Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Short Communication

微碎片化脂肪抑制小鼠间皮瘤异种移植的进展

卷 23, 期 8, 2023

发表于: 17 May, 2023

页: [663 - 668] 页: 6

弟呕挨: 10.2174/1568009623666230201092302

价格: $65

Open Access Journals Promotions 2
摘要

背景:恶性胸膜间皮瘤是一种没有有效治疗和预后差的病理。我们之前的研究表明,脂肪组织源性间充质基质细胞的裂解物和分泌组对间皮瘤细胞系有体外抑制作用。对肿瘤生长的抑制活性也在体内得到了证明:500万个间充质基质细胞“原位”注射,对MSTO-211H异种移植物产生了显著的治疗效果,相当于全身给药紫杉醇后观察到的效果。 目的:本研究的目的是评估少量(50万)间充质基质细胞和微碎片化脂肪组织(分离间充质基质细胞的生物组织)对间皮瘤细胞生长的影响。 方法:在体外和间皮瘤异种移植模型中评估肿瘤细胞的生长抑制。 结果:体外实验首次证实了脂肪组织微碎片脂肪对MSTO-211H细胞生长的抑制作用。然后评价微碎片化脂肪和少量间充质基质细胞对小鼠间皮瘤生长的抑制作用。我们的结果证实,“原位”注射的间充质基质细胞和微碎片脂肪都不会刺激间皮瘤细胞的生长。相比之下,微碎片化脂肪对肿瘤生长和进展产生了显著的抑制作用,与紫杉醇治疗所观察到的效果相当。少量间充质间质细胞仅发挥少量抗癌作用。 结论:微碎片脂肪在体外抑制间皮瘤细胞增殖,在体内对间皮瘤异种移植物生长有显著控制作用。

关键词: 间皮瘤,微碎片脂肪,间充质间质细胞,紫杉醇,异种移植物,脂肪组织。

« Previous
图形摘要
[1]
Carbone, M.; Ly, B.H.; Dodson, R.F.; Pagano, I.; Morris, P.T.; Dogan, U.A.; Gazdar, A.F.; Pass, H.I.; Yang, H. Malignant mesothelioma: facts, myths, and hypotheses. J. Cell. Physiol., 2012, 227(1), 44-58.
[http://dx.doi.org/10.1002/jcp.22724] [PMID: 21412769]
[2]
Mutti, L.; Peikert, T.; Robinson, B.W.S.; Scherpereel, A.; Tsao, A.S.; de Perrot, M.; Woodard, G.A.; Jablons, D.M.; Wiens, J.; Hirsch, F.R.; Yang, H.; Carbone, M.; Thomas, A.; Hassan, R. Scientific advances and new frontiers in mesothelioma therapeutics. J. Thorac. Oncol., 2018, 13(9), 1269-1283.
[http://dx.doi.org/10.1016/j.jtho.2018.06.011] [PMID: 29966799]
[3]
Li, G.C.; Zhang, H.W.; Zhao, Q.C.; Sun, L.; Yang, J.J.; Hong, L.; Feng, F.; Cai, L. Mesenchymal stem cells promote tumor angiogenesis via the action of transforming growth factor β1. Oncol. Lett., 2016, 11(2), 1089-1094.
[http://dx.doi.org/10.3892/ol.2015.3997] [PMID: 26893697]
[4]
Ayuzawa, R.; Doi, C.; Rachakatla, R.S.; Pyle, M.M.; Maurya, D.K.; Troyer, D.; Tamura, M. Naïve human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo. Cancer Lett., 2009, 280(1), 31-37.
[http://dx.doi.org/10.1016/j.canlet.2009.02.011] [PMID: 19285791]
[5]
Cortes-Dericks, L.; Froment, L.; Kocher, G.; Schmid, R.A. Human lung-derived mesenchymal stem cell-conditioned medium exerts in vitro antitumor effects in malignant pleural mesothelioma cell lines. Stem Cell Res. Ther., 2016, 7(1), 25.
[http://dx.doi.org/10.1186/s13287-016-0282-7] [PMID: 26861734]
[6]
Coccè, V.; La Monica, S.; Bonelli, M.; Alessandri, G.; Alfieri, R.; Lagrasta, C.A.; Madeddu, D.; Frati, C.; Flammini, L.; Lisini, D.; Marcianti, A.; Parati, E.; Paino, F.; Giannì, A.; Farronato, G.; Falco, A.; Spaggiari, L.; Petrella, F.; Pessina, A. Inhibition of human malignant pleural mesothelioma growth by mesenchymal stromal Cells. Cells, 2021, 10(6), 1427.
[http://dx.doi.org/10.3390/cells10061427] [PMID: 34201002]
[7]
Bepler, G.; Koehler, A.; Kiefer, P.; Havemann, K.; Beisenherz, K.; Jaques, G.; Gropp, C.; Haeder, M. Characterization of the state of differentiation of six newly established human non-small-cell lung cancer cell lines. Differentiation, 1988, 37(2), 158-171.
[http://dx.doi.org/10.1111/j.1432-0436.1988.tb00806.x] [PMID: 2840315]
[8]
Alessandri, G.; Coccè, V.; Pastorino, F.; Paroni, R.; Dei Cas, M.; Restelli, F.; Pollo, B.; Gatti, L.; Tremolada, C.; Berenzi, A.; Parati, E.; Brini, A.T.; Bondiolotti, G.; Ponzoni, M.; Pessina, A. Microfragmented human fat tissue is a natural scaffold for drug delivery: Potential application in cancer chemotherapy. J. Control. Release, 2019, 302, 2-18.
[http://dx.doi.org/10.1016/j.jconrel.2019.03.016] [PMID: 30890444]
[9]
Ceserani, V.; Ferri, A.; Berenzi, A.; Benetti, A.; Ciusani, E.; Pascucci, L.; Bazzucchi, C.; Coccè, V.; Bonomi, A.; Pessina, A.; Ghezzi, E.; Zeira, O.; Ceccarelli, P.; Versari, S.; Tremolada, C.; Alessandri, G. Angiogenic and anti-inflammatory properties of micro-fragmented fat tissue and its derived mesenchymal stromal cells. Vasc. Cell, 2016, 8(1), 3.
[http://dx.doi.org/10.1186/s13221-016-0037-3] [PMID: 27547374]
[10]
La Monica, S.; Cretella, D.; Bonelli, M.; Fumarola, C.; Cavazzoni, A.; Digiacomo, G.; Flammini, L.; Barocelli, E.; Minari, R.; Naldi, N.; Petronini, P.G.; Tiseo, M.; Alfieri, R. Trastuzumab emtansine delays and overcomes resistance to the third-generation EGFR-TKI osimertinib in NSCLC EGFR mutated cell lines. J. Exp. Clin. Cancer Res., 2017, 36(1), 174.
[http://dx.doi.org/10.1186/s13046-017-0653-7] [PMID: 29202823]
[11]
La Monica, S.; Minari, R.; Cretella, D.; Flammini, L.; Fumarola, C.; Bonelli, M.; Cavazzoni, A.; Digiacomo, G.; Galetti, M.; Madeddu, D.; Falco, A.; Lagrasta, C.A.; Squadrilli, A.; Barocelli, E.; Romanel, A.; Quaini, F.; Petronini, P.G.; Tiseo, M.; Alfieri, R. Third generation EGFR inhibitor osimertinib combined with pemetrexed or cisplatin exerts long-lasting anti-tumor effect in EGFR-mutated pre-clinical models of NSCLC. J. Exp. Clin. Cancer Res., 2019, 38(1), 222.
[http://dx.doi.org/10.1186/s13046-019-1240-x] [PMID: 31138260]
[12]
Antunes, P.; Cruz, A.; Barbosa, J.; Bonifácio, V.D.B.; Pinto, S.N. Lipid droplets in cancer: From composition and role to imaging and therapeutics. Molecules, 2022, 27(3), 991.
[http://dx.doi.org/10.3390/molecules27030991] [PMID: 35164256]
[13]
Cruz, A.L.S.; Barreto, E.A.; Fazolini, N.P.B.; Viola, J.P.B.; Bozza, P.T. Lipid droplets: platforms with multiple functions in cancer hallmarks. Cell Death Dis., 2020, 11(2), 105.
[http://dx.doi.org/10.1038/s41419-020-2297-3] [PMID: 32029741]
[14]
Abedin, M.R.; Barua, S. Isolation and purification of glycoglycerolipids to induce apoptosis in breast cancer cells. Sci. Rep., 2021, 11(1), 1298.
[http://dx.doi.org/10.1038/s41598-020-80484-x] [PMID: 33446783]
[15]
Zhai, L.; Sun, N.; Han, Z.; Jin, H.; Zhang, B. Liposomal short-chain C6 ceramide induces potent anti-osteosarcoma activity in vitro and in vivo. Biochem. Biophys. Res. Commun., 2015, 468(1-2), 274-280.
[http://dx.doi.org/10.1016/j.bbrc.2015.10.113] [PMID: 26505795]
[16]
Choi, M.K.; Song, I.S. Recent advances in the formulation of sphingolipid anticancer therapeutics. J. Pharm. Investig., 2020, 50(3), 295-307.
[http://dx.doi.org/10.1007/s40005-020-00475-y]
[17]
Lin, I.L.; Chou, H.L.; Lee, J.C.; Chen, F.W.; Fong, Y.; Chang, W.C.; Huang, H.W.; Wu, C.Y.; Chang, W.T.; Wang, H.M.D.; Chiu, C.C. The antiproliferative effect of C2-ceramide on lung cancer cells through apoptosis by inhibiting Akt and NFκB. Cancer Cell Int., 2014, 14(1), 1.
[http://dx.doi.org/10.1186/1475-2867-14-1] [PMID: 24393431]
[18]
Huang, W.C.; Chen, C.L.; Lin, Y.S.; Lin, C.F. Apoptotic sphingolipid ceramide in cancer therapy. J. Lipids, 2011, 2011, 565316.
[http://dx.doi.org/10.1155/2011/565316] [PMID: 21490804]
[19]
Jóźwiak, M.; Filipowska, A.; Fiorino, F.; Struga, M. Anticancer activities of fatty acids and their heterocyclic derivatives. Eur. J. Pharmacol., 2020, 871, 172937.
[http://dx.doi.org/10.1016/j.ejphar.2020.172937] [PMID: 31958454]
[20]
Liang, T.; Wen, D.; Chen, G.; Chan, A.; Chen, Z.; Li, H.; Wang, Z.; Han, X.; Jiang, L.; Zhu, J.J.; Gu, Z. Adipocyte‐derived anticancer lipid droplets. Adv. Mater., 2021, 33(26), 2100629.
[http://dx.doi.org/10.1002/adma.202100629] [PMID: 33987883]
[21]
Wen, D.; Wang, J. Adipocytes as anticancer. Matter, 2019, 1(5), 1203-1214.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy