Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

小胶质细胞在阿尔茨海默病(AD)病理中的作用

卷 19, 期 13, 2022

发表于: 13 February, 2023

页: [854 - 869] 页: 16

弟呕挨: 10.2174/1567205020666230203112351

价格: $65

摘要

淀粉样斑块和神经原纤维缠结是阿尔茨海默病(AD)的两个主要特征。小胶质细胞作为大脑常驻吞噬细胞,在Aβ病理和tau病理中具有不同的作用。在这篇综述中,我们讨论了小胶质细胞在Aβ和tau的形成、清除和扩散中的功能。许多与小胶质细胞相关的受体和酶参与了AD的病理过程,被认为是AD的潜在靶点。因此,利用小胶质细胞可以有利于限制AD病理。综上所述,本文就小胶质细胞在AD病理中的作用及可能的相应治疗进行综述。

关键词: 阿尔茨海默病,小胶质细胞,淀粉样蛋白β,tau蛋白,神经原纤维缠结,吞噬细胞

[1]
Nichols, E.; Steinmetz, J.D.; Vollset, S.E.; Fukutaki, K.; Chalek, J.; Abd-Allah, F.; Abdoli, A.; Abualhasan, A.; Abu-Gharbieh, E.; Akram, T.T.; Al Hamad, H.; Alahdab, F.; Alanezi, F.M.; Alipour, V.; Almustanyir, S.; Amu, H.; Ansari, I.; Arabloo, J.; Ashraf, T.; Astell-Burt, T.; Ayano, G.; Ayuso-Mateos, J.L.; Baig, A.A.; Barnett, A.; Barrow, A.; Baune, B.T.; Béjot, Y.; Bezabhe, W.M.M.; Bezabih, Y.M.; Bhagavathula, A.S.; Bhaskar, S.; Bhattacharyya, K.; Bijani, A.; Biswas, A.; Bolla, S.R.; Boloor, A.; Brayne, C.; Brenner, H.; Burkart, K.; Burns, R.A.; Cámera, L.A.; Cao, C.; Carvalho, F.; Castro-de-Araujo, L.F.S.; Catalá-López, F.; Cerin, E.; Chavan, P.P.; Cherbuin, N.; Chu, D-T.; Costa, V.M.; Couto, R.A.S.; Dadras, O.; Dai, X.; Dandona, L.; Dandona, R.; De la Cruz-Góngora, V.; Dhamnetiya, D.; Dias da Silva, D.; Diaz, D.; Douiri, A.; Edvardsson, D.; Ekholuenetale, M.; El Sayed, I.; El-Jaafary, S.I.; Eskandari, K.; Eskandarieh, S.; Esmaeilnejad, S.; Fares, J.; Faro, A.; Farooque, U.; Feigin, V.L.; Feng, X.; Fereshtehnejad, S-M.; Fernandes, E.; Ferrara, P.; Filip, I.; Fillit, H.; Fischer, F.; Gaidhane, S.; Galluzzo, L.; Ghashghaee, A.; Ghith, N.; Gialluisi, A.; Gilani, S.A.; Glavan, I-R.; Gnedovskaya, E.V.; Golechha, M.; Gupta, R.; Gupta, V.B.; Gupta, V.K.; Haider, M.R.; Hall, B.J.; Hamidi, S.; Hanif, A.; Hankey, G.J.; Haque, S.; Hartono, R.K.; Hasaballah, A.I.; Hasan, M.T.; Hassan, A.; Hay, S.I.; Hayat, K.; Hegazy, M.I.; Heidari, G.; Heidari-Soureshjani, R.; Herteliu, C.; Househ, M.; Hussain, R.; Hwang, B-F.; Iacoviello, L.; Iavicoli, I.; Ilesanmi, O.S.; Ilic, I.M.; Ilic, M.D.; Irvani, S.S.N.; Iso, H.; Iwagami, M.; Jabbarinejad, R.; Jacob, L.; Jain, V.; Jayapal, S.K.; Jayawardena, R.; Jha, R.P.; Jonas, J.B.; Joseph, N.; Kalani, R.; Kandel, A.; Kandel, H.; Karch, A.; Kasa, A.S.; Kassie, G.M.; Keshavarz, P.; Khan, M.A.B.; Khatib, M.N.; Khoja, T.A.M.; Khubchandani, J.; Kim, M.S.; Kim, Y.J.; Kisa, A.; Kisa, S.; Kivimäki, M.; Koroshetz, W.J.; Koyanagi, A.; Kumar, G.A.; Kumar, M.; Lak, H.M.; Leonardi, M.; Li, B.; Lim, S.S.; Liu, X.; Liu, Y.; Logroscino, G.; Lorkowski, S.; Lucchetti, G.; Lutzky Saute, R.; Magnani, F.G.; Malik, A.A.; Massano, J.; Mehndiratta, M.M.; Menezes, R.G.; Meretoja, A.; Mohajer, B.; Mohamed Ibrahim, N.; Mohammad, Y.; Mohammed, A.; Mokdad, A.H.; Mondello, S.; Moni, M.A.A.; Moniruzzaman, M.; Mossie, T.B.; Nagel, G.; Naveed, M.; Nayak, V.C.; Neupane Kandel, S.; Nguyen, T.H.; Oancea, B.; Otstavnov, N.; Otstavnov, S.S.; Owolabi, M.O.; Panda-Jonas, S.; Pashazadeh Kan, F.; Pasovic, M.; Patel, U.K.; Pathak, M.; Peres, M.F.P.; Perianayagam, A.; Peterson, C.B.; Phillips, M.R.; Pinheiro, M.; Piradov, M.A.; Pond, C.D.; Potashman, M.H.; Pottoo, F.H.; Prada, S.I.; Radfar, A.; Raggi, A.; Rahim, F.; Rahman, M.; Ram, P.; Ranasinghe, P.; Rawaf, D.L.; Rawaf, S.; Rezaei, N.; Rezapour, A.; Robinson, S.R.; Romoli, M.; Roshandel, G.; Sahathevan, R.; Sahebkar, A.; Sahraian, M.A.; Sathian, B.; Sattin, D.; Sawhney, M.; Saylan, M.; Schiavolin, S.; Seylani, A.; Sha, F.; Shaikh, M.A.; Shaji, K.S.; Shannawaz, M.; Shetty, J.K.; Shigematsu, M.; Shin, J.I.; Shiri, R.; Silva, D.A.S.; Silva, J.P.; Silva, R.; Singh, J.A.; Skryabin, V.Y.; Skryabina, A.A.; Smith, A.E.; Soshnikov, S.; Spurlock, E.E.; Stein, D.J.; Sun, J.; Tabarés-Seisdedos, R.; Thakur, B.; Timalsina, B.; Tovani-Palone, M.R.; Tran, B.X.; Tsegaye, G.W.; Valadan Tahbaz, S.; Valdez, P.R.; Venketasubramanian, N.; Vlassov, V.; Vu, G.T.; Vu, L.G.; Wang, Y.-P.; Wimo, A.; Winkler, A.S.; Yadav, L.; Yahyazadeh Jabbari, S.H.; Yamagishi, K.; Yang, L.; Yano, Y.; Yonemoto, N.; Yu, C.; Yunusa, I.; Zadey, S.; Zastrozhin, M.S.; Zastrozhina, A.; Zhang, ZJ.; Murray, C.J.L.; Vos, T. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health, 2022, 7(2), e105-e125.
[http://dx.doi.org/10.1016/S2468-2667(21)00249-8] [PMID: 34998485]
[2]
Takashima, A.; Noguchi, K.; Sato, K.; Hoshino, T.; Imahori, K. Tau protein kinase I is essential for amyloid beta-protein-induced neurotoxicity. Proc. Natl. Acad. Sci. USA, 1993, 90(16), 7789-7793.
[http://dx.doi.org/10.1073/pnas.90.16.7789] [PMID: 8356085]
[3]
Alvarez, A.; Toro, R.; Cáceres, A.; Maccioni, R.B. Inhibition of tau phosphorylating protein kinase cdk5 prevents β-amyloid-induced neuronal death. FEBS Lett., 1999, 459(3), 421-426.
[http://dx.doi.org/10.1016/S0014-5793(99)01279-X] [PMID: 10526177]
[4]
Streit, W.J.; Braak, H.; Del Tredici, K.; Leyh, J.; Lier, J.; Khoshbouei, H.; Eisenlöffel, C.; Müller, W.; Bechmann, I. Microglial activation occurs late during preclinical Alzheimer’s disease. Glia, 2018, 66(12), 2550-2562.
[http://dx.doi.org/10.1002/glia.23510] [PMID: 30417428]
[5]
Prinz, M.; Masuda, T.; Wheeler, M.A.; Quintana, F.J. Microglia and central nervous system–associated macrophages—from origin to disease modulation. Annu. Rev. Immunol., 2021, 39(1), 251-277.
[http://dx.doi.org/10.1146/annurev-immunol-093019-110159] [PMID: 33556248]
[6]
Boche, D.; Perry, V.H.; Nicoll, J.A.R. Review: Activation patterns of microglia and their identification in the human brain. Neuropathol. Appl. Neurobiol., 2013, 39(1), 3-18.
[http://dx.doi.org/10.1111/nan.12011] [PMID: 23252647]
[7]
Hickman, S.; Izzy, S.; Sen, P.; Morsett, L.; El Khoury, J. Microglia in neurodegeneration. Nat. Neurosci., 2018, 21(10), 1359-1369.
[http://dx.doi.org/10.1038/s41593-018-0242-x] [PMID: 30258234]
[8]
DiSabato, D.J.; Quan, N.; Godbout, J.P. Neuroinflammation: The devil is in the details. J. Neurochem., 2016, 139(Suppl. 2), 136-153.
[http://dx.doi.org/10.1111/jnc.13607] [PMID: 26990767]
[9]
Moyse, E.; Krantic, S.; Djellouli, N.; Roger, S.; Angoulvant, D.; Debacq, C.; Leroy, V.; Fougere, B.; Aidoud, A. Neuroinflammation: A possible link between chronic vascular disorders and neurodegenerative diseases. Front. Aging Neurosci., 2022, 14, 827263.
[http://dx.doi.org/10.3389/fnagi.2022.827263] [PMID: 35663580]
[10]
Krasemann, S.; Madore, C.; Cialic, R.; Baufeld, C.; Calcagno, N.; El Fatimy, R.; Beckers, L.; O’Loughlin, E.; Xu, Y.; Fanek, Z.; Greco, D.J.; Smith, S.T.; Tweet, G.; Humulock, Z.; Zrzavy, T.; Conde-Sanroman, P.; Gacias, M.; Weng, Z.; Chen, H.; Tjon, E.; Mazaheri, F.; Hartmann, K.; Madi, A.; Ulrich, J.D.; Glatzel, M.; Worthmann, A.; Heeren, J.; Budnik, B.; Lemere, C.; Ikezu, T.; Heppner, F.L.; Litvak, V.; Holtzman, D.M.; Lassmann, H.; Weiner, H.L.; Ochando, J.; Haass, C.; Butovsky, O. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity, 2017, 47(3), 566-581.e9.
[http://dx.doi.org/10.1016/j.immuni.2017.08.008] [PMID: 28930663]
[11]
Dani, M.; Wood, M.; Mizoguchi, R.; Fan, Z.; Walker, Z.; Morgan, R.; Hinz, R.; Biju, M.; Kuruvilla, T.; Brooks, D.J.; Edison, P. Microglial activation correlates in vivo with both tau and amyloid in Alzheimer’s disease. Brain, 2018, 141(9), 2740-2754.
[http://dx.doi.org/10.1093/brain/awy188] [PMID: 30052812]
[12]
Lee, M.; McGeer, E.; McGeer, P.L. Activated human microglia stimulate neuroblastoma cells to upregulate production of beta amyloid protein and tau: Implications for Alzheimer’s disease pathogenesis. Neurobiol. Aging, 2015, 36(1), 42-52.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.07.024] [PMID: 25169677]
[13]
Spangenberg, E.; Severson, P.L.; Hohsfield, L.A.; Crapser, J.; Zhang, J.; Burton, E.A.; Zhang, Y.; Spevak, W.; Lin, J.; Phan, N.Y.; Habets, G.; Rymar, A.; Tsang, G.; Walters, J.; Nespi, M.; Singh, P.; Broome, S.; Ibrahim, P.; Zhang, C.; Bollag, G.; West, B.L.; Green, K.N. Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer’s disease model. Nat. Commun., 2019, 10(1), 3758.
[http://dx.doi.org/10.1038/s41467-019-11674-z] [PMID: 31434879]
[14]
Baik, S.H.; Kang, S.; Son, S.M.; Mook-Jung, I. Microglia contributes to plaque growth by cell death due to uptake of amyloid β in the brain of Alzheimer’s disease mouse model. Glia, 2016, 64(12), 2274-2290.
[http://dx.doi.org/10.1002/glia.23074] [PMID: 27658617]
[15]
Venegas, C.; Kumar, S.; Franklin, B.S.; Dierkes, T.; Brinkschulte, R.; Tejera, D.; Vieira-Saecker, A.; Schwartz, S.; Santarelli, F.; Kummer, M.P.; Griep, A.; Gelpi, E.; Beilharz, M.; Riedel, D.; Golenbock, D.T.; Geyer, M.; Walter, J.; Latz, E.; Heneka, M.T. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature, 2017, 552(7685), 355-361.
[http://dx.doi.org/10.1038/nature25158] [PMID: 29293211]
[16]
Condello, C.; Yuan, P.; Schain, A.; Grutzendler, J. Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat. Commun., 2015, 6(1), 6176.
[http://dx.doi.org/10.1038/ncomms7176] [PMID: 25630253]
[17]
Yuan, P.; Condello, C.; Keene, C.D.; Wang, Y.; Bird, T.D.; Paul, S.M.; Luo, W.; Colonna, M.; Baddeley, D.; Grutzendler, J. TREM2 Haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy. Neuron, 2016, 90(4), 724-739.
[http://dx.doi.org/10.1016/j.neuron.2016.05.003] [PMID: 27196974]
[18]
Wang, Y.; Ulland, T.K.; Ulrich, J.D.; Song, W.; Tzaferis, J.A.; Hole, J.T.; Yuan, P.; Mahan, T.E.; Shi, Y.; Gilfillan, S.; Cella, M.; Grutzendler, J.; DeMattos, R.B.; Cirrito, J.R.; Holtzman, D.M.; Colonna, M. TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J. Exp. Med., 2016, 213(5), 667-675.
[http://dx.doi.org/10.1084/jem.20151948] [PMID: 27091843]
[19]
Moelgg, K.; Jummun, F.; Humpel, C. Spreading of beta-amyloid in organotypic mouse brain slices and microglial elimination and effects on cholinergic neurons. Biomolecules, 2021, 11(3), 434.
[http://dx.doi.org/10.3390/biom11030434] [PMID: 33804246]
[20]
Grubman, A.; Choo, X.Y.; Chew, G.; Ouyang, J.F.; Sun, G.; Croft, N.P.; Rossello, F.J.; Simmons, R.; Buckberry, S.; Landin, D.V.; Pflueger, J.; Vandekolk, T.H.; Abay, Z.; Zhou, Y.; Liu, X.; Chen, J.; Larcombe, M.; Haynes, J.M.; McLean, C.; Williams, S.; Chai, S.Y.; Wilson, T.; Lister, R.; Pouton, C.W.; Purcell, A.W.; Rackham, O.J.L.; Petretto, E.; Polo, J.M. Transcriptional signature in microglia associated with Aβ plaque phagocytosis. Nat. Commun., 2021, 12(1), 3015.
[http://dx.doi.org/10.1038/s41467-021-23111-1] [PMID: 34021136]
[21]
Hickman, S.E.; Allison, E.K.; El Khoury, J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J. Neurosci., 2008, 28(33), 8354-8360.
[http://dx.doi.org/10.1523/JNEUROSCI.0616-08.2008] [PMID: 18701698]
[22]
Huang, Y.; Happonen, K.E.; Burrola, P.G.; O’Connor, C.; Hah, N.; Huang, L.; Nimmerjahn, A.; Lemke, G. Microglia use TAM receptors to detect and engulf amyloid β plaques. Nat. Immunol., 2021, 22(5), 586-594.
[http://dx.doi.org/10.1038/s41590-021-00913-5] [PMID: 33859405]
[23]
Takahashi, K.; Rochford, C.D.P.; Neumann, H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J. Exp. Med., 2005, 201(4), 647-657.
[http://dx.doi.org/10.1084/jem.20041611] [PMID: 15728241]
[24]
Yeh, F.L.; Wang, Y.; Tom, I.; Gonzalez, L.C.; Sheng, M. TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia. Neuron, 2016, 91(2), 328-340.
[http://dx.doi.org/10.1016/j.neuron.2016.06.015] [PMID: 27477018]
[25]
Jiang, T.; Tan, L.; Zhu, X.C.; Zhang, Q.Q.; Cao, L.; Tan, M.S.; Gu, L.Z.; Wang, H.F.; Ding, Z.Z.; Zhang, Y.D.; Yu, J.T. Upregulation of TREM2 ameliorates neuropathology and rescues spatial cognitive impairment in a transgenic mouse model of Alzheimer’s disease. Neuropsychopharmacology, 2014, 39(13), 2949-2962.
[http://dx.doi.org/10.1038/npp.2014.164] [PMID: 25047746]
[26]
Lee, C.Y.D.; Daggett, A.; Gu, X.; Jiang, L.L.; Langfelder, P.; Li, X.; Wang, N.; Zhao, Y.; Park, C.S.; Cooper, Y.; Ferando, I.; Mody, I.; Coppola, G.; Xu, H.; Yang, X.W. Elevated TREM2 gene dosage reprograms microglia responsivity and ameliorates pathological phenotypes in Alzheimer’s disease models. Neuron, 2018, 97(5), 1032-1048.e5.
[http://dx.doi.org/10.1016/j.neuron.2018.02.002] [PMID: 29518357]
[27]
Zhao, Y.; Wu, X.; Li, X.; Jiang, L.L.; Gui, X.; Liu, Y.; Sun, Y.; Zhu, B.; Piña-Crespo, J.C.; Zhang, M.; Zhang, N.; Chen, X.; Bu, G.; An, Z.; Huang, T.Y.; Xu, H. TREM2 is a receptor for β-amyloid that mediates microglial function. Neuron, 2018, 97(5), 1023-1031.e7.
[http://dx.doi.org/10.1016/j.neuron.2018.01.031] [PMID: 29518356]
[28]
Kim, S.M.; Mun, B.R.; Lee, S.J.; Joh, Y.; Lee, H.Y.; Ji, K.Y.; Choi, H.R.; Lee, E.H.; Kim, E.M.; Jang, J.H.; Song, H.W.; Mook-Jung, I.; Choi, W.S.; Kang, H.S. TREM2 promotes Aβ phagocytosis by upregulating C/EBPα-dependent CD36 expression in microglia. Sci. Rep., 2017, 7(1), 11118.
[http://dx.doi.org/10.1038/s41598-017-11634-x] [PMID: 28894284]
[29]
Lucin, K.M.; O’Brien, C.E.; Bieri, G.; Czirr, E.; Mosher, K.I.; Abbey, R.J.; Mastroeni, D.F.; Rogers, J.; Spencer, B.; Masliah, E.; Wyss-Coray, T. Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer’s disease. Neuron, 2013, 79(5), 873-886.
[http://dx.doi.org/10.1016/j.neuron.2013.06.046] [PMID: 24012002]
[30]
Ewers, M.; Biechele, G.; Suárez-Calvet, M.; Sacher, C.; Blume, T.; Morenas-Rodriguez, E.; Deming, Y.; Piccio, L.; Cruchaga, C.; Kleinberger, G.; Shaw, L.; Trojanowski, J.Q.; Herms, J.; Dichgans, M.; Brendel, M.; Haass, C.; Franzmeier, N. Higher CSF sTREM2 and microglia activation are associated with slower rates of beta-amyloid accumulation. EMBO Mol. Med., 2020, 12(9), e12308.
[http://dx.doi.org/10.15252/emmm.202012308] [PMID: 32790063]
[31]
Zhong, L.; Xu, Y.; Zhuo, R.; Wang, T.; Wang, K.; Huang, R.; Wang, D.; Gao, Y.; Zhu, Y.; Sheng, X.; Chen, K.; Wang, N.; Zhu, L.; Can, D.; Marten, Y.; Shinohara, M.; Liu, C.C.; Du, D.; Sun, H.; Wen, L.; Xu, H.; Bu, G.; Chen, X.F. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer’s disease model. Nat. Commun., 2019, 10(1), 1365.
[http://dx.doi.org/10.1038/s41467-019-09118-9] [PMID: 30911003]
[32]
Fu, H.; Liu, B.; Frost, J.L.; Hong, S.; Jin, M.; Ostaszewski, B.; Shankar, G.M.; Costantino, I.M.; Carroll, M.C.; Mayadas, T.N.; Lemere, C.A. Complement component C3 and complement receptor type 3 contribute to the phagocytosis and clearance of fibrillar Aβ by microglia. Glia, 2012, 60(6), 993-1003.
[http://dx.doi.org/10.1002/glia.22331] [PMID: 22438044]
[33]
Maier, M.; Peng, Y.; Jiang, L.; Seabrook, T.J.; Carroll, M.C.; Lemere, C.A. Complement C3 deficiency leads to accelerated amyloid beta plaque deposition and neurodegeneration and modulation of the microglia/macrophage phenotype in amyloid precursor protein transgenic mice. J. Neurosci., 2008, 28(25), 6333-6341.
[http://dx.doi.org/10.1523/JNEUROSCI.0829-08.2008] [PMID: 18562603]
[34]
Liu, Y.; Walter, S.; Stagi, M.; Cherny, D.; Letiembre, M.; Schulz-Schaeffer, W.; Heine, H.; Penke, B.; Neumann, H.; Fassbender, K. LPS receptor (CD14): A receptor for phagocytosis of Alzheimer’s amyloid peptide. Brain, 2005, 128(8), 1778-1789.
[http://dx.doi.org/10.1093/brain/awh531] [PMID: 15857927]
[35]
Yang, C.N.; Shiao, Y.J.; Shie, F.S.; Guo, B.S.; Chen, P.H.; Cho, C.Y.; Chen, Y.J.; Huang, F.L.; Tsay, H.J. Mechanism mediating oligomeric Aβ clearance by naïve primary microglia. Neurobiol. Dis., 2011, 42(3), 221-230.
[http://dx.doi.org/10.1016/j.nbd.2011.01.005] [PMID: 21220023]
[36]
Yamanaka, M.; Ishikawa, T.; Griep, A.; Axt, D.; Kummer, M.P.; Heneka, M.T. PPARγ/RXRα-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J. Neurosci., 2012, 32(48), 17321-17331.
[http://dx.doi.org/10.1523/JNEUROSCI.1569-12.2012] [PMID: 23197723]
[37]
Peng, L.; Yu, Y.; Liu, J.; Li, S.; He, H.; Cheng, N.; Ye, R.D. The chemerin receptor CMKLR1 is a functional receptor for amyloid-β peptide. J. Alzheimers Dis., 2014, 43(1), 227-242.
[http://dx.doi.org/10.3233/JAD-141227] [PMID: 25079809]
[38]
Griciuc, A.; Serrano-Pozo, A.; Parrado, A.R.; Lesinski, A.N.; Asselin, C.N.; Mullin, K.; Hooli, B.; Choi, S.H.; Hyman, B.T.; Tanzi, R.E. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron, 2013, 78(4), 631-643.
[http://dx.doi.org/10.1016/j.neuron.2013.04.014] [PMID: 23623698]
[39]
Pluvinage, J.V.; Haney, M.S.; Smith, B.A.H.; Sun, J.; Iram, T.; Bonanno, L.; Li, L.; Lee, D.P.; Morgens, D.W.; Yang, A.C.; Shuken, S.R.; Gate, D.; Scott, M.; Khatri, P.; Luo, J.; Bertozzi, C.R.; Bassik, M.C.; Wyss-Coray, T. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature, 2019, 568(7751), 187-192.
[http://dx.doi.org/10.1038/s41586-019-1088-4] [PMID: 30944478]
[40]
Floden, A.M.; Combs, C.K. Microglia demonstrate age-dependent interaction with amyloid-β fibrils. J. Alzheimers Dis., 2011, 25(2), 279-293.
[http://dx.doi.org/10.3233/JAD-2011-101014] [PMID: 21403390]
[41]
Fang, Y.; Wang, J.; Yao, L.; Li, C.; Wang, J.; Liu, Y.; Tao, X.; Sun, H.; Liao, H. The adhesion and migration of microglia to β-amyloid (Aβ) is decreased with aging and inhibited by Nogo/NgR pathway. J. Neuroinflammation, 2018, 15(1), 210.
[http://dx.doi.org/10.1186/s12974-018-1250-1] [PMID: 30029608]
[42]
Fang, Y.; Yao, L.; Li, C.; Wang, J.; Wang, J.; Chen, S.; Zhou, X.; Liao, H. The blockage of the Nogo/NgR signal pathway in microglia alleviates the formation of Aβ plaques and tau phosphorylation in APP/PS1 transgenic mice. J. Neuroinflammation, 2016, 13(1), 56.
[http://dx.doi.org/10.1186/s12974-016-0522-x] [PMID: 26939570]
[43]
Tahara, K.; Kim, H.D.; Jin, J.J.; Maxwell, J.A.; Li, L.; Fukuchi, K. Role of toll-like receptor signalling in A uptake and clearance. Brain, 2006, 129(11), 3006-3019.
[http://dx.doi.org/10.1093/brain/awl249] [PMID: 16984903]
[44]
Liu, S.; Liu, Y.; Hao, W.; Wolf, L.; Kiliaan, A.J.; Penke, B.; Rübe, C.E.; Walter, J.; Heneka, M.T.; Hartmann, T.; Menger, M.D.; Fassbender, K. TLR2 is a primary receptor for Alzheimer’s amyloid β peptide to trigger neuroinflammatory activation. J. Immunol., 2012, 188(3), 1098-1107.
[http://dx.doi.org/10.4049/jimmunol.1101121] [PMID: 22198949]
[45]
Doi, Y.; Mizuno, T.; Maki, Y.; Jin, S.; Mizoguchi, H.; Ikeyama, M.; Doi, M.; Michikawa, M.; Takeuchi, H.; Suzumura, A. Microglia activated with the toll-like receptor 9 ligand CpG attenuate oligomeric amyloid beta neurotoxicity in in vitro and in vivo models of Alzheimer’s disease. Am. J. Pathol., 2009, 175(5), 2121-2132.
[http://dx.doi.org/10.2353/ajpath.2009.090418] [PMID: 19834064]
[46]
Lee, J.W.; Nam, H.; Kim, L.E.; Jeon, Y.; Min, H.; Ha, S.; Lee, Y.; Kim, S.Y.; Lee, S.J.; Kim, E.K.; Yu, S.W. TLR4 (toll-like receptor 4) activation suppresses autophagy through inhibition of FOXO3 and impairs phagocytic capacity of microglia. Autophagy, 2019, 15(5), 753-770.
[http://dx.doi.org/10.1080/15548627.2018.1556946] [PMID: 30523761]
[47]
Fujikura, M.; Iwahara, N.; Hisahara, S.; Kawamata, J.; Matsumura, A.; Yokokawa, K.; Saito, T.; Manabe, T.; Matsushita, T.; Suzuki, S.; Shimohama, S. CD14 and toll-like receptor 4 promote fibrillar Aβ42 uptake by microglia through a clathrin-mediated pathway. J. Alzheimers Dis., 2019, 68(1), 323-337.
[http://dx.doi.org/10.3233/JAD-180904] [PMID: 30775984]
[48]
Kim, H.J. Nucleotides released from Abeta(1)(-)(4)(2) -treated microglial cells increase cell migration and Abeta(1)(-)(4)(2) uptake through P2Y(2) receptor activation. J. Neurochem., 2012, 121, 228-238.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07700.x] [PMID: 22353164]
[49]
Li, H.; Chen, C.; Dou, Y.; Wu, H.; Liu, Y.; Lou, H.F.; Zhang, J.; Li, X.; Wang, H.; Duan, S. P2Y4 receptor-mediated pinocytosis contributes to amyloid beta-induced self-uptake by microglia. Mol. Cell. Biol., 2013, 33(21), 4282-4293.
[http://dx.doi.org/10.1128/MCB.00544-13] [PMID: 24001770]
[50]
Fu, H.; Liu, B.; Li, L.; Lemere, C.A. Microglia do not take up soluble amyloid-beta peptides, but partially degrade them by secreting insulin-degrading enzyme. Neuroscience, 2020, 443, 30-43.
[http://dx.doi.org/10.1016/j.neuroscience.2020.07.020] [PMID: 32697980]
[51]
Bergeron, N.; Phan, B.A.P.; Ding, Y.; Fong, A.; Krauss, R.M. Proprotein convertase subtilisin/kexin type 9 inhibition: A new therapeutic mechanism for reducing cardiovascular disease risk. Circulation, 2015, 132(17), 1648-1666.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.016080] [PMID: 26503748]
[52]
Fu, Y.; Hsiao, J.H.T.; Paxinos, G.; Halliday, G.M.; Kim, W.S. ABCA7 mediates phagocytic clearance of amyloid-β in the brain. J. Alzheimers Dis., 2016, 54(2), 569-584.
[http://dx.doi.org/10.3233/JAD-160456] [PMID: 27472885]
[53]
Takata, K.; Kitamura, Y.; Saeki, M.; Terada, M.; Kagitani, S.; Kitamura, R.; Fujikawa, Y.; Maelicke, A.; Tomimoto, H.; Taniguchi, T.; Shimohama, S. Galantamine-induced amyloid-beta clearance mediated via stimulation of microglial nicotinic acetylcholine receptors. J. Biol. Chem., 2010, 285(51), 40180-40191.
[http://dx.doi.org/10.1074/jbc.M110.142356] [PMID: 20947502]
[54]
Takata, K.; Amamiya, T.; Mizoguchi, H.; Kawanishi, S.; Kuroda, E.; Kitamura, R.; Ito, A.; Saito, Y.; Tawa, M.; Nagasawa, T.; Okamoto, H.; Sugino, Y.; Takegami, S.; Kitade, T.; Toda, Y.; Kem, W.R.; Kitamura, Y.; Shimohama, S.; Ashihara, E. Alpha7 nicotinic acetylcholine receptor-specific agonist DMXBA (GTS-21) attenuates Aβ accumulation through suppression of neuronal γ-secretase activity and promotion of microglial amyloid-β phagocytosis and ameliorates cognitive impairment in a mouse model of Alzheimer’s disease. Neurobiol. Aging, 2018, 62, 197-209.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.10.021] [PMID: 29175709]
[55]
Mandrekar-Colucci, S.; Karlo, J.C.; Landreth, G.E. Mechanisms underlying the rapid peroxisome proliferator-activated receptor-γ-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer’s disease. J. Neurosci., 2012, 32(30), 10117-10128.
[http://dx.doi.org/10.1523/JNEUROSCI.5268-11.2012] [PMID: 22836247]
[56]
Gaikwad, S.; Larionov, S.; Wang, Y.; Dannenberg, H.; Matozaki, T.; Monsonego, A.; Thal, D.R.; Neumann, H. Signal regulatory protein-beta1: A microglial modulator of phagocytosis in Alzheimer’s disease. Am. J. Pathol., 2009, 175(6), 2528-2539.
[http://dx.doi.org/10.2353/ajpath.2009.090147] [PMID: 19893026]
[57]
Bernstein, K.E.; Koronyo, Y.; Salumbides, B.C.; Sheyn, J.; Pelissier, L.; Lopes, D.H.J.; Shah, K.H.; Bernstein, E.A.; Fuchs, D.T.; Yu, J.J.Y.; Pham, M.; Black, K.L.; Shen, X.Z.; Fuchs, S.; Koronyo-Hamaoui, M. Angiotensin-converting enzyme overexpression in myelomonocytes prevents Alzheimer’s-like cognitive decline. J. Clin. Invest., 2014, 124(3), 1000-1012.
[http://dx.doi.org/10.1172/JCI66541] [PMID: 24487585]
[58]
Qiu, W.Q.; Walsh, D.M.; Ye, Z.; Vekrellis, K.; Zhang, J.; Podlisny, M.B.; Rosner, M.R.; Safavi, A.; Hersh, L.B.; Selkoe, D.J. Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J. Biol. Chem., 1998, 273(49), 32730-32738.
[http://dx.doi.org/10.1074/jbc.273.49.32730] [PMID: 9830016]
[59]
Gottschall, P.E.; Yu, X.; Bing, B. Increased production of gelatinase B (matrix metalloproteinase-9) and interleukin-6 by activated rat microglia in culture. J. Neurosci. Res., 1995, 42(3), 335-342.
[http://dx.doi.org/10.1002/jnr.490420307] [PMID: 8583501]
[60]
Kanemitsu, H.; Tomiyama, T.; Mori, H. Human neprilysin is capable of degrading amyloid β peptide not only in the monomeric form but also the pathological oligomeric form. Neurosci. Lett., 2003, 350(2), 113-116.
[http://dx.doi.org/10.1016/S0304-3940(03)00898-X] [PMID: 12972166]
[61]
Pawelec, P.; Ziemka-Nalecz, M.; Sypecka, J.; Zalewska, T. The impact of the CX3CL1/CX3CR1 axis in neurological disorders. Cells, 2020, 9(10), 2277.
[http://dx.doi.org/10.3390/cells9102277] [PMID: 33065974]
[62]
Hickman, S.E.; Allison, E.K.; Coleman, U.; Kingery-Gallagher, N.D.; El Khoury, J. Heterozygous CX3CR1 deficiency in microglia restores neuronal β-Amyloid clearance pathways and slows progression of Alzheimer’s like-disease in PS1-APP mice. Front. Immunol., 2019, 10, 2780.
[http://dx.doi.org/10.3389/fimmu.2019.02780] [PMID: 31849963]
[63]
Cherry, J.D.; Olschowka, J.A.; O’Banion, M.K. Arginase 1+ microglia reduce Aβ plaque deposition during IL-1β-dependent neuroinflammation. J. Neuroinflammation, 2015, 12(1), 203.
[http://dx.doi.org/10.1186/s12974-015-0411-8] [PMID: 26538310]
[64]
Ma, C.; Hunt, J.B.; Selenica, M.L.B.; Sanneh, A.; Sandusky-Beltran, L.A.; Watler, M.; Daas, R.; Kovalenko, A.; Liang, H.; Placides, D.; Cao, C.; Lin, X.; Orr, M.B.; Zhang, B.; Gensel, J.C.; Feola, D.J.; Gordon, M.N.; Morgan, D.; Bickford, P.C.; Lee, D.C. Arginase 1 insufficiency precipitates amyloid-β deposition and hastens behavioral impairment in a mouse model of amyloidosis. Front. Immunol., 2021, 11, 582998.
[http://dx.doi.org/10.3389/fimmu.2020.582998] [PMID: 33519806]
[65]
Guillot-Sestier, M.V.; Doty, K.R.; Gate, D.; Rodriguez, J., Jr; Leung, B.P.; Rezai-Zadeh, K.; Town, T. Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuron, 2015, 85(3), 534-548.
[http://dx.doi.org/10.1016/j.neuron.2014.12.068] [PMID: 25619654]
[66]
Chakrabarty, P.; Li, A.; Ceballos-Diaz, C.; Eddy, J.A.; Funk, C.C.; Moore, B.; DiNunno, N.; Rosario, A.M.; Cruz, P.E.; Verbeeck, C.; Sacino, A.; Nix, S.; Janus, C.; Price, N.D.; Das, P.; Golde, T.E. IL-10 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior. Neuron, 2015, 85(3), 519-533.
[http://dx.doi.org/10.1016/j.neuron.2014.11.020] [PMID: 25619653]
[67]
McAlpine, C.S.; Park, J.; Griciuc, A.; Kim, E.; Choi, S.H.; Iwamoto, Y.; Kiss, M.G.; Christie, K.A.; Vinegoni, C.; Poller, W.C.; Mindur, J.E.; Chan, C.T.; He, S.; Janssen, H.; Wong, L.P.; Downey, J.; Singh, S.; Anzai, A.; Kahles, F.; Jorfi, M.; Feruglio, P.F.; Sadreyev, R.I.; Weissleder, R.; Kleinstiver, B.P.; Nahrendorf, M.; Tanzi, R.E.; Swirski, F.K. Astrocytic interleukin-3 programs microglia and limits Alzheimer’s disease. Nature, 2021, 595(7869), 701-706.
[http://dx.doi.org/10.1038/s41586-021-03734-6] [PMID: 34262178]
[68]
Lian, H.; Litvinchuk, A.; Chiang, A.C.A.; Aithmitti, N.; Jankowsky, J.L.; Zheng, H. Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer’s Disease. J. Neurosci., 2016, 36(2), 577-589.
[http://dx.doi.org/10.1523/JNEUROSCI.2117-15.2016] [PMID: 26758846]
[69]
Mitrasinovic, O.M.; Vincent, V.A.M.; Simsek, D.; Murphy, G.M., Jr Macrophage colony stimulating factor promotes phagocytosis by murine microglia. Neurosci. Lett., 2003, 344(3), 185-188.
[http://dx.doi.org/10.1016/S0304-3940(03)00474-9] [PMID: 12812836]
[70]
Kuroda, E.; Nishimura, K.; Kawanishi, S.; Sueyoshi, M.; Ueno, F.; Toji, Y.; Abo, N.; Konishi, T.; Harada, K.; Satake, S.; Shima, C.; Toda, Y.; Kitamura, Y.; Shimohama, S.; Ashihara, E.; Takata, K. Mouse bone marrow-derived microglia-like cells secrete transforming growth factor-β1 and promote microglial Aβ phagocytosis and reduction of brain Aβ Neuroscience, 2020, 438, 217-228.
[http://dx.doi.org/10.1016/j.neuroscience.2020.05.004] [PMID: 32522344]
[71]
Casadesus, G.; Smith, M.A.; Basu, S.; Hua, J.; Capobianco, D.E.; Siedlak, S.L.; Zhu, X.; Perry, G. Increased isoprostane and prostaglandin are prominent in neurons in Alzheimer disease. Mol. Neurodegener., 2007, 2(1), 2.
[http://dx.doi.org/10.1186/1750-1326-2-2] [PMID: 17241462]
[72]
Zhuang, J.; Zhang, H.; Zhou, R.; Chen, L.; Chen, J.; Shen, X. Regulation of prostaglandin F2α against β amyloid clearance and its inflammation induction through LXR/RXR heterodimer antagonism in microglia. Prostagland. Lipid Mediat., 2013, 106, 45-52.
[http://dx.doi.org/10.1016/j.prostaglandins.2013.09.002] [PMID: 24076168]
[73]
Kawabe, K.; Takano, K.; Moriyama, M.; Nakamura, Y. Microglia endocytose amyloid β through the binding of transglutaminase 2 and milk fat globule EGF factor 8 protein. Neurochem. Res., 2018, 43(1), 41-49.
[http://dx.doi.org/10.1007/s11064-017-2284-y] [PMID: 28466190]
[74]
Boza-Serrano, A.; Ruiz, R.; Sanchez-Varo, R.; García-Revilla, J.; Yang, Y.; Jimenez-Ferrer, I.; Paulus, A.; Wennström, M.; Vilalta, A.; Allendorf, D.; Davila, J.C.; Stegmayr, J.; Jiménez, S.; Roca-Ceballos, M.A.; Navarro-Garrido, V.; Swanberg, M.; Hsieh, C.L.; Real, L.M.; Englund, E.; Linse, S.; Leffler, H.; Nilsson, U.J.; Brown, G.C.; Gutierrez, A.; Vitorica, J.; Venero, J.L.; Deierborg, T. Galectin-3, a novel endogenous TREM2 ligand, detrimentally regulates inflammatory response in Alzheimer’s disease. Acta Neuropathol., 2019, 138(2), 251-273.
[http://dx.doi.org/10.1007/s00401-019-02013-z] [PMID: 31006066]
[75]
Feng, W.; Zhang, Y.; Wang, Z.; Xu, H.; Wu, T.; Marshall, C.; Gao, J.; Xiao, M. Microglia prevent beta-amyloid plaque formation in the early stage of an Alzheimer’s disease mouse model with suppression of glymphatic clearance. Alzheimers Res. Ther., 2020, 12(1), 125.
[http://dx.doi.org/10.1186/s13195-020-00688-1] [PMID: 33008458]
[76]
Zhang, Y.; Zhao, Y.; Zhang, J.; Yang, G. Mechanisms of NLRP3 inflammasome activation: Its role in the treatment of Alzheimer’s Disease. Neurochem. Res., 2020, 45(11), 2560-2572.
[http://dx.doi.org/10.1007/s11064-020-03121-z] [PMID: 32929691]
[77]
Dempsey, C.; Rubio Araiz, A.; Bryson, K.J.; Finucane, O.; Larkin, C.; Mills, E.L.; Robertson, A.A.B.; Cooper, M.A.; O’Neill, L.A.J.; Lynch, M.A. Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice. Brain Behav. Immun., 2017, 61, 306-316.
[http://dx.doi.org/10.1016/j.bbi.2016.12.014] [PMID: 28003153]
[78]
Friker, L.L.; Scheiblich, H.; Hochheiser, I.V.; Brinkschulte, R.; Riedel, D.; Latz, E.; Geyer, M.; Heneka, M.T. β-Amyloid clustering around ASC Fibrils boosts its toxicity in microglia. Cell Rep., 2020, 30(11), 3743-3754.e6.
[http://dx.doi.org/10.1016/j.celrep.2020.02.025] [PMID: 32187546]
[79]
Wang, Y.; Leppert, A.; Tan, S.; van der Gaag, B.; Li, N.; Schultzberg, M.; Hjorth, E. Maresin 1 attenuates pro‐inflammatory activation induced by β‐amyloid and stimulates its uptake. J. Cell. Mol. Med., 2021, 25(1), 434-447.
[http://dx.doi.org/10.1111/jcmm.16098] [PMID: 33225628]
[80]
Gouwens, L.K.; Makoni, N.J.; Rogers, V.A.; Nichols, M.R. Amyloid- β42 protofibrils are internalized by microglia more extensively than monomers. Brain Res., 2016, 1648(Pt A), 485-495.
[http://dx.doi.org/10.1016/j.brainres.2016.08.016] [PMID: 27531183]
[81]
Gouwens, L.K.; Ismail, M.S.; Rogers, V.A.; Zeller, N.T.; Garrad, E.C.; Amtashar, F.S.; Makoni, N.J.; Osborn, D.C.; Nichols, M.R. Aβ42 protofibrils interact with and are trafficked through microglial-derived microvesicles. ACS Chem. Neurosci., 2018, 9(6), 1416-1425.
[http://dx.doi.org/10.1021/acschemneuro.8b00029] [PMID: 29543435]
[82]
Muraoka, S.; Jedrychowski, M.P.; Iwahara, N.; Abdullah, M.; Onos, K.D.; Keezer, K.J.; Hu, J.; Ikezu, S.; Howell, G.R.; Gygi, S.P.; Ikezu, T. Enrichment of neurodegenerative microglia signature in brain-derived extracellular vesicles isolated from Alzheimer’s Disease mouse models. J. Proteome Res., 2021, 20(3), 1733-1743.
[http://dx.doi.org/10.1021/acs.jproteome.0c00934] [PMID: 33534581]
[83]
Bolós, M.; Llorens-Martín, M.; Jurado-Arjona, J.; Hernández, F.; Rábano, A.; Avila, J. Direct evidence of internalization of Tau by microglia in vitro and in vivo. J. Alzheimers Dis., 2016, 50(1), 77-87.
[http://dx.doi.org/10.3233/JAD-150704] [PMID: 26638867]
[84]
Zilka, N.; Stozicka, Z.; Kovac, A.; Pilipcinec, E.; Bugos, O.; Novak, M. Human misfolded truncated tau protein promotes activation of microglia and leukocyte infiltration in the transgenic rat model of tauopathy. J. Neuroimmunol., 2009, 209(1-2), 16-25.
[http://dx.doi.org/10.1016/j.jneuroim.2009.01.013] [PMID: 19232747]
[85]
Litvinchuk, A.; Wan, Y.W.; Swartzlander, D.B.; Chen, F.; Cole, A.; Propson, N.E.; Wang, Q.; Zhang, B.; Liu, Z.; Zheng, H. Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer’s Disease. Neuron, 2018, 100(6), 1337-1353.e5.
[http://dx.doi.org/10.1016/j.neuron.2018.10.031] [PMID: 30415998]
[86]
Gorlovoy, P.; Larionov, S.; Pham, T.T.H.; Neumann, H. Accumulation of tau induced in neurites by microglial proinflammatory mediators. FASEB J., 2009, 23(8), 2502-2513.
[http://dx.doi.org/10.1096/fj.08-123877] [PMID: 19289607]
[87]
Bhaskar, K.; Konerth, M.; Kokiko-Cochran, O.N.; Cardona, A.; Ransohoff, R.M.; Lamb, B.T. Regulation of tau pathology by the microglial fractalkine receptor. Neuron, 2010, 68(1), 19-31.
[http://dx.doi.org/10.1016/j.neuron.2010.08.023] [PMID: 20920788]
[88]
Maphis, N.; Xu, G.; Kokiko-Cochran, O.N.; Jiang, S.; Cardona, A.; Ransohoff, R.M.; Lamb, B.T.; Bhaskar, K. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain, 2015, 138(6), 1738-1755.
[http://dx.doi.org/10.1093/brain/awv081] [PMID: 25833819]
[89]
Bolós, M.; Llorens-Martín, M.; Perea, J.R.; Jurado-Arjona, J.; Rábano, A.; Hernández, F.; Avila, J. Absence of CX3CR1 impairs the internalization of Tau by microglia. Mol. Neurodegener., 2017, 12(1), 59.
[http://dx.doi.org/10.1186/s13024-017-0200-1] [PMID: 28810892]
[90]
Ando, K.; Brion, J.P.; Stygelbout, V.; Suain, V.; Authelet, M.; Dedecker, R.; Chanut, A.; Lacor, P.; Lavaur, J.; Sazdovitch, V.; Rogaeva, E.; Potier, M.C.; Duyckaerts, C. Clathrin adaptor CALM/PICALM is associated with neurofibrillary tangles and is cleaved in Alzheimer’s brains. Acta Neuropathol., 2013, 125(6), 861-878.
[http://dx.doi.org/10.1007/s00401-013-1111-z] [PMID: 23589030]
[91]
Ando, K.; De Decker, R.; Vergara, C.; Yilmaz, Z.; Mansour, S.; Suain, V.; Sleegers, K.; de Fisenne, M.A.; Houben, S.; Potier, M.C.; Duyckaerts, C.; Watanabe, T.; Buée, L.; Leroy, K.; Brion, J.P. Picalm reduction exacerbates tau pathology in a murine tauopathy model. Acta Neuropathol., 2020, 139(4), 773-789.
[http://dx.doi.org/10.1007/s00401-020-02125-x] [PMID: 31925534]
[92]
Jiang, T.; Tan, L.; Zhu, X.C.; Zhou, J.S.; Cao, L.; Tan, M.S.; Wang, H.F.; Chen, Q.; Zhang, Y.D.; Yu, J.T. Silencing of TREM2 exacerbates tau pathology, neurodegenerative changes, and spatial learning deficits in P301S tau transgenic mice. Neurobiol. Aging, 2015, 36(12), 3176-3186.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.08.019] [PMID: 26364736]
[93]
Bemiller, S.M.; McCray, T.J.; Allan, K.; Formica, S.V.; Xu, G.; Wilson, G.; Kokiko-Cochran, O.N.; Crish, S.D.; Lasagna-Reeves, C.A.; Ransohoff, R.M.; Landreth, G.E.; Lamb, B.T. TREM2 deficiency exacerbates tau pathology through dysregulated kinase signaling in a mouse model of tauopathy. Mol. Neurodegener., 2017, 12(1), 74.
[http://dx.doi.org/10.1186/s13024-017-0216-6] [PMID: 29037207]
[94]
Leyns, C.E.G.; Ulrich, J.D.; Finn, M.B.; Stewart, F.R.; Koscal, L.J.; Remolina Serrano, J.; Robinson, G.O.; Anderson, E.; Colonna, M.; Holtzman, D.M. TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc. Natl. Acad. Sci. USA, 2017, 114(43), 11524-11529.
[http://dx.doi.org/10.1073/pnas.1710311114] [PMID: 29073081]
[95]
Sayed, F.A.; Telpoukhovskaia, M.; Kodama, L.; Li, Y.; Zhou, Y.; Le, D.; Hauduc, A.; Ludwig, C.; Gao, F.; Clelland, C.; Zhan, L.; Cooper, Y.A.; Davalos, D.; Akassoglou, K.; Coppola, G.; Gan, L. Differential effects of partial and complete loss of TREM2 on microglial injury response and tauopathy. Proc. Natl. Acad. Sci. USA, 2018, 115(40), 10172-10177.
[http://dx.doi.org/10.1073/pnas.1811411115] [PMID: 30232263]
[96]
Xu, Y.; Propson, N.E.; Du, S.; Xiong, W.; Zheng, H. Autophagy deficiency modulates microglial lipid homeostasis and aggravates tau pathology and spreading. Proc. Nat. Acad. Sci., 2021, 118, 8.
[http://dx.doi.org/10.1073/pnas.2023418118]
[97]
Heckmann, B.L.; Teubner, B.J.W.; Tummers, B.; Boada-Romero, E.; Harris, L.; Yang, M.; Guy, C.S.; Zakharenko, S.S.; Green, D.R. LC3-associated endocytosis facilitates β-amyloid clearance and mitigates neurodegeneration in murine Alzheimer’s Disease. Cell, 2019, 178(3), 536-551.e14.
[http://dx.doi.org/10.1016/j.cell.2019.05.056] [PMID: 31257024]
[98]
Luo, W.; Liu, W.; Hu, X.; Hanna, M.; Caravaca, A.; Paul, S.M. Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody. Sci. Rep., 2015, 5(1), 11161.
[http://dx.doi.org/10.1038/srep11161] [PMID: 26057852]
[99]
Bussian, T.J.; Aziz, A.; Meyer, C.F.; Swenson, B.L.; van Deursen, J.M.; Baker, D.J. Clearance of senescent glial cells prevents taudependent pathology and cognitive decline. Nature, 2018, 562(7728), 578-582.
[http://dx.doi.org/10.1038/s41586-018-0543-y] [PMID: 30232451]
[100]
Andersson, C.R.; Falsig, J.; Stavenhagen, J.B.; Christensen, S.; Kartberg, F.; Rosenqvist, N.; Finsen, B.; Pedersen, J.T. Antibody-mediated clearance of tau in primary mouse microglial cultures requires Fcγ-receptor binding and functional lysosomes. Sci. Rep., 2019, 9(1), 4658.
[http://dx.doi.org/10.1038/s41598-019-41105-4] [PMID: 30874605]
[101]
Lee, S.H.; Le Pichon, C.E.; Adolfsson, O.; Gafner, V.; Pihlgren, M.; Lin, H.; Solanoy, H.; Brendza, R.; Ngu, H.; Foreman, O.; Chan, R.; Ernst, J.A.; DiCara, D.; Hotzel, I.; Srinivasan, K.; Hansen, D.V.; Atwal, J.; Lu, Y.; Bumbaca, D.; Pfeifer, A.; Watts, R.J.; Muhs, A.; Scearce-Levie, K.; Ayalon, G. Antibody-mediated targeting of tau in vivo does not require effector function and microglial engagement. Cell Rep., 2016, 16(6), 1690-1700.
[http://dx.doi.org/10.1016/j.celrep.2016.06.099] [PMID: 27475227]
[102]
Das, R.; Balmik, A.A.; Chinnathambi, S. Phagocytosis of full-length Tau oligomers by Actin-remodeling of activated microglia. J. Neuroinflammation, 2020, 17(1), 10.
[http://dx.doi.org/10.1186/s12974-019-1694-y] [PMID: 31915009]
[103]
Majerova, P.; Zilkova, M.; Kazmerova, Z.; Kovac, A.; Paholikova, K.; Kovacech, B.; Zilka, N.; Novak, M. Microglia display modest phagocytic capacity for extracellular tau oligomers. J. Neuroinflammation, 2014, 11(1), 161.
[http://dx.doi.org/10.1186/s12974-014-0161-z] [PMID: 25217135]
[104]
Hopp, S.C.; Lin, Y.; Oakley, D.; Roe, A.D.; DeVos, S.L.; Hanlon, D.; Hyman, B.T. The role of microglia in processing and spreading of bioactive tau seeds in Alzheimer’s disease. J. Neuroinflammation, 2018, 15(1), 269.
[http://dx.doi.org/10.1186/s12974-018-1309-z] [PMID: 30227881]
[105]
Asai, H.; Ikezu, S.; Tsunoda, S.; Medalla, M.; Luebke, J.; Haydar, T.; Wolozin, B.; Butovsky, O.; Kügler, S.; Ikezu, T. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci., 2015, 18(11), 1584-1593.
[http://dx.doi.org/10.1038/nn.4132] [PMID: 26436904]
[106]
Crotti, A.; Sait, H.R.; McAvoy, K.M.; Estrada, K.; Ergun, A.; Szak, S.; Marsh, G.; Jandreski, L.; Peterson, M.; Reynolds, T.L.; Dalkilic-Liddle, I.; Cameron, A.; Cahir-McFarland, E.; Ransohoff, R.M. BIN1 favors the spreading of Tau via extracellular vesicles. Sci. Rep., 2019, 9(1), 9477.
[http://dx.doi.org/10.1038/s41598-019-45676-0] [PMID: 31263146]
[107]
Ruan, Z.; Delpech, J.C.; Venkatesan Kalavai, S.; Van Enoo, A.A.; Hu, J.; Ikezu, S.; Ikezu, T. P2RX7 inhibitor suppresses exosome secretion and disease phenotype in P301S tau transgenic mice. Mol. Neurodegener., 2020, 15(1), 47.
[http://dx.doi.org/10.1186/s13024-020-00396-2] [PMID: 32811520]
[108]
Audrain, M.; Haure-Mirande, J.V.; Wang, M.; Kim, S.H.; Fanutza, T.; Chakrabarty, P.; Fraser, P.; St George-Hyslop, P.H.; Golde, T.E.; Blitzer, R.D.; Schadt, E.E.; Zhang, B.; Ehrlich, M.E.; Gandy, S. Integrative approach to sporadic Alzheimer’s disease: deficiency of TYROBP in a tauopathy mouse model reduces C1q and normalizes clinical phenotype while increasing spread and state of phosphorylation of tau. Mol. Psychiatry, 2019, 24(9), 1383-1397.
[http://dx.doi.org/10.1038/s41380-018-0258-3] [PMID: 30283031]
[109]
Clayton, K.; Delpech, J.C.; Herron, S.; Iwahara, N.; Ericsson, M.; Saito, T.; Saido, T.C.; Ikezu, S.; Ikezu, T. Plaque associated microglia hyper-secrete extracellular vesicles and accelerate tau propagation in a humanized APP mouse model. Mol. Neurodegener., 2021, 16(1), 18.
[http://dx.doi.org/10.1186/s13024-021-00440-9] [PMID: 33752701]
[110]
Lee, S.H.; Meilandt, W.J.; Xie, L.; Gandham, V.D.; Ngu, H.; Barck, K.H.; Rezzonico, M.G.; Imperio, J.; Lalehzadeh, G.; Huntley, M.A.; Stark, K.L.; Foreman, O.; Carano, R.A.D.; Friedman, B.A.; Sheng, M.; Easton, A.; Bohlen, C.J.; Hansen, D.V. Trem2 restrains the enhancement of tau accumulation and neurodegeneration by β-amyloid pathology. Neuron, 2021, 109(8), 1283-1301.e6.
[http://dx.doi.org/10.1016/j.neuron.2021.02.010] [PMID: 33675684]
[111]
Gratuze, M.; Chen, Y.; Parhizkar, S.; Jain, N.; Strickland, M.R.; Serrano, J.R.; Colonna, M.; Ulrich, J.D.; Holtzman, D.M. Activated microglia mitigate Aβ-associated tau seeding and spreading. J. Exp. Med., 2021, 218(8), e20210542.
[http://dx.doi.org/10.1084/jem.20210542] [PMID: 34100905]
[112]
Leyns, C.E.G.; Gratuze, M.; Narasimhan, S.; Jain, N.; Koscal, L.J.; Jiang, H.; Manis, M.; Colonna, M.; Lee, V.M.Y.; Ulrich, J.D.; Holtzman, D.M. TREM2 function impedes tau seeding in neuritic plaques. Nat. Neurosci., 2019, 22(8), 1217-1222.
[http://dx.doi.org/10.1038/s41593-019-0433-0] [PMID: 31235932]
[113]
Das, R.; Chinnathambi, S. Actin-mediated microglial chemotaxis via g-protein coupled purinergic receptor in Alzheimer’s disease. Neuroscience, 2020, 448, 325-336.
[http://dx.doi.org/10.1016/j.neuroscience.2020.09.024] [PMID: 32941933]
[114]
Heneka, M.T.; Kummer, M.P.; Stutz, A.; Delekate, A.; Schwartz, S.; Vieira-Saecker, A.; Griep, A.; Axt, D.; Remus, A.; Tzeng, T.C.; Gelpi, E.; Halle, A.; Korte, M.; Latz, E.; Golenbock, D.T. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature, 2013, 493(7434), 674-678.
[http://dx.doi.org/10.1038/nature11729] [PMID: 23254930]
[115]
Ising, C.; Venegas, C.; Zhang, S.; Scheiblich, H.; Schmidt, S.V.; Vieira-Saecker, A.; Schwartz, S.; Albasset, S.; McManus, R.M.; Tejera, D.; Griep, A.; Santarelli, F.; Brosseron, F.; Opitz, S.; Stunden, J.; Merten, M.; Kayed, R.; Golenbock, D.T.; Blum, D.; Latz, E.; Buée, L.; Heneka, M.T. NLRP3 inflammasome activation drives tau pathology. Nature, 2019, 575(7784), 669-673.
[http://dx.doi.org/10.1038/s41586-019-1769-z] [PMID: 31748742]
[116]
Kim, J.; Lee, Y.; Lee, S.; Kim, K.; Song, M.; Lee, J. Mesenchymal stem cell therapy and Alzheimer’s Disease: Current status and future perspectives. J. Alzheimers Dis., 2020, 77(1), 1-14.
[http://dx.doi.org/10.3233/JAD-200219] [PMID: 32741816]
[117]
Bernardo, M.E.; Locatelli, F.; Fibbe, W.E. Mesenchymal stromal cells. Ann. N. Y. Acad. Sci., 2009, 1176(1), 101-117.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04607.x] [PMID: 19796238]
[118]
Hernández, A.E.; García, E. Mesenchymal stem cell therapy for Alzheimer’s Disease. Stem Cells Int., 2021, 2021, 7834421.
[http://dx.doi.org/10.1155/2021/7834421] [PMID: 34512767]
[119]
Lee, J.K.; Jin, H.K.; Bae, J. Bone marrow-derived mesenchymal stem cells reduce brain amyloid-β deposition and accelerate the activation of microglia in an acutely induced Alzheimer’s disease mouse model. Neurosci. Lett., 2009, 450(2), 136-141.
[http://dx.doi.org/10.1016/j.neulet.2008.11.059] [PMID: 19084047]
[120]
Lee, J.K.; Schuchman, E.H.; Jin, H.K.; Bae, J.S. Soluble CCL5 derived from bone marrow-derived mesenchymal stem cells and activated by amyloid β ameliorates Alzheimer’s disease in mice by recruiting bone marrow-induced microglia immune responses. Stem Cells, 2012, 30(7), 1544-1555.
[http://dx.doi.org/10.1002/stem.1125] [PMID: 22570192]
[121]
Kuroda, E.; Takata, K.; Nishimura, K.; Oka, H.; Sueyoshi, M.; Aitani, M.; Kouda, A.; Satake, S.; Shima, C.; Toda, Y.; Nakata, S.; Kitamura, Y.; Ashihara, E. Peripheral blood-derived microglia-like cells decrease amyloid-β burden and ameliorate cognitive impairment in a mouse model of Alzheimer’s Disease. J. Alzheimers Dis., 2020, 73(1), 413-429.
[http://dx.doi.org/10.3233/JAD-190974] [PMID: 31796681]
[122]
Ostrowitzki, S.; Deptula, D.; Thurfjell, L.; Barkhof, F.; Bohrmann, B.; Brooks, D.J.; Klunk, W.E.; Ashford, E.; Yoo, K.; Xu, Z.X.; Loetscher, H.; Santarelli, L. Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch. Neurol., 2012, 69(2), 198-207.
[http://dx.doi.org/10.1001/archneurol.2011.1538] [PMID: 21987394]
[123]
Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; O’Gorman, J.; Qian, F.; Arastu, M.; Li, M.; Chollate, S.; Brennan, M.S.; Quintero-Monzon, O.; Scannevin, R.H.; Arnold, H.M.; Engber, T.; Rhodes, K.; Ferrero, J.; Hang, Y.; Mikulskis, A.; Grimm, J.; Hock, C.; Nitsch, R.M.; Sandrock, A. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature, 2016, 537(7618), 50-56.
[http://dx.doi.org/10.1038/nature19323] [PMID: 27582220]
[124]
Lannfelt, L.; Möller, C.; Basun, H.; Osswald, G.; Sehlin, D.; Satlin, A.; Logovinsky, V.; Gellerfors, P. Perspectives on future Alzheimer therapies: amyloid-β protofibrils-a new target for immunotherapy with BAN2401 in Alzheimer’s disease. Alzheimers Res. Ther., 2014, 6(2), 16.
[http://dx.doi.org/10.1186/alzrt246] [PMID: 25031633]
[125]
Pradier, L.; Blanchard-Brégeon, V.; Bohme, A.; Debeir, T.; Menager, J.; Benoit, P.; Barneoud, P.; Taupin, V.; Bertrand, P.; Dugay, P.; Cameron, B.; Shi, Y.; Naimi, S.; Duchesne, M.; Gagnaire, M.; Weeden, T.; Travaline, T.; Reczek, D.; Khiroug, L.; Slaoui, M.; Brunel, P.; Fukuyama, H.; Ravetch, J.; Canton, T.; Cohen, C. SAR228810: an antibody for protofibrillar amyloid β peptide designed to reduce the risk of amyloid-related imaging abnormalities (ARIA). Alzheimers Res. Ther., 2018, 10(1), 117.
[http://dx.doi.org/10.1186/s13195-018-0447-y] [PMID: 30486882]
[126]
Frost, C.V.; Zacharias, M. From monomer to fibril: Abeta‐amyloid binding to Aducanumab antibody studied by molecular dynamics simulation. Proteins, 2020, 88(12), 1592-1606.
[http://dx.doi.org/10.1002/prot.25978] [PMID: 32666627]
[127]
Plotkin, S.S.; Cashman, N.R. Passive immunotherapies targeting Aβ and tau in Alzheimer’s disease. Neurobiol. Dis., 2020, 144, 105010.
[http://dx.doi.org/10.1016/j.nbd.2020.105010] [PMID: 32682954]
[128]
Xiang, X.; Werner, G.; Bohrmann, B.; Liesz, A.; Mazaheri, F.; Capell, A.; Feederle, R.; Knuesel, I.; Kleinberger, G.; Haass, C. TREM2 deficiency reduces the efficacy of immunotherapeutic amyloid clearance. EMBO Mol. Med., 2016, 8(9), 992-1004.
[http://dx.doi.org/10.15252/emmm.201606370] [PMID: 27402340]
[129]
Ayalon, G.; Lee, S.H.; Adolfsson, O.; Foo-Atkins, C.; Atwal, J.K.; Blendstrup, M.; Booler, H.; Bravo, J.; Brendza, R.; Brunstein, F.; Chan, R.; Chandra, P.; Couch, J.A.; Datwani, A.; Demeule, B.; DiCara, D.; Erickson, R.; Ernst, J.A.; Foreman, O.; He, D.; Hötzel, I.; Keeley, M.; Kwok, M.C.M.; Lafrance-Vanasse, J.; Lin, H.; Lu, Y.; Luk, W.; Manser, P.; Muhs, A.; Ngu, H.; Pfeifer, A.; Pihlgren, M.; Rao, G.K.; Scearce-Levie, K.; Schauer, S.P.; Smith, W.B.; Solanoy, H.; Teng, E.; Wildsmith, K.R.; Bumbaca Yadav, D.; Ying, Y.; Fuji, R.N.; Kerchner, G.A. Antibody semorinemab reduces tau pathology in a transgenic mouse model and engages tau in patients with Alzheimer’s disease. Sci. Transl. Med., 2021, 13(593), eabb2639.
[http://dx.doi.org/10.1126/scitranslmed.abb2639] [PMID: 33980574]
[130]
Sopko, R.; Golonzhka, O.; Arndt, J.; Quan, C.; Czerkowicz, J.; Cameron, A.; Smith, B.; Murugesan, Y.; Gibbons, G.; Kim, S.J.; Trojanowski, J.Q.; Lee, V.M.Y.; Brunden, K.R.; Graham, D.L.; Weinreb, P.H.; Hering, H. Characterization of tau binding by gosuranemab. Neurobiol. Dis., 2020, 146, 105120.
[http://dx.doi.org/10.1016/j.nbd.2020.105120] [PMID: 32991997]
[131]
Novak, P.; Zilka, N.; Zilkova, M.; Kovacech, B.; Skrabana, R.; Ondrus, M.; Fialova, L.; Kontsekova, E.; Otto, M.; Novak, M. AADvac1, an active immunotherapy for Alzheimer’s Disease and non-Alzheimer Tauopathies: An overview of preclinical and clinical development. J. Prev. Alzheimers Dis., 2019, 6(1), 63-69.
[PMID: 30569088]
[132]
Walsh, S.; Merrick, R.; Milne, R.; Brayne, C. Aducanumab for Alzheimer’s disease? BMJ, 2021, 374, n1682.
[http://dx.doi.org/10.1136/bmj.n1682] [PMID: 34226181]
[133]
Salloway, S.; Farlow, M.; McDade, E.; Clifford, D.B.; Wang, G.; Llibre-Guerra, J.J.; Hitchcock, J.M.; Mills, S.L.; Santacruz, A.M.; Aschenbrenner, A.J.; Hassenstab, J.; Benzinger, T.L.S.; Gordon, B.A.; Fagan, A.M.; Coalier, K.A.; Cruchaga, C.; Goate, A.A.; Perrin, R.J.; Xiong, C.; Li, Y.; Morris, J.C.; Snider, B.J.; Mummery, C.; Surti, G.M.; Hannequin, D.; Wallon, D.; Berman, S.B.; Lah, J.J.; Jimenez-Velazquez, I.Z.; Roberson, E.D.; van Dyck, C.H.; Honig, L.S.; Sánchez-Valle, R.; Brooks, W.S.; Gauthier, S.; Galasko, D.R.; Masters, C.L.; Brosch, J.R.; Hsiung, G.Y.R.; Jayadev, S.; Formaglio, M.; Masellis, M.; Clarnette, R.; Pariente, J.; Dubois, B.; Pasquier, F.; Jack, C.R., Jr; Koeppe, R.; Snyder, P.J.; Aisen, P.S.; Thomas, R.G.; Berry, S.M.; Wendelberger, B.A.; Andersen, S.W.; Holdridge, K.C.; Mintun, M.A.; Yaari, R.; Sims, J.R.; Baudler, M.; Delmar, P.; Doody, R.S.; Fontoura, P.; Giacobino, C.; Kerchner, G.A.; Bateman, R.J.; Formaglio, M.; Mills, S.L.; Pariente, J.; van Dyck, C.H. A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer’s disease. Nat. Med., 2021, 27(7), 1187-1196.
[http://dx.doi.org/10.1038/s41591-021-01369-8] [PMID: 34155411]
[134]
Teng, E.; Manser, P.T.; Pickthorn, K.; Brunstein, F.; Blendstrup, M.; Sanabria Bohorquez, S.; Wildsmith, K.R.; Toth, B.; Dolton, M.; Ramakrishnan, V.; Bobbala, A.; Sikkes, S.A.M.; Ward, M.; Fuji, R.N.; Kerchner, G.A.; Farnbach, P.; Kyndt, C.; O’Brien, T.; Yassi, N.; Schwartz, R.; Lieten, S.; Vandenberghe, R.; Vanhee, F.; Bergeron, R.; Black, S.; Cohen, S.; Frank, A.; Nisker, W.; Tartaglia, M.C.; Justesen, A.; Alexandersen, P.; Nielsen, S.; Areovimata, A.; Anthony, P.; Belliard, S.; Blanc, F.; Ceccaldi, M.; Dubois, B.; Krolak-Salmon, P.; Mollion, H.; Pasquier, F.; Grimmer, T.; Kottke-Arbeiter, M.E.; Laske, C.; Peters, O.; Polivka, D.; von Arnim, C.; Bruno, G.; De Lena, C.; Cassetta, E.; Centonze, D.; Logroscino, G.; Dautzenberg, P.; Rutgers, S.; Prins, N.; Czarnecki, M.; Dobryniewski, J.; Ilkowski, J.; Klodowska, G.; Krygowska-Wajs, A.; Kucharski, R.; Mickielewicz, A.; Ratajczak, M.; Zboch, M.; Zielinski, T.; Abizanda Soler, P.; Agüera Morales, E.; Baquero Toledo, M.; Blesa González, R.; Boada Rovira, M.; Del Olmo Rodriguez, A.; Krupinski, J.; Linazasoro Cristobal, G.; López Arrieta, J.; Riverol Fernandez, M.; Sanchez Del Valle Diaz, R.; Viñuela Fernandez, F.; Jonsson, M.; Östlund, H.; MacSweeney, J.E.; Mummery, C.; Agronin, M.; Ala, T.; Bond, W.; Schaerf, F.; Brody, M.; Edwards, K.; Forchetti, C.; Sood, A.; Geldmacher, D.; Goldstein, M.; Goodman, I.; Hart, D.; Honig, L.; Justiz, W.; Levey, A.; Losk, S.; Marshall, G.; Martinez, W.; McAllister, P.; McElveen, W.A.; Maldonado-Robles, O.; Murphy, C.; Nair, M.; Nair, A.; Omidvar, O.; Oskooilar, N.; Porsteinsson, A.; Rosenbloom, M.; Russell, D.; Sajjadi, S.A.; Pierce, A.; Salloway, S.; Sha, S.; Shah, R.; Sharma, S.; Smith, W.; Stein, L.; Stoukides, J.; Thein, S.; Turner, R.; Watson, D.; Weisman, D. Safety and efficacy of Semorinemab in individuals with prodromal to mild Alzheimer Disease. JAMA Neurol., 2022, 79(8), 758-767.
[http://dx.doi.org/10.1001/jamaneurol.2022.1375] [PMID: 35696185]
[135]
The, L. Lecanemab for Alzheimer’s disease: Tempering hype and hope. Lancet, 2022, 400(10367), 1899.
[http://dx.doi.org/10.1016/S0140-6736(22)02480-1] [PMID: 36463893]
[136]
Söderberg, L.; Johannesson, M.; Nygren, P.; Laudon, H.; Eriksson, F.; Osswald, G.; Möller, C.; Lannfelt, L. Lecanemab, Aducanumab, and Gantenerumab — Binding profiles to different forms of amyloid-beta might explain efficacy and side effects in clinical trials for Alzheimer’s Disease. Neurotherapeutics, 2022. [Epub ahead print].
[http://dx.doi.org/10.1007/s13311-022-01308-6] [PMID: 36253511]
[137]
Pan, R.Y.; Ma, J.; Kong, X.X.; Wang, X.F.; Li, S.S.; Qi, X.L.; Yan, Y.H.; Cheng, J.; Liu, Q.; Jin, W.; Tan, C.H.; Yuan, Z. Sodium rutin ameliorates Alzheimer’s disease–like pathology by enhancing microglial amyloid-β clearance. Sci. Adv., 2019, 5(2), eaau6328.
[http://dx.doi.org/10.1126/sciadv.aau6328] [PMID: 30820451]
[138]
Park, M.H.; Lee, M.; Nam, G.; Kim, M.; Kang, J.; Choi, B.J.; Jeong, M.S.; Park, K.H.; Han, W.H.; Tak, E.; Kim, M.S.; Lee, J.; Lin, Y.; Lee, Y.H.; Song, I.S.; Choi, M.K.; Lee, J.Y.; Jin, H.K.; Bae, J.; Lim, M.H. N, N ′-Diacetyl- p -phenylenediamine restores microglial phagocytosis and improves cognitive defects in Alzheimer’s disease transgenic mice. Proc. Natl. Acad. Sci. USA, 2019, 116(47), 23426-23436.
[http://dx.doi.org/10.1073/pnas.1916318116] [PMID: 31685616]
[139]
Zhang, C.; Griciuc, A.; Hudry, E.; Wan, Y.; Quinti, L.; Ward, J.; Forte, A.M.; Shen, X.; Ran, C.; Elmaleh, D.R.; Tanzi, R.E. Cromolyn reduces levels of the Alzheimer’s disease-associated amyloid β-protein by promoting microglial phagocytosis. Sci. Rep., 2018, 8(1), 1144.
[http://dx.doi.org/10.1038/s41598-018-19641-2] [PMID: 29348604]
[140]
Connor, S.M.; Rashid, M.; Ryan, K.J.; Patel, K.; Boyd, J.D.; Smith, J.; Elyaman, W.; Bennett, D.A.; Bradshaw, E.M. GW5074 increases microglial phagocytic activities: Potential therapeutic direction for Alzheimer’s disease. Front. Cell. Neurosci., 2022, 16, 894601.
[http://dx.doi.org/10.3389/fncel.2022.894601] [PMID: 35677758]
[141]
Lv, J.; Wang, W.; Zhu, X.; Xu, X.; Yan, Q.; Lu, J.; Shi, X.; Wang, Z.; Zhou, J.; Huang, X.; Wang, J.; Duan, W.; Shen, X. DW14006 as a direct AMPKα1 activator improves pathology of AD model mice by regulating microglial phagocytosis and neuroinflammation. Brain Behav. Immun., 2020, 90, 55-69.
[http://dx.doi.org/10.1016/j.bbi.2020.07.041] [PMID: 32739363]
[142]
Wang, S.; Mustafa, M.; Yuede, C.M.; Salazar, S.V.; Kong, P.; Long, H.; Ward, M.; Siddiqui, O.; Paul, R.; Gilfillan, S.; Ibrahim, A.; Rhinn, H.; Tassi, I.; Rosenthal, A.; Schwabe, T.; Colonna, M. Anti-human TREM2 induces microglia proliferation and reduces pathology in an Alzheimer’s disease model. J. Exp. Med., 2020, 217(9), e20200785.
[http://dx.doi.org/10.1084/jem.20200785] [PMID: 32579671]
[143]
Ulrich, J.D.; Finn, M.B.; Wang, Y.; Shen, A.; Mahan, T.E.; Jiang, H.; Stewart, F.R.; Piccio, L.; Colonna, M.; Holtzman, D.M. Altered microglial response to Aβ plaques in APPPS1-21 mice heterozygous for TREM2. Mol. Neurodegener., 2014, 9(1), 20.
[http://dx.doi.org/10.1186/1750-1326-9-20] [PMID: 24893973]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy