Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Mini-Review Article

Computational Techniques for Drug Repurposing: A Paradigm Shift in Drug Discovery

Author(s): Monica Raghavendra Prasad Rao*, Isha Sangram Ghadge, Saurav Prasanna Kulkarni and Tanya Asthana

Volume 18, Issue 4, 2023

Published on: 31 March, 2023

Page: [271 - 284] Pages: 14

DOI: 10.2174/1574885518666230207143523

Price: $65

Abstract

The last two years from 2020 to 2022 have seen the world face an unparalleled crisis in the form of the corona virus, which has challenged mankind as never before. The struggle and race to find a cure for the disease kept medical professionals, pharmacists, and scientists on their toes. Drug discovery by de novo approach was not an option due to its obvious downside of the enormous time required for the process. Hitherto unknown in public parlance, repurposing existing drugs showed the way forward for scientists. Drug repurposing involves redefining medical use for drugs that have crossed the drug discovery process and were approved, discontinued, or shelved. Drug repurposing or repositioning has shown effective results in treating several diseases. This review traces the journey of some repurposed drugs and provides an overview of computational methods used for repurposing, which include signature mapping, molecular docking, and in silico approaches. The review also highlights repurposed drugs for cancer, one of the most dreaded diseases, and how repurposing can prove to be a boon for many types of cancers. Concerted efforts to study this modality of drug discovery are the need of the hour. The article discusses various drugs which have been successfully repurposed for the treatment of a plethora of diseases. Drug repurposing is a silver lining that can reduce the arduous journey of discovering a definitive cure for a disease and has the potential to change the landscape of the drug discovery process.

Keywords: Repurposing, repositioning, computational, mapping, in silico, cancer, drug discovery.

Next »
Graphical Abstract
[1]
Parvathaneni V, Gupta V. Utilizing drug repurposing against COVID-19 – Efficacy, limitations, and challenges. Life Sci 2020; 259: 118275.
[http://dx.doi.org/10.1016/j.lfs.2020.118275] [PMID: 32818545]
[2]
Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol 2011; 162(6): 1239-49.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01127.x] [PMID: 21091654]
[3]
Zheng XT, Yu L, Li P, et al. On-chip investigation of cell–drug interactions. Adv Drug Deliv Rev 2013; 65(11-12): 1556-74.
[http://dx.doi.org/10.1016/j.addr.2013.02.001] [PMID: 23428898]
[4]
Hosseinkhani H. 3D in vitro technology for drug discovery. Curr Drug Saf 2012; 7(1): 37-43.
[http://dx.doi.org/10.2174/157488612800492753] [PMID: 22663957]
[5]
Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 2004; 3(8): 673-83.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[6]
Rudrapal M, Khairnar SJ, Jadhav AG. Drug Repurposing (DR): An Emerging Approach in Drug Discovery. Drug Repursing London: In Tech Open, 2020.
[7]
Jianghong F, Xinyuan Z. Connecting Hydroxychloroquine in vitro antiviral activity to in vivo concentration for prediction of antiviral effect: A critical step in treating patients with coronavirus disease. Oxford University Press for the Infectious Diseases Society of America 2020; 71(12): 3232-6.
[8]
Mohs RC, Greig NH. Drug discovery and development: Role of basic biological research. Alzheimers Dement 2017; 3(4): 651-7.
[http://dx.doi.org/10.1016/j.trci.2017.10.005] [PMID: 29255791]
[9]
Talevi A, Bellera CL. Challenges and opportunities with drug repurposing: finding strategies to find alternative uses of therapeutics. Expert Opin Drug Discov 2020; 15(4): 397-401.
[http://dx.doi.org/10.1080/17460441.2020.1704729] [PMID: 31847616]
[10]
Wishart D, Feunang Y, Guo A, Lo E, Marcu A, Grant J, et al. Drug Bank 5.0: a major update to the Drug Bank database for 2018. Nucleic Acids Res 2018; 46(D1): D1074-82.
[http://dx.doi.org/10.1093/nar/gkx1037]
[11]
Jourdan JP, Bureau R, Rochais C, Dallemagne P. Drug repositioning: a brief overview. J Pharm Pharmacol 2020; 72(9): 1145-51.
[http://dx.doi.org/10.1111/jphp.13273] [PMID: 32301512]
[12]
Fariha K, Mingming M, Muhammad F. Fahim-ullah Khan , Shai E. Elizur, et al. Aspirin repurposing in folate- decorated nanoparticles: Another way to target breast cancer. Front Mol Biosci 2022; 8: Article: 788279.
[13]
Poitras EL, Gust SL, Kerr PM, Plane F. Repurposing of the PDE5 inhibitor sildenafil for the treatment of persistent pulmonary hypertension in neonates. Curr Med Chem 2021; 28(12): 2418-37.
[http://dx.doi.org/10.2174/0929867327666200923151924] [PMID: 32964819]
[14]
Fukushiro-Lopes D, Hegel Alexandra D, Angela R, Vitalyi S, Margaret L. Repurposing Kir6/SUR2 channel activator minoxidil to arrests growth of gynecologic cancers Fron in Pharmacol 2020; 11.
[15]
Razieh M, Mohammad S, Sadaf N, Sevda S, Yahya J, Ahmad R. Drug Repositioning: A Review. J Iran Med Coun 2018; 1(1): 7-10.
[16]
Raje N, Anderson K. Thalidomide--a revival story. N Engl J Med 1999; 341(21): 1606-9.
[http://dx.doi.org/10.1056/NEJM199911183412110] [PMID: 10564693]
[17]
Gerson O, Penna C, Martelli M, Stefani V, Macedo C. Thalidomide in the treatment of erythema nodosumleprosum (ENL): systematic review of clinical trials and prospects of new investigations. An Bras Dermatol 2005; 80(5): 8678.
[18]
Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol 1971; 231(25): 232-5.
[http://dx.doi.org/10.1038/newbio231232a0] [PMID: 5284360]
[19]
Singh TU, Parida S, Lingaraju MC, Kesavan M, Kumar D, Singh RK. Drug repurposing approach to fight COVID-19. Pharmacol Rep 2020; 72(6): 1479-508.
[http://dx.doi.org/10.1007/s43440-020-00155-6] [PMID: 32889701]
[20]
Tian J, Zhang M, Jin M, et al. Repurposed Tocilizumab in patients with severe Covid 19. J Immunol 2021; 206(3): 599-606.
[http://dx.doi.org/10.4049/jimmunol.2000981] [PMID: 33298617]
[21]
Le RQ, Li L, Yuan W, et al. FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. Oncologist 2018; 23(8): 943-7.
[http://dx.doi.org/10.1634/theoncologist.2018-0028] [PMID: 29622697]
[22]
Choy EH, De Benedetti F, Takeuchi T, Hashizume M, John MR, Kishimoto T. Translating IL-6 biology into effective treatments. Nat Rev Rheumatol 2020; 16(6): 335-45.
[http://dx.doi.org/10.1038/s41584-020-0419-z] [PMID: 32327746]
[23]
Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy — assessment and management of toxicities. Nat Rev Clin Oncol 2018; 15(1): 47-62.
[http://dx.doi.org/10.1038/nrclinonc.2017.148] [PMID: 28925994]
[24]
Idro R, Kakooza-Mwesige A, Balyejjussa S, et al. Severe neurological sequelae and behaviour problems after cerebral malaria in Ugandan children. BMC Res Notes 2010; 3(1): 104.
[http://dx.doi.org/10.1186/1756-0500-3-104] [PMID: 20398391]
[25]
Yki-Järvinen H. Thiazolidinediones. N Engl J Med 2004; 351(11): 1106-18.
[http://dx.doi.org/10.1056/NEJMra041001] [PMID: 15356308]
[26]
Salzman A, Patel J. Rosiglitazone is not associated with hepatotoxicity. Diabetes 1999; 48(5): 114-5.
[27]
Bale TL, Baram TZ, Brown AS, et al. Early life programming and neurodevelopmental disorders. Biol Psychiatry 2010; 68(4): 314-9.
[http://dx.doi.org/10.1016/j.biopsych.2010.05.028] [PMID: 20674602]
[28]
Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 2007; 356(24): 2457-71.
[http://dx.doi.org/10.1056/NEJMoa072761] [PMID: 17517853]
[29]
Varo R, Crowley VM, Sitoe A, et al. Safety and tolerability of adjunctive rosiglitazone treatment for children with uncomplicated malaria. Malar J 2017; 16(1): 215.
[http://dx.doi.org/10.1186/s12936-017-1858-0] [PMID: 28535809]
[30]
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181(2): 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[31]
Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad, Ser B, Phys Biol Sci 2017; 93(7): 449-63.
[http://dx.doi.org/10.2183/pjab.93.027] [PMID: 28769016]
[32]
Tanaka T, Kamiyama T, Daikoku T, et al. T-705 (Favipiravir) suppresses tumor necrosis factor α production in response to influenza virus infection: A beneficial feature of T-705 as an anti-influenza drug. Acta Virol 2017; 61(1): 48-55.
[http://dx.doi.org/10.4149/av_2017_01_48] [PMID: 28105854]
[33]
Furuta Y, Takahashi K, Kuno-Maekawa M, et al. Mechanism of action of T-705 against influenza virus. Antimicrob Agents Chemother 2005; 49(3): 981-6.
[http://dx.doi.org/10.1128/AAC.49.3.981-986.2005] [PMID: 15728892]
[34]
Nutho B, Mahalapbutr P, Hengphasatporn K, et al. Why are lopinavir and ritonavir effective against newly emerged corona virus 2019? Atomistic Insights into the inhibitory mechanisms. Biochemistry 2020; 59(18): 1769-79.
[http://dx.doi.org/10.1021/acs.biochem.0c00160] [PMID: 32293875]
[35]
Bolcato G, Bissaro M, Pavan M, Sturlese M, Moro S. Targeting the coronavirus SARS-CoV-2: computational insights into the mechanism of action of the protease inhibitors lopinavir, ritonavir and nelfinavir. Sci Rep 2020; 10(1): 20927.
[http://dx.doi.org/10.1038/s41598-020-77700-z] [PMID: 33262359]
[36]
Hurle MR, Yang L, Xie Q, Rajpal DK, Sanseau P, Agarwal P. Computational drug repositioning: from data to therapeutics. Clin Pharmacol Ther 2013; 93(4): 335-41.
[http://dx.doi.org/10.1038/clpt.2013.1] [PMID: 23443757]
[37]
Palve V, Liao Y, Remsing Rix LL, Rix U. Turning liabilities into opportunities: Off-target based drug repurposing in cancer. Semin Cancer Biol 2021; 68: 209-29.
[http://dx.doi.org/10.1016/j.semcancer.2020.02.003] [PMID: 32044472]
[38]
Abels C, Soeberdt M. Can we teach old drugs new tricks?—Repurposing of neuropharmacological drugs for inflammatory skin diseases. Exp Dermatol 2019; 28(9): 1002-9.
[http://dx.doi.org/10.1111/exd.13987] [PMID: 31173654]
[39]
Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov 2006; 5(12): 993-6.
[http://dx.doi.org/10.1038/nrd2199] [PMID: 17139284]
[40]
Multiple conformations of phosphodiesterase-5: implications for enzyme function and drug development. The J Biol Chem 2006; 281(30): 21469-79. Available from: https://www.rcsb.org/
[http://dx.doi.org/10.1074/jbc.M512527200]
[41]
Cha Y, Erez T, Reynolds IJ, et al. Drug repurposing from the perspective of pharmaceutical companies. Br J Pharmacol 2018; 175(2): 168-80. Available from: https://www.rcsb.org/, doi: 10.1111/bph.13798
[PMID: 28369768]
[42]
Park K. A review of computational drug repurposing. Transl Clin Pharmacol 2019; 27(2): 59-63.
[http://dx.doi.org/10.12793/tcp.2019.27.2.59] [PMID: 32055582]
[43]
Singh D, Jain S, Adhaulia G, Barua S, Sachan A. Drug repositioning: Achievements, advancements and barriers. Int J ComprehenAdv Pharmacol 2019; 4(1): 11-6.
[44]
Low ZY, Farouk IA, Lal SK. Drug repositioning: new approaches and future prospects for life-debilitating diseases and the COVID-19 pandemic outbreak. Viruses 2020; 12(9): 1058.
[http://dx.doi.org/10.3390/v12091058] [PMID: 32972027]
[45]
March-Vila E, Pinzi L, Sturm N, et al. On the Integration of In Silico drug design methods for drug repurposing. Front Pharmacol 2017; 8(8): 298.
[http://dx.doi.org/10.3389/fphar.2017.00298] [PMID: 28588497]
[46]
Verma U, Sharma R, Gupta P, Kapoor B, Bano G, Sawhney V. New uses for old drugs: Novel therapeutic options. Int J Pharmacol 2005; 37(5): 279-87.
[47]
Samsdodd F. Target-based drug discovery: is something wrong? Drug Discov Today 2005; 10(2): 139-47.
[http://dx.doi.org/10.1016/S1359-6446(04)03316-1] [PMID: 15718163]
[48]
Pushpakom S, Iorio F, Eyers P, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 2019; 18(1): 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168]
[49]
Parvathaneni V, Kulkarni NS, Muth A. Drug repurposing: A promising tool to accelerate the drug discovery process 2019; 24(10): 2076-85.
[50]
Huang X, Guo B. Adenomatous polyposis coli determines sensitivity to histone deacetylase inhibitor-induced apoptosis in colon cancer cells. Cancer Res 2006; 66(18): 9245-51.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0887]
[51]
Moffat J, Vincent F, Lee J, Eder J, Prunotto M. Opportunities and challenges in phenotypic drug discovery: An industry perspective. 2017; 16(8): 531-43.
[http://dx.doi.org/10.1038/nrd.2017.111]
[52]
Stine ZE, Schug ZT, Salvino JM, et al. Targeting cancer metabolism in the era of precision oncology Nat Rev Drug Discov 2022; 21, 141-162.
[http://dx.doi.org/10.1038/s41573-021-00339-6] [PMID: 34862480]
[53]
Lago EM, Silva MP, Queiroz TG, et al. Phenotypic screening of nonsteroidal anti-inflammatory drugs identified mefenamic acid as a drug for the treatment of schistosomiasis. EBioMedicine 2019; 43: 370-9.
[http://dx.doi.org/10.1016/j.ebiom.2019.04.029] [PMID: 31027918]
[54]
Kidnapillai S, Bortolasci CC, Udawela M, et al. The use of a gene expression signature and connectivity map to repurpose drugs for bipolar disorder. World J Biol Psychiatry 2020; 21(10): 775-83.
[http://dx.doi.org/10.1080/15622975.2018.1492734] [PMID: 29956574]
[55]
Vargas DM, De Bastiani MA, Zimmer ER, Klamt F. Alzheimer’s disease master regulators analysis: search for potential molecular targets and drug repositioning candidates. Alzheimers Res Ther 2018; 10(1): 59.
[http://dx.doi.org/10.1186/s13195-018-0394-7] [PMID: 29935546]
[56]
Ma DL, Chan DSH, Leung CH. Drug repositioning by structure-based virtual screening. Chem Soc Rev 2013; 42(5): 2130-41.
[http://dx.doi.org/10.1039/c2cs35357a] [PMID: 23288298]
[57]
Pritchard JLE, O’Mara TA, Glubb DM. Enhancing the promise of drug repositioning through genetics. Front Pharmacol 2017; 8: 896.
[http://dx.doi.org/10.3389/fphar.2017.00896] [PMID: 29270124]
[58]
Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 2004; 3(11): 935-49.
[http://dx.doi.org/10.1038/nrd1549] [PMID: 15520816]
[59]
Li YY, An J, Jones SJM. A computational approach to finding novel targets for existing drugs. PLOS Comput Biol 2011; 7(9): e1002139.
[http://dx.doi.org/10.1371/journal.pcbi.1002139] [PMID: 21909252]
[60]
Banerjee S, Yadav S, Banerjee S, et al. Drug repurposing to identify nilotinib as a potential SARS-CoV-2 main protease inhibitor: Insights from a computational and in vitro study. J Chem Inf Model 2021; 61(11): 5469-83.
[http://dx.doi.org/10.1021/acs.jcim.1c00524] [PMID: 34666487]
[61]
Clarke CE, Deane KHO. Ropinirole versus bromocriptine for levodopa-induced complications in Parkinson’s disease. Cochrane Libr 2001; 2015(12): CD001517.
[http://dx.doi.org/10.1002/14651858.CD001517] [PMID: 11279719]
[62]
Adler CH, Sethi KD, Hauser RA, et al. Ropinirole for the treatment of early Parkinson’s disease. Neurology 1997; 49(2): 393-9.
[http://dx.doi.org/10.1212/WNL.49.2.393] [PMID: 9270567]
[63]
Singh A, Das DK, Kelley ME. Mecamylamine (Targacept). IDrugs 2006; 9(3): 205-17.
[PMID: 16523387]
[64]
George TP, Sacco KA, Vessicchio JC, Weinberger AH, Shytle RD. Nicotinic antagonist augmentation of selective serotonin reuptake inhibitor-refractory major depressive disorder. J Clin Psychopharmacol 2008; 28(3): 340-4.
[http://dx.doi.org/10.1097/JCP.0b013e318172b49e] [PMID: 18480694]
[65]
Levin ED, Simon BB. Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology (Berl) 1998; 138(3-4): 217-30.
[http://dx.doi.org/10.1007/s002130050667] [PMID: 9725745]
[66]
Visscher PM, Wray NR, Zhang Q, et al. 10 years of GWAS discovery: Biology, function, and translation. Am J Hum Genet 2017; 101(1): 5-22.
[http://dx.doi.org/10.1016/j.ajhg.2017.06.005] [PMID: 28686856]
[67]
Burton PR, Clayton DG, Cardon LR, et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet 2007; 39(11): 1329-37.
[http://dx.doi.org/10.1038/ng.2007.17] [PMID: 17952073]
[68]
Kwok MK, Lin SL, Schooling CM. Re-thinking Alzheimer’s disease therapeutic targets using gene-based tests. EBioMedicine 2018; 37: 461-70.
[http://dx.doi.org/10.1016/j.ebiom.2018.10.001] [PMID: 30314892]
[69]
Rodriguez-López J, Arrojo M, Paz E, Páramo M, Costas J. Identification of relevant hub genes for early intervention at gene coexpression modules with altered predicted expression in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98(71): 109815.
[http://dx.doi.org/10.1016/j.pnpbp.2019.109815] [PMID: 31715283]
[70]
Karunakaran KB, Chaparala S, Ganapathiraju MK. Potentially repurposable drugs for schizophrenia identified from its interactome. Sci Rep 2019; 9(1): 12682.
[http://dx.doi.org/10.1038/s41598-019-48307-w] [PMID: 31481665]
[71]
Chen A. PARP inhibitors: its role in treatment of cancer. Chin J Cancer 2011; 30(7): 463-71.
[http://dx.doi.org/10.5732/cjc.011.10111] [PMID: 21718592]
[72]
Du J, Jiang L, Chen F, Hu H, Zhou M. Cardiac glycoside ouabain exerts anticancer activity via downregulation of STAT3. Front Oncol 2021; 11: 684316.
[http://dx.doi.org/10.3389/fonc.2021.684316] [PMID: 34277430]
[73]
Similarity Searching of 3D Databases Using Clique Detection. Nicholas Rhodes, Peter Willett, Alain Calvet, James B. Dunbar, and Christine Humblet. J Chem Inf Comput Sci 2003; 43(2): 443-8.
[http://dx.doi.org/10.1021/ci025605o] [PMID: 12653507]
[74]
Vasudevan S, Moore J, Schymura Y, Churchill G. Shape-Based Reprofiling of FDA-Approved Drugs for the H1 Histamine Receptor. J Med Chem 2008; 28(3): 340-4.
[PMID: 22793499]
[75]
Vatansever E, Yang K, Drelich A, Kratch K, Cho C, et al. Bepridil is potent against SARS-CoV-2 in vitro. Proc Natl Acad Sci USA 2021; 118(10): e2012201118.
[http://dx.doi.org/10.1073/pnas.2012201118] [PMID: 33597253]
[76]
Chen Z, Liu X, Hogan W, Shenkman E, Bian J. Applications of artificial intelligence in drug development using real-world data. Drug Discov Today 2021; 26(5): 1256-64.
[http://dx.doi.org/10.1016/j.drudis.2020.12.013] [PMID: 33358699]
[77]
Xu H, Aldrich MC, Chen Q, et al. Validating drug repurposing signals using electronic health records: a case study of metformin associated with reduced cancer mortality. J Am Med Inform Assoc 2015; 22(1): 179-91.
[http://dx.doi.org/10.1136/amiajnl-2014-002649] [PMID: 25053577]
[78]
Wong Z, Zhou J, Zhang Q. Artificial Intelligence for infectious disease Big Data Analytics 2019; 24(1): 44-8.
[http://dx.doi.org/10.1016/j.idh.2018.10.002]
[79]
Dick S. Artifcial intelligence. Harv Data Sci Rev 2019; 1(1): 66.
[80]
Zeng X, Zhu S, Liu X, Zhou Y, Nussinov R, Cheng F. deepDR: a network-based deep learning approach to in silico drug repositioning. Bioinformatics 2019; 35(24): 5191-8.
[http://dx.doi.org/10.1093/bioinformatics/btz418] [PMID: 31116390]
[81]
Wan F, Hong L, Xiao A, Jiang T, Zeng J. NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug–target interactions. Bioinformatics 2019; 35(1): 104-11.
[http://dx.doi.org/10.1093/bioinformatics/bty543] [PMID: 30561548]
[82]
Li J, Zhang S, Liu T, Ning C, Zhang Z, Zhou W. Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction. Bioinformatics 2020; 36(8): 2538-46.
[http://dx.doi.org/10.1093/bioinformatics/btz965] [PMID: 31904845]
[83]
Ng YL, Salim CK, Chu JJH. Drug repurposing for COVID-19: Approaches, challenges and promising candidates. Pharmacol Ther 2021; 228: 107930.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107930] [PMID: 34174275]
[84]
De Giorgi V, Grazzini M, Gandini S, et al. Treatment with β-blockers and reduced disease progression in patients with thick melanoma. Arch Intern Med 2011; 171(8): 779-81.
[http://dx.doi.org/10.1001/archinternmed.2011.131] [PMID: 21518948]
[85]
Lippman ME, Cummings SR, Disch DP, et al. Effect of raloxifene on the incidence of invasive breast cancer in postmenopausal women with osteoporosis categorized by breast cancer risk. Clin Cancer Res 2006; 12(17): 5242-7.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0688] [PMID: 16951244]
[86]
Jiralerspong S, Palla SL, Giordano SH, et al. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol 2009; 27(20): 3297-302.
[http://dx.doi.org/10.1200/JCO.2009.19.6410] [PMID: 19487376]
[87]
Pérez-Plasencia C, Padilla-Benavides T, López-Urrutia E, Campos-Parra AD. Editorial: Repurposed drugs targeting cancer signaling pathways: Clinical insights to improve oncologic therapies. Front Oncol 2021; 11: 713040.
[http://dx.doi.org/10.3389/fonc.2021.713040]
[88]
Vazquez-Ortiz G, Chisholm C, Xu X, et al. Drug repurposing screen identifies lestaurtinib amplifies the ability of the poly (ADP-ribose) polymerase 1 inhibitor AG14361 to kill breast cancer associated gene-1 mutant and wild type breast cancer cells. Breast Cancer Res 2014; 16(3): R67.
[http://dx.doi.org/10.1186/bcr3682] [PMID: 24962108]
[89]
Normanno N, Morabito A, De Luca A, et al. Target-based therapies in breast cancer: current status and future perspectives. Endocr Relat Cancer 2009; 16(3): 675-702.
[http://dx.doi.org/10.1677/ERC-08-0208] [PMID: 19525314]
[90]
Muhammad A, Mehwish I, Daniyal M, Khan A. Awareness and current knowledge of breast cancer. Biol Res 2017; 50(1): 33.
[91]
Koyama H, Wada T, Nishizawa Y, et al. Cyclophosphamide-induced ovarian failure and its therapeutic significance in patients with breast cancer. Cancer 1977; 39(4): 1403-9.
[http://dx.doi.org/10.1002/1097-0142(197704)39:4<1403:AID-CNCR2820390408>3.0.CO;2-8] [PMID: 851940]
[92]
Jolivet J, Cowan KH, Curt GA, Clendeninn NJ, Chabner BA. The pharmacology and clinical use of methotrexate. N Engl J Med 1983; 309(18): 1094-104.
[http://dx.doi.org/10.1056/NEJM198311033091805] [PMID: 6353235]
[93]
Fernandes BJD, Miranda Silva C, Andrade JM, Matthes ÂCS, Coelho EB, Lanchote VL. Pharmacokinetics of cyclophosphamide enantiomers in patients with breast cancer. Cancer Chemother Pharmacol 2011; 68(4): 897-904.
[http://dx.doi.org/10.1007/s00280-011-1554-7] [PMID: 21290248]
[94]
Ge Y, Domschke C, Stoiber N, et al. Metronomic cyclophosphamide treatment in metastasized breast cancer patients: immunological effects and clinical outcome. Cancer Immunol Immunother 2012; 61(3): 353-62.
[http://dx.doi.org/10.1007/s00262-011-1106-3] [PMID: 21915801]
[95]
Walko CM, Lindley C. Capecitabine: A review. Clin Ther 2005; 27(1): 23-44.
[http://dx.doi.org/10.1016/j.clinthera.2005.01.005] [PMID: 15763604]
[96]
Mohammadpour R, Safarian S, Ejeian F, Sheikholya-Lavasani Z, Abdolmohammadi MH, Sheinabi N. Acetazolamide triggers death inducing autophagy in T‐47 D breast cancer cells. Cell Biol Int 2014; 38(2): 228-38.
[http://dx.doi.org/10.1002/cbin.10197] [PMID: 24155029]
[97]
Costa B, Amorim I, Gärtner F, Vale N. Understanding Breast cancer: from conventional therapies to repurposed drugs. Eur J Pharm Sci 2020; 151: 105401.
[http://dx.doi.org/10.1016/j.ejps.2020.105401] [PMID: 32504806]
[98]
Frontini L, Lissoni P, Vaghi M, et al. Enhancement of the efficacy of weekly low-dose taxotere by the long acting anti-prolactinemic drug cabergoline in pretreated metastatic breast cancer. Anticancer Res 2004; 24(6): 4223-6.
[PMID: 15736476]
[99]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[100]
Wang M, Wu X, Chai F, Zhang Y, Jiang J. Plasma prolactin and breast cancer risk: a meta- analysis. Sci Rep 2016; 6(1): 25998.
[http://dx.doi.org/10.1038/srep25998] [PMID: 27184120]
[101]
Clevenger CV, Furth PA, Hankinson SE, Schuler LA. The role of prolactin in mammary carcinoma. Endocr Rev 2003; 24(1): 1-27.
[http://dx.doi.org/10.1210/er.2001-0036] [PMID: 12588805]
[102]
Costa R, Santa-Maria CA, Scholtens DM, et al. A pilot study of cabergoline for the treatment of metastatic breast cancer. Breast Cancer Res Treat 2017; 165(3): 585-92.
[http://dx.doi.org/10.1007/s10549-017-4370-x] [PMID: 28674764]
[103]
Chauhan N, Maher DM, Hafeez BB, et al. Ormeloxifene nanotherapy for cervical cancer treatment. Int J Nanomedicine 2019; 14: 7107-21.
[http://dx.doi.org/10.2147/IJN.S200944] [PMID: 31564868]
[104]
Chauhan N, Maher D, Bilal H, Yee PC. Current and potential treatments for cervical cancer. Current Cancer Drug Targets 2013; 13(2): 205-20.
[105]
Chauhan N, Zaman MS, Yallapu MM, et al. Abstract 2753: Ormeloxifene inhibits cervical cancer cell growth through intrinsic apoptotic pathway. Cancer Res 2014; 74(19) (Supplement): 2753.
[http://dx.doi.org/10.1158/1538-7445.AM2014-2753]
[106]
Zhao Y, Wang X, Li L, Li C. Doxycycline inhibits proliferation and induces apoptosis of both human papillomavirus positive and negative cervical cancer cell lines. Can J Physiol Pharmacol 2016; 94(5): 526-33.
[http://dx.doi.org/10.1139/cjpp-2015-0481] [PMID: 26913972]
[107]
Yang B, Lu Y, Zhang A, et al. Correction: doxycycline induces apoptosis and inhibits proliferation and invasion of human cervical carcinoma stem cells. PLoS One 2015; 10(7): e0134201.
[http://dx.doi.org/10.1371/journal.pone.0134201] [PMID: 26207375]
[108]
Jan CI, Tsai MH, Chiu CF, Huang YP, Liu CJ, Chang NW. Chang. Fenofibrate suppresses oral tumorigenesis via reprogramming metabolic processes-Potential Drug repurposing for oral cancer. Int J Biol Sci 2016; 12(7): 786-98.
[http://dx.doi.org/10.7150/ijbs.13851] [PMID: 27313493]
[109]
Pires FR, Ramos AB, Oliveira JBC, Tavares AS, Luz PSR, Santos TCRB. Oral squamous cell carcinoma: clinicopathological features from 346 cases from a single Oral Pathology service during an 8-year period. J Appl Oral Sci 2013; 21(5): 460-7.
[http://dx.doi.org/10.1590/1679-775720130317] [PMID: 24212993]
[110]
Feller L, Lemmer J. oral squamous cell carcinoma: epidemiology, clinical presentation and treatment. J Cancer Ther 2012; 3(4): 263-8.
[http://dx.doi.org/10.4236/jct.2012.34037]
[111]
Lian X, Wang G, Zhou H, Zheng Z, Fu Y, Cai L. Anticancer properties of Fenofibrate- A repurposing use. J Cancer 2018; 9(9): 1527-37.
[http://dx.doi.org/10.7150/jca.24488] [PMID: 29760790]
[112]
Tsai SC, Tsai MH, Chiu CF, et al. AMPK-dependent signaling modulates the suppression of invasion and migration by fenofibrate in CAL 27 oral cancer cells through NF-κB pathway. Environ Toxicol 2016; 31(7): 866-76.
[http://dx.doi.org/10.1002/tox.22097] [PMID: 25545733]
[113]
Izyumov DS, Avetisyan AV, Pletjushkina OY, et al. “Wages of Fear”: transient threefold decrease in intracellular ATP level imposes apoptosis. Biochim Biophys Acta Bioenerg 2004; 1658(1-2): 141-7.
[http://dx.doi.org/10.1016/j.bbabio.2004.05.007] [PMID: 15282185]
[114]
Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 2007; 8(10): 774-85.
[http://dx.doi.org/10.1038/nrm2249] [PMID: 17712357]
[115]
Nunes M, Henriques Abreu M, Bartosch C, Ricardo S. Recycling the purpose of old drugs to treat ovarian cancer. Int J Mol Sci 2020; 21(20): 7768.
[http://dx.doi.org/10.3390/ijms21207768] [PMID: 33092251]
[116]
Yusuke K, Kouji B, Aruko K, Eiichiro T, Daisuke A. Current state and outlook for drug repositioning anticipated in the field of ovarian cancer. J Gynecolonco 2019; 30(1)
[117]
Chandra A, Pius C, Nabeel M, et al. Ovarian cancer: Current status and strategies for improving therapeutic outcomes. Cancer Med 2019; 8(16): 7018-31.
[http://dx.doi.org/10.1002/cam4.2560] [PMID: 31560828]
[118]
Hashimoto H, Messerli SM, Sudo T, Maruta H. Ivermectin inactivates the kinase PAK1 and blocks the PAK1-dependent growth of human ovarian cancer and NF2 tumor cell lines. Drug Discov Ther 2009; 3(6): 243-6.
[PMID: 22495656]
[119]
Hashimoto H, Sudo T, Maruta H, Nishimura R. The direct PAK1 inhibitor, TAT-PAK18, blocks preferentially the growth of human ovarian cancer cell lines in which PAK1 is abnormally activated by autophosphorylation at Thr 423. Drug Discov Ther 2010; 4(1): 1-4.
[PMID: 22491145]
[120]
Morita T, Nozawa Y. Effects of antifungal agents on ergosterol biosynthesis in Candida albicans and Trichophyton mentagrophytes: differential inhibitory sites of naphthiomate and miconazole. J Invest Dermatol 1985; 85(5): 434-7.
[http://dx.doi.org/10.1111/1523-1747.ep12277141] [PMID: 3902987]
[121]
Pounds R, Leonard S, Dawson C, Kehoe S. Repurposing itraconazole for the treatment of cancer. Oncol Lett 2017; 14(3): 2587-97.
[http://dx.doi.org/10.3892/ol.2017.6569] [PMID: 28927025]
[122]
Tsubamoto H, Sonoda T, Yamasaki M, Inoue K. Impact of combination chemotherapy with itraconazole on survival of patients with refractory ovarian cancer. Anticancer Res 2014; 34(5): 2481-7.
[PMID: 24778064]
[123]
Lockhart NR, Waddell JA, Schrock NE. Itraconazole therapy in a pancreatic adenocarcinoma patient: A case report. J Oncol Pharm Pract 2016; 22(3): 528-32.
[http://dx.doi.org/10.1177/1078155215572931] [PMID: 25670260]
[124]
Choi CH, Ryu JY, Cho YJ, et al. The anti-cancer effects of itraconazole in epithelial ovarian cancer. Sci Rep 2017; 7(1): 6552.
[http://dx.doi.org/10.1038/s41598-017-06510-7] [PMID: 28747628]
[125]
Chandwani A, Shuter J. Lopinavir/ritonavir in the treatment of HIV-1 infection: a review. Ther Clin Risk Manag 2008; 4(5): 1023-33.
[PMID: 19209283]
[126]
Kumar S, Bryant CS, Chamala S, et al. Ritonavir blocks AKT signaling, activates apoptosis and inhibits migration and invasion in ovarian cancer cells. Mol Cancer 2009; 8(1): 26.
[http://dx.doi.org/10.1186/1476-4598-8-26] [PMID: 19386116]
[127]
Sumanasuriya S, De Bono J. Treatment of advanced prostate cancer—A review of current therapies and future promise. Cold Spring Harb Perspect Med 2018; 8(6): a030635.
[http://dx.doi.org/10.1101/cshperspect.a030635] [PMID: 29101113]
[128]
Patel MI, Subbaramaiah K, Du B, et al. Celecoxib inhibits prostate cancer growth: evidence of a cyclooxygenase-2-independent mechanism. Clin Cancer Res 2005; 11(5): 1999-2007.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1877] [PMID: 15756026]
[129]
Bennett A. The production of prostanoids in human cancers, and their implications for tumor progression. Prog Lipid Res 1986; 25(1-4): 539-42.
[http://dx.doi.org/10.1016/0163-7827(86)90109-8] [PMID: 3321094]
[130]
Al Ghandour R. Mansoura University. Repurposing metformin as anticancer drug: Randomized controlled trial in advanced prostate cancer (MANSMED). Urol Oncol 2021; 39(12): 831.
[131]
Turecka K, Chylewska A, Kawiak A, Waleron KF. Antifungal activity and mechanism of action of the Co(III) coordination complexes with diamine chelate ligands against reference and clinical strains of Candida spp. Front Microbiol 2018; 9: 1594.
[http://dx.doi.org/10.3389/fmicb.2018.01594] [PMID: 30072969]
[132]
Xu W, Bubley GJ. Repurposed drugs for prostate cancer. Cancer J 2019; 25(2): 121-6.
[http://dx.doi.org/10.1097/PPO.0000000000000362] [PMID: 30896534]
[133]
Byar DP, Corle DK. Hormone therapy for prostate cancer: results of the Veterans Administration Cooperative Urological Research Group studies. NCI Monogr 1988; 7(7): 165-70.
[PMID: 3050535]
[134]
Chang A, Yeap B, Davis T, et al. Double-blind, randomized study of primary hormonal treatment of stage D2 prostate carcinoma: flutamide versus diethylstilbestrol. J Clin Oncol 1996; 14(8): 2250-7.
[http://dx.doi.org/10.1200/JCO.1996.14.8.2250] [PMID: 8708714]
[135]
Turanli B, Grøtli M, Boren J, et al. Drug repositioning for effective prostate cancer treatment. Front Physiol 2018; 9: 500.
[http://dx.doi.org/10.3389/fphys.2018.00500] [PMID: 29867548]
[136]
Koltai T. Nelfinavir and other protease inhibitors in cancer: mechanisms involved in anticancer activity. F1000 Res 2015; 4: 9.
[http://dx.doi.org/10.12688/f1000research.5827.2] [PMID: 26097685]
[137]
Nowak-Sliwinska P, Scapozza L, Ruiz i Altaba A. Drug repurposing in oncology: Compounds, pathways, phenotypes and computational approaches for colorectal cancer. Biochim Biophys Acta Rev Cancer 2019; 1871(2): 434-54.
[http://dx.doi.org/10.1016/j.bbcan.2019.04.005] [PMID: 31034926]
[138]
Lan Z, Chong Z, Liu C, et al. Amantadine inhibits cellular proliferation and induces the apoptosis of hepatocellular cancer cells in vitro. Int J Mol Med 2015; 36(3): 904-10.
[http://dx.doi.org/10.3892/ijmm.2015.2289] [PMID: 26201988]
[139]
Rotbart HA, Webster AD. Treatment of potentially life-threatening enterovirus infections with pleconaril. Clin Infect Dis 2001; 32(2): 228-35.
[http://dx.doi.org/10.1086/318452] [PMID: 11170912]
[140]
Melotti A, Mas C, Kuciak M, et al. The river blindness drug I vermectin and related macrocyclic lactones inhibit WNT ‐ TCF pathway responses in human cancer. EMBO Mol Med 2014; 6(10): 1263-78.
[http://dx.doi.org/10.15252/emmm.201404084] [PMID: 25143352]
[141]
Linares MA, Zakaria A, Nizran P. Skin cancer. Prim Care 2015; 42(4): 645-59.
[http://dx.doi.org/10.1016/j.pop.2015.07.006] [PMID: 26612377]
[142]
Rebecca L, Siegel M, Kimberley D, Miller M, Jemal A. Cancer statistics. CA:A Cancer. J Clini 2020; 70(1): 7-30.
[143]
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136(5): E359-86.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[144]
Lucena S, Salazar N, Gracia-Cazaña T, et al. Combined treatments with photodynamic therapy for non-melanoma skin cancer. Int J Mol Sci 2015; 16(10): 25912-33.
[http://dx.doi.org/10.3390/ijms161025912] [PMID: 26516853]
[145]
Szeimies RM, Morton CA, Sidoroff A, Braathen LR. Photodynamic therapy for non-melanoma skin cancer. Acta Derm Venereol 2005; 85(6): 483-90.
[PMID: 16396794]
[146]
Benedict S, Yenice K, Followill D, Galvin J, Hinson W, Kavanagh B. Stereotactic body radiation therapy: The report of AAPM task group. 2010; 37(8): 4078-101.
[147]
Rowe D, Carroll RJ, Day CL Jr. Mohs surgery is the treatment of choice for recurrent (previously treated) basal cell carcinoma. J Dermatol Surg Oncol 1989; 15(4): 424-31.
[http://dx.doi.org/10.1111/j.1524-4725.1989.tb03249.x] [PMID: 2925988]
[148]
Jelena G, Tatjana S-R, Juan FS, Marijana P. Milena Č Siniša R. Telmisartan induces melanoma cell apoptosis and synergizes with vemurafenib in vitro by altering cell bioenergetics. Cancer Biol Med 2019; 16(2): 247-63.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2018.0375] [PMID: 31516746]
[149]
Amano Y, Yamaguchi T, Ohno K, et al. Structural basis for telmisartan-mediated partial activation of PPAR gamma. Hypertens Res 2012; 35: 715-9. Available from: https://www.rcsb.org/
[http://dx.doi.org/10.1038/hr.2012.17]
[150]
Tachibana K, Yamasaki D, Ishimoto K, Doi T. The role of PPARs in cancer. PPAR Res 2008; 2008(102737): 1-15. Available from: https://www.rcsb.org/
[http://dx.doi.org/10.1155/2008/102737]
[151]
Otake AH, Mattar AL, Freitas HC, et al. Inhibition of angiotensin II receptor 1 limits tumor-associated angiogenesis and attenuates growth of murine melanoma. Cancer Chemother Pharmacol 2010; 66(1): 79-87.
[http://dx.doi.org/10.1007/s00280-009-1136-0] [PMID: 19771429]
[152]
Mössner R, Schulz U, Krüger U, et al. Agonists of peroxisome proliferator-activated receptor γ inhibit cell growth in malignant melanoma. J Invest Dermatol 2002; 119(3): 576-82.
[http://dx.doi.org/10.1046/j.1523-1747.2002.01861.x] [PMID: 12230498]
[153]
Paulitschke V, Gruber S, Hofstätter E, et al. Proteome analysis identified the PPARγ ligand 15d-PGJ2 as a novel drug inhibiting melanoma progression and interfering with tumor-stroma interaction. PLoS One 2012; 7(9): e46103.
[http://dx.doi.org/10.1371/journal.pone.0046103] [PMID: 23049949]
[154]
Botton T, Puissant A, Bahadoran P, et al. In vitro and in vivo anti-melanoma effects of ciglitazone. J Invest Dermatol 2009; 129(5): 1208-18.
[http://dx.doi.org/10.1038/jid.2008.346] [PMID: 19177142]
[155]
Zhang S, Wang Y. Telmisartan inhibits NSCLC A549 cell proliferation and migration by regulating the PI3K/AKT signaling pathway. Oncol Lett 2018; 15(4): 5859-64.
[http://dx.doi.org/10.3892/ol.2018.8002] [PMID: 29552215]
[156]
Freudlsperger C, Schumacher U, Reinert S, Hoffmann J. The critical role of PPARgamma in human malignant melanoma. PPAR Res 2008; 2008(503797): 503797.
[PMID: 18483619]
[157]
Eichhorn EJ, Gheorghiade M. Digoxin. Prog Cardiovasc Dis 2002; 44(4): 251-66.
[http://dx.doi.org/10.1053/pcad.2002.31591] [PMID: 12007081]
[158]
Eskiocak U, Ramesh V, Gill JG, et al. Synergistic effects of ion transporter and MAP kinase pathway inhibitors in melanoma. Nat Commun 2016; 7(1): 12336.
[http://dx.doi.org/10.1038/ncomms12336] [PMID: 27545456]
[159]
Smolarczyk R. Cichoń T, Pilny E, et al. Combination of anti-vascular agent - DMXAA and HIF-1α inhibitor - digoxin inhibits the growth of melanoma tumors. Sci Rep 2018; 8(1): 7355.
[http://dx.doi.org/10.1038/s41598-018-25688-y] [PMID: 29743548]
[160]
Frankel AE, Eskiocak U, Gill JG, et al. Digoxin plus trametinib therapy achieves disease control in BRAF wild-type metastatic melanoma patients. Neoplasia 2017; 19(4): 255-60.
[http://dx.doi.org/10.1016/j.neo.2017.01.010] [PMID: 28278423]
[161]
Elmaci I, Altinoz MA. Targeting the cellular schizophrenia. Likely employment of the antipsychotic agent pimozide in treatment of refractory cancers and glioblastoma. Crit Rev Oncol Hematol 2018; 128: 96-109.
[http://dx.doi.org/10.1016/j.critrevonc.2018.06.004] [PMID: 29958636]
[162]
Jia H, Ren W, Feng Y. The enhanced antitumor response of pimozide combined with the IDO inhibitor L-MT in melanoma 2018; 53(3): 949-60.
[163]
Boia-Ferreira M, Basílio AB, Hamasaki AE, et al. TCTP as a therapeutic target in melanoma treatment. Br J Cancer 2017; 117(5): 656-65.
[http://dx.doi.org/10.1038/bjc.2017.230] [PMID: 28751755]
[164]
Neifeld JP, Tormey DC, Baker MA, Meyskens FL Jr, Taub RN. Phase II trial of the dopaminergic inhibitor pimozide in previously treated melanoma patients. Cancer Treat Rep 1983; 67(2): 155-7.
[PMID: 6825122]
[165]
Choi J, Lee YJ, Yoon YJ, et al. Pimozide suppresses cancer cell migration and tumor metastasis through binding to ARPC2, a subunit of the Arp2/3 complex. Cancer Sci 2019; 110(12): 3788-801.
[http://dx.doi.org/10.1111/cas.14205] [PMID: 31571309]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy