Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

One-Step, Low-Cost, Operator-Friendly, and Scalable Procedure to Synthetize Novel Tetrazolopyrimidinylbenzopyran-2-ones by Benign Protocol

Author(s): Eman A. Ahmed, Ahmed Khodairy, Mahmoud Abd El Aleem Ali Ali El-Remaily* and Abdelraheem M. Ahmed

Volume 26, Issue 24, 2022

Published on: 20 February, 2023

Page: [2214 - 2222] Pages: 9

DOI: 10.2174/1385272827666230206162235

Price: $65

Open Access Journals Promotions 2
Abstract

New coumarin chalcones 3j-p were conveniently obtained in high yields via Claisen-Schmidt condensation reaction, when acetyl coumarin 1 reacted with 3-aryl-1-phenyl pyrazole-4-carbaldehydes 2j-p in boiling ethanol in the presence of triethyl amine as a catalyst. Also, two synthetic pathways were afforded for the synthesis of novel tetrazolo[1,5- a]pyrimidinyl-2H-chromen-2-ones 5a-p. The first pathway is a multistep process including formation and separation of chalcones, which then were allowed to react with 5-aminotetrazole 4. While, the second pathway is a highly efficient one-pot three-component condensation reaction of 3-acetyl coumarin 1, aromatic aldehydes 2a-p and 5-aminotetrazole 4 under green and mild reaction conditions by using acetic acid (AcOH) as a catalyst and solvent. The molecular structure of products was established on the basis of their NMRs, IR and elemental analysis data. Solvent optimization was carried out in the reaction producing 3-(5-Phenyl-4,5-dihydrotetrazolo[1,5- a]pyrimidin-7-yl)-2H-chromen-2-one (5a). The advantages to using environmental-friendly acetic acid are simple operation, short reaction time, high efficient (97%), operationally facile and wide tolerance of starting materials.

Keywords: 5-Aminotetrazole, 3-acetyl coumarin, chalcones, pyrimidines, benign protocol, three-component reaction, condensation.

Graphical Abstract
[1]
Chougala, B.M.; Samundeeswari, S.; Holiyachi, M.; Naik, N.S.; Shastri, L.A.; Dodamani, S.; Jalalpure, S.; Dixit, S.R.; Joshi, S.D.; Sunagar, V.A. Green, unexpected synthesis of bis-coumarin derivatives as potent anti-bacterial and anti-inflammatory agents. Eur. J. Med. Chem., 2018, 143, 1744-1756.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.072] [PMID: 29133055]
[2]
Kim, Y.; Bang, O.Y. Paradoxical procoagulant effect of early doses of warfarin: Possible role of non-vitamin K oral anticoagulant in patients with atrial fibrillation-related stroke. J. Stroke, 2015, 17(2), 216-218.
[http://dx.doi.org/10.5853/jos.2015.17.2.216] [PMID: 26060809]
[3]
Hassan, M.Z.; Osman, H.; Ali, M.A.; Ahsan, M.J. Therapeutic potential of coumarins as antiviral agents. Eur. J. Med. Chem., 2016, 123, 236-255.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.056] [PMID: 27484512]
[4]
Anjaiah, C.; Nagamani, M.; Abraham Lincoln, C.; Ashok, D. Microwave-assisted synthesis and antimicrobial activity of 3-(Arylsulfanyl)-4-hydroxy-2H-chromen-2-ones. Russ. J. Gen. Chem., 2018, 88(10), 2149-2153.
[http://dx.doi.org/10.1134/S1070363218100201]
[5]
Sumorek-Wiadro, J.; Zając, A.; Maciejczyk, A.; Jakubowicz-Gil, J. Furanocoumarins in anticancer therapy - For and against. Fitoterapia, 2020, 142, 104492.
[http://dx.doi.org/10.1016/j.fitote.2020.104492] [PMID: 32032635]
[6]
Kaur, H.; Malik, D.; Kaur, G. Enhanced dissolution and antioxidant activity of chrysin nanoparticles employing co-precipitation as a technique. Pharm. Nanotechnol., 2016, 3(3), 205-218.
[http://dx.doi.org/10.2174/2211738504666151127192541]
[7]
Al-Amiery, A.; Al-Majedy, Y.; Kadhum, A.; Mohamad, A. New coumarin derivative as an eco-friendly inhibitor of corrosion of mild steel in Acid medium. Molecules, 2014, 20(1), 366-383.
[http://dx.doi.org/10.3390/molecules20010366] [PMID: 25551187]
[8]
Lei, L.; Xue, Y.; Liu, Z.; Peng, S.; He, Y.; Zhang, Y.; Fang, R.; Wang, J.; Luo, Z.; Yao, G.; Zhang, J.; Zhang, G.; Song, H.; Zhang, Y. Coumarin derivatives from Ainsliaea fragrans and their anticoagulant activity. Sci. Rep., 2015, 5(1), 13544.
[http://dx.doi.org/10.1038/srep13544] [PMID: 26315062]
[9]
Stiefel, C.; Schubert, T.; Morlock, G.E. Bioprofiling of cosmetics with focus on streamlined coumarin analysis. ACS Omega, 2017, 2(8), 5242-5250.
[http://dx.doi.org/10.1021/acsomega.7b00562] [PMID: 30023744]
[10]
Pingaew, R.; Saekee, A.; Mandi, P.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, biological evaluation and molecular docking of novel chalcone-coumarin hybrids as anticancer and antimalarial agents. Eur. J. Med. Chem., 2014, 85, 65-76.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.087] [PMID: 25078311]
[11]
Xu, M.; Wu, P.; Shen, F.; Ji, J.; Rakesh, K.P. Chalcone derivatives and their antibacterial activities: Current development. Bioorg. Chem., 2019, 91, 103133.
[http://dx.doi.org/10.1016/j.bioorg.2019.103133] [PMID: 31374524]
[12]
de Mello, M.V.P.; Abrahim-Vieira, B.A.; Domingos, T.F.S.; de Jesus, J.B.; de Sousa, A.C.C.; Rodrigues, C.R.; Souza, A.M.T. A comprehensive review of chalcone derivatives as antileishmanial agents. Eur. J. Med. Chem., 2018, 150, 920-929.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.047] [PMID: 29602038]
[13]
Vazquez-Rodriguez, S.; Figueroa-Guíñez, R.; Matos, M.J.; Santana, L.; Uriarte, E.; Lapier, M.; Maya, J.D.; Olea-Azar, C. Synthesis of coumarin-chalcone hybrids and evaluation of their antioxidant and trypanocidal properties. MedChemComm, 2013, 4(6), 993-1000.
[http://dx.doi.org/10.1039/c3md00025g]
[14]
Sahu, M.; Siddiqui, N. A review on biological importance of pyrimidines in the new era. Int. J. Pharm. Pharm. Sci., 2016, 8(5), 8-21.
[15]
Hussein, A.M.; Ahmed, O.M. Regioselective one-pot synthesis and anti-proliferative and apoptotic effects of some novel tetrazolo[1,5-a]pyrimidine derivatives. Bioorg. Med. Chem., 2010, 18(7), 2639-2644.
[http://dx.doi.org/10.1016/j.bmc.2010.02.028] [PMID: 20227281]
[16]
Dougherty, A.M.; Guo, H.; Westby, G.; Liu, Y.; Simsek, E.; Guo, J.T.; Mehta, A.; Norton, P.; Gu, B.; Block, T.; Cuconati, A. A substituted tetrahydro-tetrazolo-pyrimidine is a specific and novel inhibitor of hepatitis B virus surface antigen secretion. Antimicrob. Agents Chemother., 2007, 51(12), 4427-4437.
[http://dx.doi.org/10.1128/AAC.00541-07] [PMID: 17875990]
[17]
Haleel, A.; Arthi, P.; Dastagiri Reddy, N.; Veena, V.; Sakthivel, N.; Arun, Y.; Perumal, P.T.; Kalilur, R.A. DNA binding, molecular docking and apoptotic inducing activity of Nickel(II), Copper(II) and Zinc(II) complexes of pyridine-based tetrazolo[1,5-a]pyrimidine ligands. RSC Advances, 2014, 4(105), 60816-60830.
[http://dx.doi.org/10.1039/C4RA11197D]
[18]
Zeng, L.Y.; Cai, C. Iodine catalyzed one-pot multicomponent synthesis of a library of compounds containing tetrazolo[1,5-a]pyrimidine core. J. Comb. Chem., 2010, 12(1), 35-40.
[http://dx.doi.org/10.1021/cc9000983] [PMID: 19950908]
[19]
Yao, C.; Lei, S.; Wang, C.; Yu, C.; Tu, S. Solvent-free synthesis of 5-methyl-7-aryl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylic esters catalyzed by sulfamic acid. J. Heterocycl. Chem., 2008, 45(6), 1609-1613.
[http://dx.doi.org/10.1002/jhet.5570450609]
[20]
Gein, V.L.; Vladimirov, I.N.; Fedorova, O.V.; Kurbatova, A.A.; Nosova, N.V.; Krylova, I.V.; Vakhrin, M.I. Synthesis of alkyl 5-aryl-7-methyl-1,5-dihydrotetrazolo-[1,5-a]pyrimidine-6-carboxylates. Russ. J. Org. Chem., 2010, 46(5), 699-705.
[http://dx.doi.org/10.1134/S1070428010050180]
[21]
Orlov, V.D.; Desenko, S.M.; Pivnenko, N.S. Synthesis and tautomerism of 5,7-diaryl-4,7(6,7)-dihydrotetrazolo[1,5a]pyrimidines. Chem. Heterocycl. Compd., 1988, 24(11), 1233-1237.
[http://dx.doi.org/10.1007/BF00633502]
[22]
Ghorbani-Vaghei, R.; Toghraei-Semiromi, Z.; Amiri, M.; Karimi-Nami, R. One-pot synthesis of tetrazolo[1,5-a]pyrimidines under solvent-free conditions. Mol. Divers., 2013, 17(2), 307-318.
[http://dx.doi.org/10.1007/s11030-013-9435-0] [PMID: 23588896]
[23]
Maleki, A.; Niksefat, M.; Rahimi, J.; Azadegan, S. Facile synthesis of tetrazolo[1,5-a]pyrimidine with the aid of an effective gallic acid nanomagnetic catalyst. Polyhedron, 2019, 167, 103-110.
[http://dx.doi.org/10.1016/j.poly.2019.04.015]
[24]
Shekarlab, N.; Ghorbani-Vaghei, R.; Alavinia, S. Nickel (II) coordination on cross-linked poly triazine-urea-sulfonamide grafted onto Mg-Al LDHs: As a green catalytic system for the synthesis of tetrazolo[1,5-a] pyrimidines. J. Organomet. Chem., 2021, 949, 121971.
[http://dx.doi.org/10.1016/j.jorganchem.2021.121971]
[25]
El-Remaily, M.A.E.A.A.A. Synthesis of pyranopyrazoles using magnetic Fe3O4 nanoparticles as efficient and reusable catalyst. Tetrahedron, 2014, 70(18), 2971-2975.
[http://dx.doi.org/10.1016/j.tet.2014.03.024]
[26]
Ahmed, E.A.; Mohamed, M.A.; El-Saghier, A.M. One-pot synthesis of dihydropyrimidin-2 (1H)-ones catalyzed by Ceric (IV) Ammonium Nitrate (CAN) under solvent free conditions. J. Am. Sci., 2012, 8(8), 215-218.
[http://dx.doi.org/10.7537/marsjas080812.122]
[27]
Balijapalli, U.; Munusamy, S.; Sundaramoorthy, K.N.; Iyer, S.K. Metal-Free, one-pot, rapid synthesis of Tetrahydropyridines using acetic acid as solvent and catalyst at room temperature. Synth. Commun., 2014, 44(7), 943-953.
[http://dx.doi.org/10.1080/00397911.2013.838266]
[28]
(a) Abd El Aleem Ali Ali El-Remaily, M.; Hamad, H.A. Synthesis and characterization of highly stable superparamagnetic CoFe2O4 nanoparticles as a catalyst for novel synthesis of thiazolo[4,5-b]quinolin-9-one derivatives in aqueous medium. J. Mol. Catal. Chem., 2015, 404-405, 148-155.
[http://dx.doi.org/10.1016/j.molcata.2015.04.023];
(b) El-Remaily, M.A.E.A.A.A.; Abu-Dief, A.M. CuFe2O4 nanoparticles: an efficient heterogeneous magnetically separable catalyst for synthesis of some novel propynyl-1H-imidazoles derivatives. Tetrahedron, 2015, 71(17), 2579-2584.
[http://dx.doi.org/10.1016/j.tet.2015.02.057];
(c) El-Remaily, M.A.E.A.A.A.; Soliman, A.M.M. Epichlorohydrin cross-linked β -cyclodextrin: an environmental method for the synthesis of 2-arylbenzothiazoles derivatives in water. J. Sulfur Chem., 2016, 37(1), 70-79.
[http://dx.doi.org/10.1080/17415993.2015.1089874];
(d) Shokr, E.K.; Kamel, M.S.; Abdel-Ghany, H.; El- Remaily, M.A.E.A.A.A.; Abdou, A. Synthesis, characterization, and DFT study of linear and non-linear optical properties of some novel thieno[2,3-b]thiophene azo dye derivatives. Mater. Chem. Phys., 2022, 290, 126646.
[http://dx.doi.org/10.1016/j.matchemphys.2022.126646]
[29]
(a) El-Remaily, M.A.E.A.A.A. Bismuth triflate: A highly efficient catalyst for the synthesis of bio-active coumarin compounds via one-pot multi-component reaction. Chin. J. Catal., 2015, 36(7), 1124-1130.
[http://dx.doi.org/10.1016/S1872-2067(14)60308-9];
(b) El Remaily, M.A.E.A.A.A.; Mohamed, S.K. Eco-friendly synthesis of guanidinyltetrazole compounds and 5-substituted 1H-tetrazoles in water under microwave irradiation. Tetrahedron, 2014, 70(2), 270-275.
[http://dx.doi.org/10.1016/j.tet.2013.11.069];
(c) Elkanzi, N.A.A.; Kadry, A.M.; Ryad, R.M.; Bakr, R.B.; Ali El-Remaily, M.A.E.A.A.; Ali, A.M. Efficient and recoverable bio-organic catalyst cysteine for synthesis, docking study, and antifungal activity of new bio-active 3,4-Dihydropyrimidin-2(1 H)-ones/thiones under microwave irradiation. ACS Omega, 2022, 7(26), 22839-22849.
[http://dx.doi.org/10.1021/acsomega.2c02449] [PMID: 35811927];
(d) Abdel‐Rahman, L. H.; Abdel‐Mawgoud, A. M. M.; Mohamed, S. K.; Shehata, M. R.; Abdel‐Hameed, M.; El-Remaily, M. A. A. Synthesis, spectroscopic, DFT calculations, antimicrobial, cytotoxicity, and DNA binding studies of novel Cu (II), Ni (II), Zn (II), and VO (II) Schiff base complexes based on ibuprofen. Appl. Organomet. Chem., 2022, 36(10), e6817.
[http://dx.doi.org/10.1002/aoc.6817]
[30]
(a) Soliman, A.M.; Mohamed, S.K.; El Remaily, M.A.A.; Abdel-Ghany, H. Synthesis and biological activity of dihydroimidazole and 3,4-dihydrobenzo[4,5]imidazo[1,2-a][1,3,5]triazins. Eur. J. Med. Chem., 2012, 47(1), 138-142.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.034] [PMID: 22093758];
(b) Ahmed, A.M.; Abdel-Ghany, H.; Moustafa, H.M.; Khodairy, A. New route for the synthesis of hetaryl-1,5-benzodiazepines: Part 2. J. Heterocycl. Chem., 2019, 56(2), 464-469.
[http://dx.doi.org/10.1002/jhet.3420];
(c) Abdel-Ghany, H.; El-Sayed, A.M.; Amer, A.A.; Ahmed, A.M. Synthesis of novel fused heterocycles based on 6-Amino-4-phenyl-2-thioxo-1,2-dihydropyridine-3,5-dicarbonitrile. J. Heterocycl. Chem., 2016, 53(6), 2013-2019.
[http://dx.doi.org/10.1002/jhet.2522];
(d) Tyrkov, A.G.; Abdel’rakhim, M.A.; Sukhenko, L.T.; Degtyarev, O.V. Synthesis and antifungal activity of substituted nitrotetrazole-5-carbaldehyde hydrazones. Pharm. Chem. J., 2014, 47(11), 589-592.
[http://dx.doi.org/10.1007/s11094-014-1013-y]
[31]
(a) El-Remaily, M.A.E.A.A.A.; Elhady, O.M. Iron (III)‐porphyrin complex FeTSPP as an efficient catalyst for synthesis of tetrazole derivatives via [2 + 3]cycloaddition reaction in aqueous medium. Appl. Organomet. Chem., 2019, 33(8), e4989.
[http://dx.doi.org/10.1002/aoc.4989];
(b) El-Remaily, M.A.E.A.A.A.; Abu-Dief, A.M.; Elhady, O. Green synthesis of TiO 2 nanoparticles as an efficient heterogeneous catalyst with high reusability for synthesis of 1,2‐dihydroquinoline derivatives. Appl. Organomet. Chem., 2019, 33(8), e5005.
[http://dx.doi.org/10.1002/aoc.5005];
(c) Abdelrakhim, M.A.; Tyrkov, A.G.; Yurtaeva, E.A. Synthesis of 2-(2-methyltetrazol-5-yl)-2,2-dinitroacetonitrile and its reaction with substituted nitrile N-oxides. Russ. J. Org. Chem., 2014, 50(2), 280-284.
[http://dx.doi.org/10.1134/S1070428014020237];
(d) Tyrkov, A.G.; Abdelraheem, M.A.; Sukhenko, L.T. Synthesis and antimicrobial activity of substituted nitrotetrazole-5- carbaldehyde hydrazones. Pharm. Chem. J., 2014, 47(10), 527-530.
[http://dx.doi.org/10.1007/s11094-014-0997-7]
[32]
(a) El-Remaily, M.A.E.A.A.A.; Elhady, O.M. Cobalt(III)-porphyrin complex (CoTCPP) as an efficient and recyclable homogeneous catalyst for the synthesis of tryptanthrin in aqueous media. Tetrahedron Lett., 2016, 57(3), 435-437.
[http://dx.doi.org/10.1016/j.tetlet.2015.12.052];
(b) Aleem Ali El-Remaily, M.A.E.; Abu-Dief, A.M.; El-Khatib, R.M. A robust synthesis and characterization of superparamagnetic CoFe2O4 nanoparticles as an efficient and reusable catalyst for green synthesis of some heterocyclic rings. Appl. Organomet. Chem., 2016, 30(12), 1022-1029.
[http://dx.doi.org/10.1002/aoc.3536];
(c) Ahmed, E. A.; Soliman, A. M.; Ali, A. M.; El-Remaily, M. A. A. Boosting the catalytic performance of zinc linked amino acid complex as an eco-friendly for synthesis of novel pyrimidines in aqueous medium. Appl. Organomet. Chem., 2021, 35(5), e6197.
[http://dx.doi.org/10.1002/aoc.6197];
(d) Tyrkov, A.G.; Abdelraheem, M.A. Synthesis of 2-(2-methyltetrazol-5-yl)-2,2-dinitroacetonitrile. Reaction of the nitrile group with diazomethane. Chem. Heterocycl. Compd., 2013, 49(5), 712-719.
[http://dx.doi.org/10.1007/s10593-013-1302-5]
[33]
(a) Ali El-Remaily, M.A.E.A.A.; Soliman, A.M.M.; Elhady, O.M. Green method for the synthetic ugi reaction by twin screw extrusion without a solvent and catalyst. ACS Omega, 2020, 5(11), 6194-6198.
[http://dx.doi.org/10.1021/acsomega.0c00369] [PMID: 32226904];
(b) Khodairy, A.; Shaaban, K.M.; Ali, M.A.; El-Wassimy, M.T.; Nagwa, S. Eco-friendly and efficiently synthesis, anti-inflammatory activity of 4-tosyloxyphenylpyrans via multi-component reaction under ultrasonic irradiation and room temperature conditions. J. Chem. Pharm. Res., 2015, 7(11), 332-340.;
(c) Mourad, A.F.E.; Amer, A.A.; El-Shaieb, K.M.; Ali, A.M.; Aly, A.A. 4-Hydroxy-1-phenylquinolin-2(1 H)-one in one-pot synthesis of pyrimidoquinolines and related compounds under microwave irradiation and conventional conditions. J. Heterocycl. Chem., 2016, 53(2), 383-388.
[http://dx.doi.org/10.1002/jhet.2286];
(d) Khodairy, A.; Ali, A.M.; El-Wassimy, M.T. 4-toluenesulfonamide as a building block for synthesis of novel triazepines, pyrimidines, and azoles. J. Heterocycl. Chem., 2016, 53(5), 1544-1553.
[http://dx.doi.org/10.1002/jhet.2461]
[34]
(a) Tyrkov, A.G.; Abdel’rakhim, M.A. Synthesis of 5-(chlorodinitromethyl)-2-methyl-2H-tetrazole and its reaction with diazoalkanes. Russ. J. Org. Chem., 2013, 49(4), 632-634.
[http://dx.doi.org/10.1134/S1070428013040271];
(b) Abdel’rakhim, M.A.; Tyrkov, A.G. Nitration of styrenes using 2-methyl-5-trinitromethyltetrazole. Chem. Heterocycl. Compd., 2012, 48(7), 1111-1113.
[http://dx.doi.org/10.1007/s10593-012-1107-y]
[35]
Gein, V.L.; Gein, L.F.; Tsyplyakova, E.P.; Panova, O.S. Synthesis of 6-Acyl-7-aryl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-5-carboxylic acids and their methyl esters. Russ. J. Org. Chem., 2007, 43(9), 1382-1386.
[http://dx.doi.org/10.1134/S1070428007090205]
[36]
Chebanov, V.; Sakhno, Y.; Desenko, S.; Shishkina, S.; Musatov, V.; Shishkin, O.; Knyazeva, I. Three-Component procedure for the synthesis of 5-Aryl-5,8-dihydroazolo[1,5-a]pyrimidine-7-carboxylic acids. Synthesis, 2005, 2005(15), 2597-2601.
[http://dx.doi.org/10.1055/s-2005-872073]
[37]
Ji, M.; Hu, J.; Huab, W.; Hu, H. Synthesis of some new 3-cummamoyl counarin oximes and related cyclisation products derived from 3-acetyl coumarin. Indian J. Chem. Sect., 2001, 40(12), 1223-1225.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy