Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

VE-822增强顺铂化疗对头颈部鳞状细胞癌耐药细胞的作用

卷 23, 期 6, 2023

发表于: 14 February, 2023

页: [482 - 495] 页: 14

弟呕挨: 10.2174/1568009623666230206143216

价格: $65

Open Access Journals Promotions 2
摘要

目的:本研究旨在评估p-ATR抑制剂VE-822在顺铂联合化疗治疗头颈部鳞癌中的作用,并探讨可能的机制。 方法:在顺铂耐药和敏感的细胞系中,通过彗星试验和蛋白质印迹实验确定 DNA 损伤水平。通过CCK-8试验检测VE-822联合治疗顺铂敏感和耐药细胞系后IC50值的变化。体外观察VE-822联合顺铂对细胞增殖能力、集落形成能力、迁移能力、细胞凋亡及细胞周期变化的影响。在体内,联合治疗效果在裸鼠皮下异种移植模型中得到验证。此外,通过彗星试验、蛋白质印迹和免疫组化实验探讨了VE-822辅助顺铂化疗的机制。 结果:p-ATR蛋白表达增加与头颈部鳞状细胞癌顺铂耐药细胞的DNA损伤修复途径有关。 VE-822通过抑制p-ATR表达和阻断DNA损伤修复途径,抑制细胞增殖、集落形成和迁移能力,提高裸鼠皮下异种移植模型的顺铂化疗效果。 结论:头颈部鳞状细胞癌顺铂耐药细胞中p-ATR表达增加。 VE-822 通过在体内和体外抑制 p-ATR 表达,显着增强顺铂耐药头颈部鳞状细胞癌的治疗效果。

关键词: 化疗,顺铂,顺铂耐药,头颈部鳞状细胞癌,VE-822,p-ATR。

图形摘要
[1]
Daniel, E.J.; Barbara, B.C.; René, L.; Vivian, W.Y.L.; Julie, E.B.; Jennifer, R.G. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers, 2020, 6(1), 92.
[http://dx.doi.org/10.1038/s41572-020-00224-3]
[2]
Colevas, A.D.; Yom, S.S.; Pfister, D.G.; Spencer, S.; Adelstein, D.; Adkins, D.; Brizel, D.M.; Burtness, B.; Busse, P.M.; Caudell, J.J.; Cmelak, A.J.; Eisele, D.W.; Fenton, M.; Foote, R.L.; Gilbert, J.; Gillison, M.L.; Haddad, R.I.; Hicks, W.L., Jr; Hitchcock, Y.J.; Jimeno, A.; Leizman, D.; Maghami, E.; Mell, L.K.; Mittal, B.B.; Pinto, H.A.; Ridge, J.A.; Rocco, J.; Rodriguez, C.P.; Shah, J.P.; Weber, R.S.; Witek, M.; Worden, F.; Zhen, W.; Burns, J.L.; Darlow, S.D. NCCN guidelines insights: Head and neck cancers, Version 1.2018. J. Natl. Compr. Canc. Netw., 2018, 16(5), 479-490.
[http://dx.doi.org/10.6004/jnccn.2018.0026] [PMID: 29752322]
[3]
Burtness, B.; Harrington, K.J.; Greil, R. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): A randomised, open-label, phase 3 study. Lancet, 2019, 394(10212), 1915-1928.
[http://dx.doi.org/10.1016/S0140-6736(19)32591-7]
[4]
Naoya, K.; Shinya, S.; Yasumasa, Y.; Eri, S.; Yasusei, K.; Tetsuya, Y. Current trends and future prospects of molecular targeted therapy in head and neck squamous cell carcinoma. Int. J. Mol. Sci., 2020, 22(1), 240.
[http://dx.doi.org/10.3390/ijms22010240]
[5]
Leemans, C.R.; Snijders, P.J.F.; Brakenhoff, R.H.; René, L.C. The molecular landscape of head and neck cancer. Nat. Rev. Cancer, 2018, 18(5), 269-282.
[http://dx.doi.org/10.1038/nrc.2018.11] [PMID: 29497144]
[6]
Tomaz, M. Cisplatin and beyond: Molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol. Oncol., 2019, 53(2), 148-158.
[http://dx.doi.org/10.2478/raon-2019-0018]
[7]
Dasari, S.; Bernard Tchounwou, P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740(740), 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[8]
Rania, A.L.; Moustafa, F.; Hend, A.A.; Muhammad, N.; Thomas, D.; Eman, M.O. Cisplatin-induced reproductive toxicity and oxidative stress: Ameliorative effect of kinetin. Antioxidants (Basel),, 2022, 11(5), 863.
[http://dx.doi.org/10.3390/antiox11050863]
[9]
Jenny, L.M.D.; Thitinee, V.; Aneta, P.; Alan, J.D.; Veronika, S. Evaluation of cisplatin-induced injury in human kidney organoids. Am. J. Physiol. Renal Physiol., 2020, 318(4), F971-F978.
[http://dx.doi.org/10.1152/ajprenal.00597.2019]
[10]
Ana, B.G.; Lucía, A.R.; Beatriz, C.; José, L.C.C.; Ana, S.P. Mechanisms of cisplatin resistance in HPV negative head and neck squamous cell carcinomas. Cells, 2022, 11(3), 561.
[http://dx.doi.org/10.3390/cells11030561]
[11]
Shen, D.W.; Pouliot, L.M.; Hall, M.D.; Gottesman, M.M. Cisplatin resistance: A cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol. Rev., 2012, 64(3), 706-721.
[http://dx.doi.org/10.1124/pr.111.005637] [PMID: 22659329]
[12]
Waissbluth, S.; Daniel, S.J. Cisplatin-induced ototoxicity: Transporters playing a role in cisplatin toxicity. Hear. Res., 2013, 299, 37-45.
[http://dx.doi.org/10.1016/j.heares.2013.02.002] [PMID: 23467171]
[13]
Arnesano, F.; Natile, G. Interference between copper transport systems and platinum drugs. Semin. Cancer Biol., 2021, 76, 173-188.
[http://dx.doi.org/10.1016/j.semcancer.2021.05.023] [PMID: 34058339]
[14]
Wagner, D.J.; Hu, T.; Wang, J. Polyspecific organic cation transporters and their impact on drug intracellular levels and pharmacodynamics. Pharmacol. Res., 2016, 111, 237-246.
[http://dx.doi.org/10.1016/j.phrs.2016.06.002] [PMID: 27317943]
[15]
Xing, Q.; Haiyan, G.; Xiaoning, W. Exosomal miR-196a derived from cancerassociated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5. Genome Biol., 2019, 20(1), 12.
[http://dx.doi.org/10.1186/s13059-018-1604-0]
[16]
Robert, C.K.; Fen, X.; Scarlett, A. Targeting DNA damage response and repair to enhance therapeutic index in cisplatin-based cancer treatment. Int. J. Mol. Sci., 202122(15), 8199.
[http://dx.doi.org/10.3390/ijms22158199]
[17]
Rottenberg, S.; Disler, C.; Perego, P. The rediscovery of platinum-based cancer therapy. Nat. Rev. Cancer, 2021, 21(1), 37-50.
[http://dx.doi.org/10.1038/s41568-020-00308-y] [PMID: 33128031]
[18]
Gupta, D.; Heinen, C.D. The mismatch repair-dependent DNA damage response: Mechanisms and implications. DNA Repair (Amst.), 2019, 78, 60-69.
[http://dx.doi.org/10.1016/j.dnarep.2019.03.009] [PMID: 30959407]
[19]
James, M.C.; Andrew, J.A.; Geoffrey, I.S.; Alan, D. Biomarker-guided development of DNA repair inhibitors. Mol. Cell, 2020, 78(6), 1070-85.
[http://dx.doi.org/10.1016/j.molcel.2020.04.035]
[20]
Pilié, P.G.; Tang, C.; Mills, G.B.; Yap, T.A. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat. Rev. Clin. Oncol., 2019, 16(2), 81-104.
[http://dx.doi.org/10.1038/s41571-018-0114-z] [PMID: 30356138]
[21]
Leonard, B.C.; Lee, E.D.; Bhola, N.E.; Li, H.; Sogaard, K.K.; Bakkenist, C.J.; Grandis, J.R.; Johnson, D.E. ATR inhibition sensitizes HPV− and HPV+ head and neck squamous cell carcinoma to cisplatin. Oral Oncol., 2019, 95, 35-42.
[http://dx.doi.org/10.1016/j.oraloncology.2019.05.028] [PMID: 31345392]
[22]
Panagiotis, A.K.; Alexandre, A.; Doga, G. A Replication stress biomarker is associated with response to gemcitabine versus combined gemcitabine and ATR inhibitor therapy in ovarian cancer. Nat. Commun., 2021, 12(1), 5574.
[http://dx.doi.org/10.1038/s41467-021-25904-w]
[23]
Qiu, Z.; Oleinick, N.L.; Zhang, J. ATR/CHK1 inhibitors and cancer therapy. Radiother. Oncol., 2018, 126(3), 450-464.
[http://dx.doi.org/10.1016/j.radonc.2017.09.043] [PMID: 29054375]
[24]
Zhang, M.; Jiang, N.; Cui, R.; Du, S.; Ou, H.; Chen, T.; Ge, R.; Ma, D.; Zhang, J. Deregulated lncRNA expression profile in the mouse lung adenocarcinomas with KRAS‐G12D mutation and P53 knockout. J. Cell. Mol. Med., 2019, 23(10), 6978-6988.
[http://dx.doi.org/10.1111/jcmm.14584] [PMID: 31410985]
[25]
Kaidar-Person, O.; Gil, Z.; Billan, S. Precision medicine in head and neck cancer. Drug Resist. Updat., 2018, 40, 13-16.
[http://dx.doi.org/10.1016/j.drup.2018.09.001] [PMID: 30466712]
[26]
Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem., 2019, 88102925
[http://dx.doi.org/10.1016/j.bioorg.2019.102925] [PMID: 31003078]
[27]
Oing, C.; Skowron, M.A.; Bokemeyer, C.; Nettersheim, D. Epigenetic treatment combinations to effectively target cisplatin‐resistant germ cell tumors‐past, present, and future considerations. Andrology, 2019, 7(4), andr.12611.
[http://dx.doi.org/10.1111/andr.12611] [PMID: 30924611]
[28]
Kinner, A.; Wu, W.; Staudt, C.; Iliakis, G. -H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res., 2008, 36(17), 5678-5694.
[http://dx.doi.org/10.1093/nar/gkn550] [PMID: 18772227]
[29]
Siddiqui, M.S.; François, M.; Fenech, M.F.; Leifert, W.R. Persistent γH2AX: A promising molecular marker of DNA damage and aging. Mutat. Res. Rev. Mutat. Res., 2015, 766, 1-19.
[http://dx.doi.org/10.1016/j.mrrev.2015.07.001] [PMID: 26596544]
[30]
Domenic, P.; Leonard, W.S.; Stephen, P.J. Interfaces between cellular responses to DNA damage and cancer immunotherapy. Genes Dev., 2021, 35(9-10), 602-618.
[http://dx.doi.org/10.1101/gad.348314.121]
[31]
Wenlong, F.; Dylan, C.D.; Francis, J.H. ATR and p-ATR are emerging prognostic biomarkers and DNA damage response targets in ovarian cancer. Ther. Adv. Med. Oncol., 2020, 121758835920982853
[http://dx.doi.org/10.1177/1758835920982853]
[32]
Ha, K.; Fiskus, W.; Rao, R.; Balusu, R.; Venkannagari, S.; Nalabothula, N.R.; Bhalla, K.N. Hsp90 inhibitor-mediated disruption of chaperone association of ATR with hsp90 sensitizes cancer cells to DNA damage. Mol. Cancer Ther., 2011, 10(7), 1194-1206.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0094] [PMID: 21566061]
[33]
Sumanta, K.P.; Paul, H.F.; Amir, M. Effect of cisplatin and gemcitabine with or without berzosertib in patients with advanced urothelial carcinoma: A phase 2 randomized clinical trial. JAMA Oncol., 2021, 7(10), 1536-1543.
[http://dx.doi.org/10.1001/jamaoncol.2021.3441]
[34]
Plummer, R.; Dean, E.; Arkenau, H.T.; Redfern, C.; Spira, A.I.; Melear, J.M.; Chung, K.Y.; Ferrer-Playan, J.; Goddemeier, T.; Locatelli, G.; Dong, J.; Fleuranceau-Morel, P.; Diaz-Padilla, I.; Shapiro, G.I. A phase 1b study evaluating the safety and preliminary efficacy of berzosertib in combination with gemcitabine in patients with advanced non-small cell lung cancer. Lung Cancer, 2022, 163, 19-26.
[http://dx.doi.org/10.1016/j.lungcan.2021.11.011] [PMID: 34894455]
[35]
Melinda, L.T.; Sara, M.T.; Geoffrey, I.S. Phase 1b study of berzosertib and cisplatin in patients with advanced triple-negative breast cancer. NPJ Breast Cancer, 2022, 8(1), 45.
[http://dx.doi.org/10.1038/s41523-022-00406-0]
[36]
Shapiro, G.I.; Wesolowski, R.; Devoe, C.; Lord, S.; Pollard, J.; Hendriks, B.S.; Falk, M.; Diaz-Padilla, I.; Plummer, R.; Yap, T.A. Phase 1 study of the ATR inhibitor berzosertib in combination with cisplatin in patients with advanced solid tumours. Br. J. Cancer, 2021, 125(4), 520-527.
[http://dx.doi.org/10.1038/s41416-021-01406-w] [PMID: 34040174]
[37]
Timothy, A.Y. Phase I trial of first-in-class ATR inhibitor M6620 (VX-970) as monotherapy or in combination with carboplatin in patients with advanced solid tumors. J. Clin. Oncol., 2020, 38(27), 3195-3204.
[http://dx.doi.org/10.1200/JCO.19.02404]
[38]
Anna, S.; Gero, K.; Daniela, W.; Sven, P. ATM deficiency is associated with sensitivity to PARP1- and ATR inhibitors in lung adenocarcinoma. Cancer Res., 2017, 77(11), 3040-3056.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-3398]
[39]
Iain, M.; Mingwei, M.; Chen, Y. Ki-67 is a graded rather than a binary marker of proliferation versus quiescence. Cell Rep., 2018, 24(5), 1105-12.e5.
[http://dx.doi.org/10.1016/j.celrep.2018.06.110]
[40]
Adam, Z.S.; Emmanouil, Z.; Denis, E.R.; Thomas, P.G.; Evripidis, G. Eltrombopag directly inhibits BAX and prevents cell death. Nat. Commun., 2021, 12(1), 1134.
[http://dx.doi.org/10.1038/s41467-021-21224-1]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy