 2021; 5(1): 11-22.
[http://dx.doi.org/10.1007/s41783-021-00106-3]
[85]
Anselmo AC, McHugh KJ, Webster J, Langer R, Jaklenec A. Layer‐by‐layer encapsulation of probiotics for delivery to the microbiome. Adv Mater 2016; 28(43): 9486-90.
[http://dx.doi.org/10.1002/adma.201603270] [PMID: 27616140]
[86]
Hnin KK, Zhang M, Mujumdar AS, Zhu Y. Emerging food drying technologies with energy-saving characteristics: A review. Dry Technol 2018; 37(12): 1465-80.
[87]
Heidebach T, Först P, Kulozik U. Influence of casein-based microencapsulation on freeze-drying and storage of probiotic cells. J Food Eng 2010; 98(3): 309-16.
[http://dx.doi.org/10.1016/j.jfoodeng.2010.01.003]
[88]
Guergoletto KB, Tsuruda AY, Hirooka EY, et al. Dried probiotics for use in functional food applications. UK: Intech Open Access Publisher London 2012.
[89]
Reddy KBPK, Madhu AN, Prapulla SG. Comparative survival and evaluation of functional probiotic properties of spray-dried lactic acid bacteria. Int J Dairy Technol 2009; 62(2): 240-8.
[http://dx.doi.org/10.1111/j.1471-0307.2009.00480.x]
[90]
Huang S, Vignolles ML, Chen XD, et al. Spray drying of probiotics and other food-grade bacteria: A review. Trends Food Sci Technol 2017; 63: 1-17.
[http://dx.doi.org/10.1016/j.tifs.2017.02.007]
[91]
Desmond C, Ross RP, O’Callaghan E, Fitzgerald G, Stanton C. Improved survival of Lactobacillus paracasei NFBC 338 in spray-dried powders containing gum acacia. J Appl Microbiol 2002; 93(6): 1003-11.
[http://dx.doi.org/10.1046/j.1365-2672.2002.01782.x] [PMID: 12452956]
[92]
Homayouni A, Azizi A, Ehsani MR, Yarmand MS, Razavi SH. Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food Chem 2008; 111(1): 50-5.
[http://dx.doi.org/10.1016/j.foodchem.2008.03.036]
[93]
Succi M, Tremonte P, Reale A, Sorrentino E, Coppola R. Preservation by freezing of potentially probiotic strains of Lactobacillus rhamnosus. Ann Microbiol 2007; 57(4): 537-44.
[http://dx.doi.org/10.1007/BF03175352]
[94]
Zaeim D, Sarabi-Jamab M, Ghorani B, Kadkhodaee R, Tromp RH. Electrospray-assisted drying of live probiotics in acacia gum microparticles matrix. Carbohydr Polym 2018; 183: 183-91.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.001] [PMID: 29352873]
[95]
Nunes GL, Etchepare MA, Cichoski AJ, et al. Inulin, hi-maize, and trehalose as thermal protectants for increasing viability of Lactobacillus acidophilus encapsulated by spray drying. Lebensm Wiss Technol 2018; 89: 128-33.
[http://dx.doi.org/10.1016/j.lwt.2017.10.032]
[96]
Assadpour E, Jafari SM. Advances in spray-drying encapsulation of food bioactive ingredients: From microcapsules to nanocapsules. Annu Rev Food Sci Technol 2019; 10(1): 103-31.
[http://dx.doi.org/10.1146/annurev-food-032818-121641] [PMID: 30649963]
[97]
Lipan L, Rusu B, Sendra E, et al. Spray drying and storage of probiotic‐enriched almond milk: probiotic survival and physicochemical properties. J Sci Food Agric 2020; 100(9): 3697-708.
[http://dx.doi.org/10.1002/jsfa.10409] [PMID: 32248520]
[98]
Jokicevic K, Lebeer S, Kiekens F. Atomization gas type, device configuration and storage conditions strongly influence survival of Lactobacillus casei after spray drying. Dry Technol 2022; 40(3): 1-494-504.
[http://dx.doi.org/10.1080/07373937.2020.1809447]
[99]
Kiekens S, Vandenheuvel D, Broeckx G, et al. Impact of spray‐drying on the pili of Lactobacillus rhamnosus GG. Microb Biotechnol 2019; 12(5): 849-55.
[http://dx.doi.org/10.1111/1751-7915.13426] [PMID: 31225698]
[100]
Aminlari L, Shekarforoush SS, Hosseinzadeh S, Nazifi S, Sajedianfard J, Eskandari MH. Effect of probiotics Bacillus coagulans and Lactobacillus plantarum on lipid profile and feces bacteria of rats fed cholesterol-enriched diet. Probiotics Antimicrob Proteins 2019; 11(4): 1163-71.
[http://dx.doi.org/10.1007/s12602-018-9480-1] [PMID: 30368715]
[101]
Elisashvili V, Kachlishvili E, Chikindas ML. Recent advances in the physiology of spore formation for Bacillus probiotic production. Probiotics Antimicrob Proteins 2019; 11(3): 731-47.
[http://dx.doi.org/10.1007/s12602-018-9492-x] [PMID: 30515722]
[102]
Duc LH, Hong HA, Barbosa TM, Henriques AO, Cutting SM. Characterization of Bacillus probiotics available for human use. Appl Environ Microbiol 2004; 70(4): 2161-71.
[http://dx.doi.org/10.1128/AEM.70.4.2161-2171.2004] [PMID: 15066809]
[103]
Khatri I, Sharma G, Subramanian S. Composite genome sequence of Bacillus clausii, a probiotic commercially available as Enterogermina®, and insights into its probiotic properties. BMC Microbiol 2019; 19(1): 307.
[http://dx.doi.org/10.1186/s12866-019-1680-7] [PMID: 31888501]
[104]
Le Marrec C, Hyronimus B, Bressollier P, Verneuil B, Urdaci MC. Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I(4). Appl Environ Microbiol 2000; 66(12): 5213-20.
[http://dx.doi.org/10.1128/AEM.66.12.5213-5220.2000] [PMID: 11097892]
[105]
Jeon HL, Lee NK, Yang SJ, Kim WS, Paik HD. Probiotic characterization of Bacillus subtilis P223 isolated from kimchi. Food Sci Biotechnol 2017; 26(6): 1641-8.
[http://dx.doi.org/10.1007/s10068-017-0148-5] [PMID: 30263701]
[106]
Lee KH, Jun KD, Kim WS, Paik HD. Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Lett Appl Microbiol 2001; 32(3): 146-51.
[http://dx.doi.org/10.1046/j.1472-765x.2001.00876.x] [PMID: 11264742]
[107]
Arslan S, Eyi A, Küçüksarı R. Toxigenic genes, spoilage potential, and antimicrobial resistance of Bacillus cereus group strains from ice cream. Anaerobe 2014; 25: 42-6.
[http://dx.doi.org/10.1016/j.anaerobe.2013.11.006] [PMID: 24309214]
[108]
Newman AM, Arshad M. The role of probiotics, prebiotics and synbiotics in combating multidrug-resistant organisms. Clin Ther 2020; 42(9): 1637-48.
[http://dx.doi.org/10.1016/j.clinthera.2020.06.011] [PMID: 32800382]
[109]
Buyukeren M, Yigit S, Buyukcam A, Kara A, Celik HT, Yurdakok M. A new use of Lactobacillus rhamnosus GG administration in the NICU: colonized vancomycin-resistant enterococcus eradication in the gastrointestinal system. J Matern Neonatal Med 2022; 35(6): 1192-8.
[http://dx.doi.org/10.1080/14767058.2020.1743671]
[110]
Hua X-T, Tang J, Mu D-Z. Effect of oral administration of probiotics on intestinal colonization with drug-resistant bacteria in preterm infants. Zhongguo Dang Dai Er Ke Za Zhi 2014; 16(6): 606-9.
[PMID: 24927436]
[111]
Rongrungruang Y, Krajangwittaya D, Pholtawornkulchai K, Tiengrim S, Thamlikitkul V. Randomized controlled study of probiotics containing Lactobacillus casei (Shirota strain) for prevention of ventilator-associated pneumonia. J Med Assoc Thai 2015; 98(3): 253-9.
[PMID: 25920295]
[112]
Manokaran S, Jayasinghe MA, Senadheera AS, et al. Determination of glycaemic responses of low fat milk incorporated with whey proteins and oats powder. J Clin Nutr Diebetics 2018; 4(2): 8.
[http://dx.doi.org/10.4172/2472-1921.100070]
[113]
Yadav R, Kumar V, Baweja M, Shukla P. Gene editing and genetic engineering approaches for advanced probiotics: A review. Crit Rev Food Sci Nutr 2018; 58(10): 1735-46.
[http://dx.doi.org/10.1080/10408398.2016.1274877] [PMID: 28071925]
[114]
Aggarwal N, Breedon AME, Davis CM, Hwang IY, Chang MW. Engineering probiotics for therapeutic applications: recent examples and translational outlook. Curr Opin Biotechnol 2020; 65: 171-9.
[http://dx.doi.org/10.1016/j.copbio.2020.02.016] [PMID: 32304955]
[115]
Li N, Wang Y, Zhu P, Liu Z, Guo B, Ren J. Improvement of exopolysaccharide production in Lactobacillus casei LC2W by overexpression of NADH oxidase gene. Microbiol Res 2015; 171: 73-7.
[http://dx.doi.org/10.1016/j.micres.2014.12.006] [PMID: 25644955]
[116]
Wu Q, Shah NP. The potential of species-specific tagatose-6-phosphate (T6P) pathway in Lactobacillus casei group for galactose reduction in fermented dairy foods. Food Microbiol 2017; 62: 178-87.
[http://dx.doi.org/10.1016/j.fm.2016.10.027] [PMID: 27889146]
[117]
Yadav M, Shukla P. Efficient engineered probiotics using synthetic biology approaches: A review. Biotechnol Appl Biochem 2020; 67(1): 22-9.
[http://dx.doi.org/10.1002/bab.1822] [PMID: 31538358]
[118]
Shripada R, Gayatri A-J, Sanjay P. Paraprobiotics. Precis Med Investig Pract Provid 2020; pp. 39-49.
[119]
Barros CP, Guimarães JT, Esmerino EA, et al. Paraprobiotics and postbiotics: concepts and potential applications in dairy products. Curr Opin Food Sci 2020; 32: 1-8.
[http://dx.doi.org/10.1016/j.cofs.2019.12.003]
[120]
Siciliano RA, Reale A, Mazzeo MF, Morandi S, Silvetti T, Brasca M. Paraprobiotics: A new perspective for functional foods and nutraceuticals. Nutrients 2021; 13(4): 1225.
[http://dx.doi.org/10.3390/nu13041225] [PMID: 33917707]
[121]
de Almada CN, Almada CN, Martinez RCR, Sant’Ana AS. Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends Food Sci Technol 2016; 58: 96-114.
[http://dx.doi.org/10.1016/j.tifs.2016.09.011]
[122]
Sugawara T, Sawada D, Ishida Y, et al. Regulatory effect of paraprobiotic Lactobacillus gasseri CP2305 on gut environment and function. Microb Ecol Health Dis 2016; 27(1): 30259.
[PMID: 26979643]
[123]
Nishida K, Sawada D, Kuwano Y, et al. Daily administration of paraprobiotic Lactobacillus gasseri CP2305 ameliorates chronic stress-associated symptoms in Japanese medical students. J Funct Foods 2017; 36: 112-21.
[http://dx.doi.org/10.1016/j.jff.2017.06.031]
[124]
Zeng J, Jiang J, Zhu W, Chu Y. Heat-killed yogurt-containing lactic acid bacteria prevent cytokine-induced barrier disruption in human intestinal Caco-2 cells. Ann Microbiol 2016; 66(1): 171-8.
[http://dx.doi.org/10.1007/s13213-015-1093-2]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy