Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in the Chemical Synthesis of β-Nicotinamide Mononucleotide

Author(s): Wei Ming, Sha Hu, Ye Liu, Qu-Ao-Wei Li, Yuan-Yuan Zhu and Shuang-Xi Gu*

Volume 26, Issue 24, 2022

Published on: 14 February, 2023

Page: [2151 - 2159] Pages: 9

DOI: 10.2174/1385272827666230201103848

Price: $65

conference banner
Abstract

β-Nicotinamide mononucleotide (β-NMN), a key precursor in the biosynthesis of nicotinamide adenine dinucleotide (NAD+) in mammals, has significant effects in replenishing NAD+ levels in the body, so it has obvious ameliorative effects on metabolic and age-related degenerative diseases. β-NMN is widely used in healthcare products, food, and cosmetics. It has considerable commercial worth and promising medical application prospects. Hence, the development of methods for preparing β-NMN is of great research significance. This review summarized and analyzed recent developments in the chemical synthesis of β-NMN from various starting materials, which could provide helpful references for the investigation of new synthetic techniques for β-NMN and encourage its further development and large-scale application.

Keywords: β-nicotinamide mononucleotide, β-NMN, NAD+, food ingredient, nutritional supplementation, chemical synthesis, large-scale application.

Next »
Graphical Abstract
[1]
Poddar, S.K.; Sifat, A.E.; Haque, S.; Nahid, N.A.; Chowdhury, S.; Mehedi, I. Nicotinamide mononucleotide: Exploration of diverse therapeutic applications of a potential molecule. Biomolecules, 2019, 9(1), 34.
[http://dx.doi.org/10.3390/biom9010034] [PMID: 30669679]
[2]
Magni, G.; Amici, A.; Emanuelli, M.; Orsomando, G.; Raffaelli, N.; Ruggieri, S. Enzymology of NAD+ homeostasis in man. Cell. Mol. Life Sci., 2004, 61(1), 19-34.
[http://dx.doi.org/10.1007/s00018-003-3161-1] [PMID: 14704851]
[3]
Ratajczak, J.; Joffraud, M.; Trammell, S.A.J.; Ras, R.; Canela, N.; Boutant, M.; Kulkarni, S.S.; Rodrigues, M.; Redpath, P.; Migaud, M.E.; Auwerx, J.; Yanes, O.; Brenner, C.; Cantó, C. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells. Nat. Commun., 2016, 7(1), 13103.
[http://dx.doi.org/10.1038/ncomms13103] [PMID: 27725675]
[4]
Shoji, S.; Yamaji, T.; Makino, H.; Ishii, J.; Kondo, A. Metabolic design for selective production of nicotinamide mononucleotide from glucose and nicotinamide. Metab. Eng., 2021, 65, 167-177.
[http://dx.doi.org/10.1016/j.ymben.2020.11.008] [PMID: 33220420]
[5]
Fletcher, R.S.; Ratajczak, J.; Doig, C.L.; Oakey, L.A.; Callingham, R.; Da Silva Xavier, G.; Garten, A.; Elhassan, Y.S.; Redpath, P.; Migaud, M.E.; Philp, A.; Brenner, C.; Canto, C.; Lavery, G.G. Nicotinamide riboside kinases display redundancy in mediating nicotinamide mononucleotide and nicotinamide riboside metabolism in skeletal muscle cells. Mol. Metab., 2017, 6(8), 819-832.
[http://dx.doi.org/10.1016/j.molmet.2017.05.011] [PMID: 28752046]
[6]
Zapata-Pérez, R.; Tammaro, A.; Schomakers, B.V.; Scantlebery, A.M.L.; Denis, S.; Elfrink, H.L.; Giroud-Gerbetant, J.; Cantó, C.; López-Leonardo, C.; McIntyre, R.L.; van Weeghel, M.; Sánchez-Ferrer, Á.; Houtkooper, R.H. Reduced nicotinamide mononucleotide is a new and potent NAD + precursor in mammalian cells and mice. FASEB J., 2021, 35(4), e21456.
[http://dx.doi.org/10.1096/fj.202001826R] [PMID: 33724555]
[7]
Yamamoto, T.; Byun, J.; Zhai, P.; Ikeda, Y.; Oka, S.; Sadoshima, J. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS One, 2014, 9(6), e98972.
[http://dx.doi.org/10.1371/journal.pone.0098972] [PMID: 24905194]
[8]
Zhai, R.G.; Rizzi, M.; Garavaglia, S. Nicotinamide/nicotinic acid mononucleotide adenylyltransferase, new insights into an ancient enzyme. Cell. Mol. Life Sci., 2009, 66(17), 2805-2818.
[http://dx.doi.org/10.1007/s00018-009-0047-x] [PMID: 19448972]
[9]
Wei, C.C.; Kong, Y.Y.; Li, G.Q.; Guan, Y.F.; Wang, P.; Miao, C.Y. Nicotinamide mononucleotide attenuates brain injury after intracerebral hemorrhage by activating Nrf2/HO-1 signaling pathway. Sci. Rep., 2017, 7(1), 717.
[http://dx.doi.org/10.1038/s41598-017-00851-z] [PMID: 28386082]
[10]
Hong, W.; Mo, F.; Zhang, Z.; Huang, M.; Wei, X. Nicotinamide mononucleotide: A promising molecule for therapy of diverse diseases by targeting NAD+ metabolism. Front. Cell Dev. Biol., 2020, 8, 246.
[http://dx.doi.org/10.3389/fcell.2020.00246] [PMID: 32411700]
[11]
Yamaura, K.; Mifune, Y.; Inui, A.; Nishimoto, H.; Kurosawa, T.; Mukohara, S.; Hoshino, Y.; Niikura, T.; Kuroda, R. Antioxidant effect of nicotinamide mononucleotide in tendinopathy. BMC Musculoskelet. Disord., 2022, 23(1), 249.
[http://dx.doi.org/10.1186/s12891-022-05205-z] [PMID: 35287653]
[12]
Mateuszuk, Ł; Campagna, R.; Kutryb-Zając, B.; Kuś, K.; Słominska, E.M.; Smolenski, R.T.; Chlopicki, S. Reversal of endothelial dysfunction by nicotinamide mononucleotide via extracellular conversion to nicotinamide riboside. Biochem. Pharmacol., 2020, 178, 114019.
[http://dx.doi.org/10.1016/j.bcp.2020.114019] [PMID: 32389638]
[13]
Wei, Z.; Chai, H.; Chen, Y.; Cheng, Y.; Liu, X. Nicotinamide mononucleotide: An emerging nutraceutical against cardiac aging? Curr. Opin. Pharmacol., 2021, 60, 291-297.
[http://dx.doi.org/10.1016/j.coph.2021.08.006] [PMID: 34507029]
[14]
Klimova, N.; Kristian, T. Multi-targeted effect of nicotinamide mononucleotide on brain bioenergetic metabolism. Neurochem. Res., 2019, 44(10), 2280-2287.
[http://dx.doi.org/10.1007/s11064-019-02729-0] [PMID: 30661231]
[15]
Bertoldo, M.J.; Rodriguez Paris, V.; Gook, D.A.; Edwards, M.C.; Wu, K.; Liang, C.J.J.; Marinova, M.B.; Wu, L.E.; Walters, K.A.; Gilchrist, R.B. Impact of nicotinamide mononucleotide on transplanted mouse ovarian tissue. Reproduction, 2021, 161(2), 215-226.
[http://dx.doi.org/10.1530/REP-20-0539] [PMID: 33320829]
[16]
Wang, L.; Chen, Y.; Wei, J.; Guo, F.; Li, L.; Han, Z.; Wang, Z.; Zhu, H.; Zhang, X.; Li, Z.; Dai, X. Administration of nicotinamide mononucleotide improves oocyte quality of obese mice. Cell Prolif., 2022, 55(11), e13303.
[http://dx.doi.org/10.1111/cpr.13303] [PMID: 35811338]
[17]
Yao, Z.; Yang, W.; Gao, Z.; Jia, P. Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease. Neurosci. Lett., 2017, 647, 133-140.
[http://dx.doi.org/10.1016/j.neulet.2017.03.027] [PMID: 28330719]
[18]
Yoshino, M.; Yoshino, J.; Kayser, B.D.; Patti, G.J.; Franczyk, M.P.; Mills, K.F.; Sindelar, M.; Pietka, T.; Patterson, B.W.; Imai, S.I.; Klein, S. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science, 2021, 372(6547), 1224-1229.
[http://dx.doi.org/10.1126/science.abe9985] [PMID: 33888596]
[19]
Yasuda, I.; Hasegawa, K.; Sakamaki, Y.; Muraoka, H.; Kawaguchi, T.; Kusahana, E.; Ono, T.; Kanda, T.; Tokuyama, H.; Wakino, S.; Itoh, H. Pre-emptive short-term nicotinamide mononucleotide treatment in a mouse model of diabetic nephropathy. J. Am. Soc. Nephrol., 2021, 32(6), 1355-1370.
[http://dx.doi.org/10.1681/ASN.2020081188] [PMID: 33795425]
[20]
Yan, J.; Sakamoto, T.; Islam, A.; Ping, Y.; Oyama, S.; Fuchino, H.; Kawakami, H.; Yoshimatsu, K.; Kahyo, T.; Setou, M. Cinnamomum verum J. Presl Bark contains high contents of nicotinamide mononucleotide. Molecules, 2022, 27(20), 7054.
[http://dx.doi.org/10.3390/molecules27207054] [PMID: 36296647]
[21]
Wang, X.; Hu, X.; Yang, Y.; Takata, T.; Sakurai, T. Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death. Brain Res., 2016, 1643, 1-9.
[http://dx.doi.org/10.1016/j.brainres.2016.04.060] [PMID: 27130898]
[22]
Ru, M.; Wang, W.; Zhai, Z.; Wang, R.; Li, Y.; Liang, J.; Kothari, D.; Niu, K.; Wu, X. Nicotinamide mononucleotide supplementation protects the intestinal function in aging mice and D -galactose induced senescent cells. Food Funct., 2022, 13(14), 7507-7519.
[http://dx.doi.org/10.1039/D2FO00525E] [PMID: 35678708]
[23]
Grozio, A.; Mills, K.F.; Yoshino, J.; Bruzzone, S.; Sociali, G.; Tokizane, K.; Lei, H.C.; Cunningham, R.; Sasaki, Y.; Migaud, M.E.; Imai, S. Slc12a8 is a nicotinamide mononucleotide transporter. Nat. Metab., 2019, 1(1), 47-57.
[http://dx.doi.org/10.1038/s42255-018-0009-4] [PMID: 31131364]
[24]
Ramanathan, C.; Lackie, T.; Williams, D.H.; Simone, P.S.; Zhang, Y.; Bloomer, R.J. Oral administration of nicotinamide mononucleotide increases nicotinamide adenine dinucleotide level in an animal brain. Nutrients, 2022, 14(2), 300.
[http://dx.doi.org/10.3390/nu14020300] [PMID: 35057482]
[25]
You, Y.; Gao, Y.; Wang, H.; Li, J.; Zhang, X.; Zhu, Z.; Liu, N. Subacute toxicity study of nicotinamide mononucleotide via oral administration. Front. Pharmacol., 2020, 11, 604404.
[http://dx.doi.org/10.3389/fphar.2020.604404] [PMID: 33384603]
[26]
Okabe, K.; Yaku, K.; Uchida, Y.; Fukamizu, Y.; Sato, T.; Sakurai, T.; Tobe, K.; Nakagawa, T. Oral administration of nicotinamide mononucleotide is safe and efficiently increases blood nicotinamide adenine dinucleotide levels in healthy subjects. Front. Nutr., 2022, 9, 868640.
[http://dx.doi.org/10.3389/fnut.2022.868640] [PMID: 35479740]
[27]
Demarest, T.G.; Babbar, M.; Okur, M.N.; Dan, X.; Croteau, D.L.; Fakouri, N.B.; Mattson, M.P.; Bohr, V.A. NAD+ Metabolism in aging and cancer. Annu. Rev. Cancer Biol., 2019, 3(1), 105-130.
[http://dx.doi.org/10.1146/annurev-cancerbio-030518-055905]
[28]
Luo, C.; Ding, W.; Zhu, S.; Chen, Y.; Liu, X.; Deng, H. Nicotinamide mononucleotide administration amends protein acetylome of aged mouse liver. Cells, 2022, 11(10), 1654.
[http://dx.doi.org/10.3390/cells11101654] [PMID: 35626691]
[29]
Ren, C.; Hu, C.; Wu, Y.; Li, T.; Zou, A.; Yu, D.; Shen, T.; Cai, W.; Yu, J. Nicotinamide mononucleotide ameliorates cellular senescence and inflammation caused by sodium iodate in RPE. Oxid. Med. Cell. Longev., 2022, 2022, 5961123.
[http://dx.doi.org/10.1155/2022/5961123] [PMID: 35898618]
[30]
Shen, C.Y.; Li, X.Y.; Ma, P.Y.; Li, H.L.; Xiao, B.; Cai, W.F.; Xing, X.F. Nicotinamide mononucleotide (NMN) and NMN-rich product supplementation alleviate p-chlorophenylalanine-induced sleep disorders. J. Funct. Foods, 2022, 91, 105031.
[http://dx.doi.org/10.1016/j.jff.2022.105031]
[31]
Nadeeshani, H.; Li, J.; Ying, T.; Zhang, B.; Lu, J. Nicotinamide mononucleotide (NMN) as an anti-aging health product – Promises and safety concerns. J. Adv. Res., 2022, 37, 267-278.
[http://dx.doi.org/10.1016/j.jare.2021.08.003] [PMID: 35499054]
[32]
Kawamura, T.; Mori, N.; Shibata, K. β-nicotinamide mononucleotide, an anti-aging candidate compound, is retained in the body for longer than nicotinamide in rats. J. Nutr. Sci. Vitaminol., 2016, 62(4), 272-276.
[http://dx.doi.org/10.3177/jnsv.62.272] [PMID: 27725413]
[33]
Yoshino, J.; Mills, K.F.; Yoon, M.J.; Imai, S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab., 2011, 14(4), 528-536.
[http://dx.doi.org/10.1016/j.cmet.2011.08.014] [PMID: 21982712]
[34]
Deng, J.; Luo, T.Y.; Liu, D.F.; Xu, J.W.; Luo, M.L.; Yao, L.L.; Tan, Z.C. Clinical research and chemical preparation progress of nicotinamide nucleotide. Guangdong Chem. Ind., 2021, 48(12), 98-100.
[35]
Sverkeli, L.J.; Hayat, F.; Migaud, M.E.; Ziegler, M. Enzymatic and chemical syntheses of vacor analogs of nicotinamide riboside, NMN and NAD. Biomolecules, 2021, 11(7), 1044.
[http://dx.doi.org/10.3390/biom11071044] [PMID: 34356669]
[36]
Liu, R.; Orgel, L.E. Enzymatic synthesis of polymers containing nicotinamide mononucleotide. Nucleic Acids Res., 1995, 23(18), 3742-3749.
[http://dx.doi.org/10.1093/nar/23.18.3742] [PMID: 7479005]
[37]
Li, Q.; Meng, D.; You, C. An artificial multi-enzyme cascade biocatalysis for biomanufacturing of nicotinamide mononucleotide from starch and nicotinamide in one-pot. Enzyme Microb. Technol., 2023, 162, 110122.
[http://dx.doi.org/10.1016/j.enzmictec.2022.110122] [PMID: 36103798]
[38]
Zhou, C.; Feng, J.; Wang, J.; Hao, N.; Wang, X.; Chen, K. Design of an in vitro multienzyme cascade system for the biosynthesis of nicotinamide mononucleotide. Catal. Sci. Technol., 2022, 12(4), 1080-1091.
[http://dx.doi.org/10.1039/D1CY01798E]
[39]
He, Z.; Yang, X.; Tian, X.; Li, L.; Liu, M. Yeast cell surface engineering of a nicotinamide riboside kinase for the production of β-nicotinamide mononucleotide via whole-cell catalysis. ACS Synth. Biol., 2022, 11(10), 3451-3459.
[http://dx.doi.org/10.1021/acssynbio.2c00350] [PMID: 36219824]
[40]
Christ, W.; Coper, H. Preparation and purification of nicotinamide mononucleotide analogs. Methods Enzymol., 1980, 66, 71-81.
[http://dx.doi.org/10.1016/0076-6879(80)66440-4] [PMID: 6103501]
[41]
Liu, Y.; Yasawong, M.; Yu, B. Metabolic engineering of Escherichia coli for biosynthesis of β‐nicotinamide mononucleotide from nicotinamide. Microb. Biotechnol., 2021, 14(6), 2581-2591.
[http://dx.doi.org/10.1111/1751-7915.13901] [PMID: 34310854]
[42]
Kong, L.H.; Liu, T.Y.; Yao, Q.S.; Zhang, X.H.; Xu, W.N.; Qin, J.Y. Enhancing the biosynthesis of nicotinamide mononucleotide in Lactococcus lactis by heterologous expression of FTNADE *. J. Sci. Food Agric., 2023, 103(1), 450-456.
[http://dx.doi.org/10.1002/jsfa.12253] [PMID: 36205212]
[43]
Maharjan, A.; Singhvi, M.; Kim, B.S. Biosynthesis of a therapeutically important nicotinamide mononucleotide through a phosphoribosyl pyrophosphate synthetase 1 and 2 engineered strain of Escherichia coli. ACS Synth. Biol., 2021, 10(11), 3055-3065.
[http://dx.doi.org/10.1021/acssynbio.1c00333] [PMID: 34747173]
[44]
Shen, Q.; Zhang, S.J.; Xue, Y.Z.; Peng, F.; Cheng, D.Y.; Xue, Y.P.; Zheng, Y.G. Biological synthesis of nicotinamide mononucleotide. Biotechnol. Lett., 2021, 43(12), 2199-2208.
[http://dx.doi.org/10.1007/s10529-021-03191-1] [PMID: 34626279]
[45]
Huang, Z.; Li, N.; Yu, S.; Zhang, W.; Zhang, T.; Zhou, J. Systematic engineering of Escherichia coli for efficient production of nicotinamide mononucleotide from nicotinamide. ACS Synth. Biol., 2022, 11(9), 2979-2988.
[http://dx.doi.org/10.1021/acssynbio.2c00100] [PMID: 35977419]
[46]
Sugiyama, K.; Iijima, K.; Yoshino, M.; Dohra, H.; Tokimoto, Y.; Nishikawa, K.; Idogaki, H.; Yoshida, N. Nicotinamide mononucleotide production by fructophilic lactic acid bacteria. Sci. Rep., 2021, 11(1), 7662.
[http://dx.doi.org/10.1038/s41598-021-87361-1] [PMID: 33828213]
[47]
Chen, Y.X.; Li, Q.; Cheng, M.S.; Liu, Y. Schematic diagram of the synthetic route of nicotinamide mononucleotide. Zhongguo Yaowu Huaxue Zazhi, 2020, 30(9), 578-580.
[http://dx.doi.org/10.14142/j.cnki.cn21-1313/r.2020.09.007]
[48]
Lee, J.; Churchil, H.; Choi, W.B.; Lynch, J.E.; Roberts, F.E.; Volante, R.P.; Reider, P.J. A chemical synthesis of nicotinamide adenine dinucleotide (NAD+). Chem. Commun., 1999, 8(8), 729-730.
[http://dx.doi.org/10.1039/a809930h]
[49]
Tanimori, S.; Ohta, T.; Kirihata, M. An efficient chemical synthesis of nicotinamide riboside (NAR) and analogues. Bioorg. Med. Chem. Lett., 2002, 12(8), 1135-1137.
[http://dx.doi.org/10.1016/S0960-894X(02)00125-7] [PMID: 11934573]
[50]
Migaud, M.E.; Redpath, P.; Crossey, K.; Cunningham, R.; Erickson, A.; Nygaard, R.; Storjohann, A. Crystalline forms of nicotinoyl ribosides, modified derivatives thereof, and phosphorylated analogs thereof, and methods of preparation thereof. U.S. Patent 9,975,915 B1, 2018.
[51]
Wei, X.W.; Wei, Y.Q. Method for preparing beta-niacinamide single nucleotide or beta-niacinamide ribose. Chinese Patent 109053838, 2018.
[52]
Pan, Y.F.; Zhou, H.; Pan, S.Q. Process preparation method of beta-nicotinamide mononucleotide. Chinese Patent 111548383, 2020.
[53]
Lan, K.; Zhang, H.; Zhang, X.T. Synthesis method and synthesis device of beta-nicotinamide mononucleotide. Chinese Patent 111943992, 2020.
[54]
Shi, X.D.; Jin, X.Z.; Zheng, X.Q. Preparation method of β-nicotinamide mononucleotide. Chinese Patent 113527376, 2021.
[55]
Sauve, A.; Mohammed, F.S. Efficient synthesis of nicotinamide mononucleotide. Chinese Patent 107613990, 2018.
[56]
Du, X.L.; Cheng, J. Method of preparing beta-nicotinamide mononucleotide and sodium salt thereof. Chinese Patent 110845548, 2020.
[57]
Xu, Q.Y.; Yu, J.J.; Hu, J. Preparation method of beta-nicotinamide mononucleotide. Chinese Patent 111377983, 2020.
[58]
Ni, X.M. Chemical synthesis method of nicotinamide mononucleotide (NMN). Chinese Patent 112225770, 2021.
[59]
Mikhailopulo, I.A.; Pricota, T.I.; Timoshchuk, V.A.; Akhrem, A.A. Synthesis of glycosides of nicotinamide and nicotinamide mononucleotide. Synthesis, 1981, 1981(5), 388-389.
[http://dx.doi.org/10.1055/s-1981-29462]
[60]
Yan, Y.; Zhang, K. Chemical synthesis method of β-nicotinamide mononucleotide. Chinese Patent 113621009, 2021.
[61]
Wu, T.Z.; Yang, X.L.; Yuan, S.; Shi, Y.F.; Lu, J.W.; Liang, X.M.; Wang, Y.Q.; Li, X. Preparation method of beta-nicotinamide mononucleotide. Chinese Patent 112724180, 2021.
[62]
Shi, X.D.; Jin, X.Z.; Zheng, X.Q. Preparation method of β-nicotinamide mononucleotide. Chinese Patent 113512079, 2021.
[63]
Liu, W.; Wu, S.; Hou, S.; Zhao, Z.K. Synthesis of phosphodiester-type nicotinamide adenine dinucleotide analogs. Tetrahedron, 2009, 65(40), 8378-8383.
[http://dx.doi.org/10.1016/j.tet.2009.08.007]
[64]
Lou, X.Y. Synthesis method of beta-nicotinamide mononucleotide. Chinese Patent 111647032, 2020.
[65]
Liu, R.; Visscher, J. A novel preparation of nicotinamide mononucleotide. Nucleosides Nucleotides, 1994, 13(5), 1215-1216.
[http://dx.doi.org/10.1080/15257779408011891] [PMID: 11539878]
[66]
Ren, L.M.; Wang, X.R.; Qi, Y.H.; Han, G.X.; Han, T.M.; Gui, Y.; Zhang, M.; Li, X.B. Research progress on function and synthesis of β-nicotinamide mononucleotide. Biotic Resour., 2021, 43(2), 127-132.
[http://dx.doi.org/10.14188/j.ajsh.2021.02.004]
[67]
Nadtochiy, S.M.; Wang, Y.T.; Nehrke, K.; Munger, J.; Brookes, P.S. Cardioprotection by nicotinamide mononucleotide (NMN): Involvement of glycolysis and acidic pH. J. Mol. Cell. Cardiol., 2018, 121, 155-162.
[http://dx.doi.org/10.1016/j.yjmcc.2018.06.007] [PMID: 29958828]
[68]
Ueda, K.; Nakajima, Y.; Inoue, H.; Kobayashi, K.; Nishiuchi, T.; Kimura, M.; Yaeno, T. Nicotinamide mononucleotide potentiates resistance to biotrophic invasion of fungal pathogens in barley. Int. J. Mol. Sci., 2021, 22(5), 2696.
[http://dx.doi.org/10.3390/ijms22052696] [PMID: 33800043]
[69]
Irie, J.; Inagaki, E.; Fujita, M.; Nakaya, H.; Mitsuishi, M.; Yamaguchi, S.; Yamashita, K.; Shigaki, S.; Ono, T.; Yukioka, H.; Okano, H.; Nabeshima, Y.; Imai, S.; Yasui, M.; Tsubota, K.; Itoh, H. Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men. Endocr. J., 2020, 67(2), 153-160.
[http://dx.doi.org/10.1507/endocrj.EJ19-0313] [PMID: 31685720]
[70]
Miao, Y.; Cui, Z.; Gao, Q.; Rui, R.; Xiong, B. Nicotinamide mononucleotide supplementation reverses the declining quality of maternally aged oocytes. Cell Rep., 2020, 32(5), 107987.
[http://dx.doi.org/10.1016/j.celrep.2020.107987] [PMID: 32755581]
[71]
Shu, L.; Shen, X.; Zhao, Y.; Zhao, R.; He, X.; Yin, J.; Su, J.; Li, Q.; Liu, J. Mechanisms of transformation of nicotinamide mononucleotides to cerebral infarction hemorrhage based on MCAO model. Saudi J. Biol. Sci., 2020, 27(3), 899-904.
[http://dx.doi.org/10.1016/j.sjbs.2019.12.023] [PMID: 32127769]
[72]
Mills, K.F.; Yoshida, S.; Stein, L.R.; Grozio, A.; Kubota, S.; Sasaki, Y.; Redpath, P.; Migaud, M.E.; Apte, R.S.; Uchida, K.; Yoshino, J.; Imai, S. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab., 2016, 24(6), 795-806.
[http://dx.doi.org/10.1016/j.cmet.2016.09.013] [PMID: 28068222]
[73]
Bai, L.B.; Yau, L.F.; Tong, T.T.; Chan, W.H.; Zhang, W.; Jiang, Z.H. Improvement of tissue‐specific distribution and biotransformation potential of nicotinamide mononucleotide in combination with ginsenosides or resveratrol. Pharmacol. Res. Perspect., 2022, 10(4), e00986.
[http://dx.doi.org/10.1002/prp2.986] [PMID: 35844164]
[74]
Liang, H.; Gao, J.; Zhang, C.; Li, C.; Wang, Q.; Fan, J.; Wu, Z.; Wang, Q. Nicotinamide mononucleotide alleviates Aluminum induced bone loss by inhibiting the TXNIP-NLRP3 inflammasome. Toxicol. Appl. Pharmacol., 2019, 362, 20-27.
[http://dx.doi.org/10.1016/j.taap.2018.10.006] [PMID: 30292833]
[75]
Tian, Y.; Zhu, C.L.; Li, P.; Li, H.R.; Liu, Q.; Deng, X.M.; Wang, J.F. Nicotinamide mononucleotide attenuates LPS-induced acute lung injury with anti-inflammatory, anti-oxidative and anti-apoptotic effects. J. Surg. Res., 2023, 283, 9-18.
[http://dx.doi.org/10.1016/j.jss.2022.09.030] [PMID: 36347171]
[76]
Picciotto, N.E.; Gano, L.B.; Johnson, L.C.; Martens, C.R.; Sindler, A.L.; Mills, K.F.; Imai, S.; Seals, D.R. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell, 2016, 15(3), 522-530.
[http://dx.doi.org/10.1111/acel.12461] [PMID: 26970090]
[77]
Soma, M.; Lalam, S.K. The role of nicotinamide mononucleotide (NMN) in anti-aging, longevity, and its potential for treating chronic conditions. Mol. Biol. Rep., 2022, 49(10), 9737-9748.
[http://dx.doi.org/10.1007/s11033-022-07459-1] [PMID: 35441939]
[78]
Brito, S.; Baek, J.M.; Cha, B.; Heo, H.; Lee, S.H.; Lei, L.; Jung, S.Y.; Lee, S.M.; Lee, S.H.; Kwak, B.M.; Chae, S.; Lee, M.G.; Bin, B.H. Nicotinamide mononucleotide reduces melanin production in aged melanocytes by inhibiting cAMP/Wnt signaling. J. Dermatol. Sci., 2022, 106(3), 159-169.
[http://dx.doi.org/10.1016/j.jdermsci.2022.05.002] [PMID: 35610161]
[79]
Zhang, R.; Shen, Y.; Zhou, L.; Sangwung, P.; Fujioka, H.; Zhang, L.; Liao, X. Short-term administration of Nicotinamide Mononucleotide preserves cardiac mitochondrial homeostasis and prevents heart failure. J. Mol. Cell. Cardiol., 2017, 112, 64-73.
[http://dx.doi.org/10.1016/j.yjmcc.2017.09.001] [PMID: 28882480]
[80]
Liao, B.; Zhao, Y.; Wang, D.; Zhang, X.; Hao, X.; Hu, M. Nicotinamide mononucleotide supplementation enhances aerobic capacity in amateur runners: A randomized, double-blind study. J. Int. Soc. Sports Nutr., 2021, 18(1), 54.
[http://dx.doi.org/10.1186/s12970-021-00442-4] [PMID: 34238308]
[81]
Guan, Y.; Wang, S.R.; Huang, X.Z.; Xie, Q.; Xu, Y.Y.; Shang, D.; Hao, C.M. Nicotinamide mononucleotide, an NAD+ precursor, rescues age-associated susceptibility to AKI in a sirtuin 1-dependent manner. J. Am. Soc. Nephrol., 2017, 28(8), 2337-2352.
[http://dx.doi.org/10.1681/ASN.2016040385] [PMID: 28246130]
[82]
Whitson, J.A.; Johnson, R.; Wang, L.; Bammler, T.K.; Imai, S.I.; Zhang, H.; Fredrickson, J.; Latorre-Esteves, E.; Bitto, A.; MacCoss, M.J.; Rabinovitch, P.S. Age-related disruption of the proteome and acetylome in mouse hearts is associated with loss of function and attenuated by elamipretide (SS-31) and nicotinamide mononucleotide (NMN) treatment. Geroscience, 2022, 44(3), 1621-1639.
[http://dx.doi.org/10.1007/s11357-022-00564-w] [PMID: 35416576]
[83]
Zhang, Y.; Jiang, Y.X.; Zhu, Y.H.; Wu, J.R. Advance in synthesis of β-nicotinamide mononucleotide. Food Sci. Technol., 2020, 45(10), 236-240.
[http://dx.doi.org/10.13684/j.cnki.spkj.2020.10.038]
[84]
Qian, X.L.; Dai, Y.S.; Li, C.X.; Pan, J.; Xu, J.H.; Mu, B. Enzymatic synthesis of high-titer nicotinamide mononucleotide with a new nicotinamide riboside kinase and an efficient ATP regeneration system. Bioresour. Bioprocess., 2022, 9(1), 26.
[http://dx.doi.org/10.1186/s40643-022-00514-6]
[85]
Black, W.B.; Aspacio, D.; Bever, D.; King, E.; Zhang, L.; Li, H. Metabolic engineering of Escherichia coli for optimized biosynthesis of nicotinamide mononucleotide, a noncanonical redox cofactor. Microb. Cell Fact., 2020, 19(1), 150.
[http://dx.doi.org/10.1186/s12934-020-01415-z] [PMID: 32718347]
[86]
Ngivprom, U.; Lasin, P.; Khunnonkwao, P.; Worakaensai, S.; Jantama, K.; Kamkaew, A.; Lai, R.Y. Synthesis of nicotinamide nononucleotide from xylose via coupling engineered Escherichia coli and a biocatalytic cascade. ChemBioChem, 2022, 23(11), e202200071.
[http://dx.doi.org/10.1002/cbic.202200071] [PMID: 35362650]
[87]
Walther, R.; Huynh, T.H.; Monge, P.; Fruergaard, A.S.; Mamakhel, A.; Zelikin, A.N. Ceria nanozyme and phosphate prodrugs: Drug synthesis through enzyme mimicry. ACS Appl. Mater. Interfaces, 2021, 13(22), 25685-25693.
[http://dx.doi.org/10.1021/acsami.1c03890] [PMID: 34033459]
[88]
Campos, K.R.; Coleman, P.J.; Alvarez, J.C.; Dreher, S.D.; Garbaccio, R.M.; Terrett, N.K.; Tillyer, R.D.; Truppo, M.D.; Parmee, E.R. The importance of synthetic chemistry in the pharmaceutical industry. Science, 2019, 363(6424), eaat0805.
[http://dx.doi.org/10.1126/science.aat0805] [PMID: 30655413]
[89]
de Almeida, A.F.; Moreira, R.; Rodrigues, T. Synthetic organic chemistry driven by artificial intelligence. Nat. Rev. Chem., 2019, 3(10), 589-604.
[http://dx.doi.org/10.1038/s41570-019-0124-0]
[90]
Coley, C.W.; Green, W.H.; Jensen, K.F. Machine learning in computer-aided synthesis planning. Acc. Chem. Res., 2018, 51(5), 1281-1289.
[http://dx.doi.org/10.1021/acs.accounts.8b00087] [PMID: 29715002]
[91]
Liu, D.; Zhu, Y.; Gu, S.; Chen, F. Application of flow chemistry in halogenation. Chin. J. Org. Chem., 2021, 41(3), 1002-1011.
[http://dx.doi.org/10.6023/cjoc202007051]
[92]
Wan, L.; Kong, G.; Liu, M.; Jiang, M.; Cheng, D.; Chen, F. Flow chemistry in the multi-step synthesis of natural products. Green Synths. Catal., 2022, 3(3), 243-258.
[http://dx.doi.org/10.1016/j.gresc.2022.07.007]
[93]
Vo, D.V.N.; Zainal Abidin, S.; Senthil Kumar, P.; Govarthanan, M. Emerging research trend in chemical technology towards sustainable development. Chem. Eng. Technol., 2022, 45(8), 1438.
[http://dx.doi.org/10.1002/ceat.202270806]
[94]
Jalali, E.; Thorson, J.S. Enzyme-mediated bioorthogonal technologies: Catalysts, chemoselective reactions and recent methyltransferase applications. Curr. Opin. Biotechnol., 2021, 69, 290-298.
[http://dx.doi.org/10.1016/j.copbio.2021.02.010] [PMID: 33901763]
[95]
Ge, R.; Zhu, Y.; Wang, H.; Gu, S. Methods and application of absolute configuration assignment for chiral compounds. Chin. J. Org. Chem., 2022, 42(2), 424-433.
[http://dx.doi.org/10.6023/cjoc202108047]
[96]
Li, C.Z.; Zhu, Y.Y.; Gu, S.X. Determination methods and applications of optical purity of chiral drugs andtheir intermediates. Chin. J. Anal. Lab., 2022, 41(5), 588-599.
[http://dx.doi.org/10.13595/j.cnki.issn1000-0720.2021.080905]
[97]
Ching Lau, C.; Kemal Bayazit, M.; Reardon, P.J.T.; Tang, J. Microwave intensified synthesis: Batch and flow chemistry. Chem. Rec., 2019, 19(1), 172-187.
[http://dx.doi.org/10.1002/tcr.201800121] [PMID: 30525292]
[98]
Yeston, J.; Yeston, J. Synthetic innovation in drug development. Science, 2019, 363(6424), 241.10-243.
[http://dx.doi.org/10.1126/science.363.6424.241-j]
[99]
Kar, S.; Sanderson, H.; Roy, K.; Benfenati, E.; Leszczynski, J. Green chemistry in the synthesis of pharmaceuticals. Chem. Rev., 2022, 122(3), 3637-3710.
[http://dx.doi.org/10.1021/acs.chemrev.1c00631] [PMID: 34910451]
[100]
Benítez-Mateos, A.I.; Roura Padrosa, D.; Paradisi, F. Multistep enzyme cascades as a route towards green and sustainable pharmaceutical syntheses. Nat. Chem., 2022, 14(5), 489-499.
[http://dx.doi.org/10.1038/s41557-022-00931-2] [PMID: 35513571]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy