Generic placeholder image

Recent Patents on Mechanical Engineering

Editor-in-Chief

ISSN (Print): 2212-7976
ISSN (Online): 1874-477X

Review Article

Research Trends in Abrasive Water Jet Machining Using Numerical Simulation Tools: A Bibliometric Review

Author(s): Deepak Doreswamy, Zahra Abdallah, Subraya Krishna Bhat and Anupkumar M. Bongale*

Volume 16, Issue 1, 2023

Published on: 15 February, 2023

Page: [19 - 31] Pages: 13

DOI: 10.2174/2212797616666230127124019

Price: $65

Abstract

Abrasive water jet (AWJ) machining process is one of the most sought-after machining technologies for the processing of advanced hard-to-cut materials. It involves parameters, such as abrasive size, shape, density, pressure, standoff distance (SOD), abrasive concentration, feed rate, etc., which govern the quality of machining. It is very crucial to understand the influence of these parameters on the quality attributes.

Due to the complex nature of the process that involves complex process parameters, the accurate prediction of response by experimental methods is difficult. In this scenario, numerical methods are helpful in understanding the mechanisms of material removal. Thus, a comprehensive summary of these research trends is needed.

In this article, a bibliometric analysis is carried out on scientific publications pertaining to AWJ machining (AWJM) using numerical simulation tools. Citation and bibliographic coupling analyses have been carried out to identify the current research trends, the important journals, authors, institutions, and countries engaged in research on AWJM using numerical simulation.

The analysis revealed Shandong University to have the maximum number of affiliated researchers working in this area. The International Journal of Machine Tools and Manufacture was the leading journal based on CiteScore, SJR rank and SNIP ranks, and the largest volume of articles was published by this journal. The critical topics of research and international collaborative opportunities were identified through the analysis of keywords, Sankey and network diagrams.

The present article would be valuable for academia and industry, aiding them in updating their knowledge on the latest developments in AWJM.

Keywords: AWJ, CFD analysis, FEA, standoff distance, feed rate, traverse speed.

[1]
Lv Z, Hou R, Tian Y, Huang C, Zhu H. Investigation on flow field of ultrasonic-assisted abrasive waterjet using CFD with discrete phase model. Int J Adv Manuf Technol 2018; 96(1-4): 963-72.
[http://dx.doi.org/10.1007/s00170-018-1635-4]
[2]
Long X, Ruan X, Liu Q, Chen Z, Xue S, Wu Z. Numerical investigation on the internal flow and the particle movement in the abrasive waterjet nozzle. Powder Technol 2017; 314: 635-40.
[http://dx.doi.org/10.1016/j.powtec.2016.09.089]
[3]
Zhang X, Zhou C, Jiang L, Guo R. Influence of process parameters on abrasive particle motion characteristics in abrasive water jet descaling. Int J Adv Manuf Technol 2017; 90(9-12): 2741-9.
[http://dx.doi.org/10.1007/s00170-016-9564-6]
[4]
Chen X, Deng S, Guan J, Hua W. Experiment and simulation research on abrasive water jet nozzle wear behavior and anti-wear structural improvement. J Braz Soc Mech Sci Eng 2017; 39(6): 2023-33.
[http://dx.doi.org/10.1007/s40430-017-0707-y]
[5]
Ahmed DH, Naser J, Deam RT. Particles impact characteristics on cutting surface during the abrasive water jet machining: Numerical study. J Mater Process Technol 2016; 232: 116-30.
[http://dx.doi.org/10.1016/j.jmatprotec.2016.01.032]
[6]
Kowsari K, Amini MH, Papini M, Spelt JK. The effects of fluid vapor pressure and viscosity on the shapes of abrasive slurry-jet micro-machined holes and channels. Int J Mach Tools Manuf 2016; 110: 80-91.
[http://dx.doi.org/10.1016/j.ijmachtools.2016.09.004]
[7]
Ibraheem H, Iqbal A, Hashemipour M. Numerical optimization of hole making in GFRP composite using abrasive water jet machining process. J Chinese Inst Eng. Trans Chinese Inst Eng 2015; 38: 66-76.
[8]
Schwartzentruber J, Papini M. Abrasive waterjet micro-piercing of borosilicate glass. J Mater Process Technol 2015; 219: 143-54.
[http://dx.doi.org/10.1016/j.jmatprotec.2014.12.006]
[9]
Lv Z, Huang C, Zhu H, Wang J, Yao P, Liu Z. FEM analysis on the abrasive erosion process in ultrasonic-assisted abrasive waterjet machining. Int J Adv Manuf Technol 2015; 78(9-12): 1641-9.
[http://dx.doi.org/10.1007/s00170-014-6768-5]
[10]
Lozano Torrubia P, Axinte DA, Billingham J. Stochastic modelling of abrasive waterjet footprints using finite element analysis. Int J Mach Tools Manuf 2015; 95: 39-51.
[http://dx.doi.org/10.1016/j.ijmachtools.2015.05.001]
[11]
Anwar S, Axinte DA, Becker AA. Finite element modelling of abrasive waterjet milled footprints. J Mater Process Technol 2013; 213(2): 180-93.
[http://dx.doi.org/10.1016/j.jmatprotec.2012.09.006]
[12]
Anwar S, Axinte DA, Becker AA. Finite element modelling of overlapping abrasive waterjet milled footprints. Wear 2013; 303(1-2): 426-36.
[http://dx.doi.org/10.1016/j.wear.2013.03.018]
[13]
Kumar N, Shukla M. Finite element analysis of multi-particle impact on erosion in abrasive water jet machining of titanium alloy. J Comput Appl Math 2012; 236(18): 4600-10.
[http://dx.doi.org/10.1016/j.cam.2012.04.022]
[14]
Beaucamp A, Namba Y, Freeman R. Dynamic multiphase modeling and optimization of fluid jet polishing process. CIRP Annals - Manuf Technol 2012; 61: 315-8.
[http://dx.doi.org/10.1016/j.cirp.2012.03.073]
[15]
Deepak D, Anjaiah D, Karanth K, Sharma N. CFD simulation of flow in an abrasive water suspension jet: The effect of inlet operating pressure and volume fraction on skin friction and exit kinetic energy. Adv Mec Eng 2012; p. 2012.
[16]
Gnanavelu A, Kapur N, Neville A, Flores JF, Ghorbani N. A numerical investigation of a geometry independent integrated method to predict erosion rates in slurry erosion. Wear 2011; 271(5-6): 712-9.
[http://dx.doi.org/10.1016/j.wear.2010.12.040]
[17]
Matsumura T, Muramatsu T, Fueki S. Abrasive water jet machining of glass with stagnation effect. CIRP Annals – Manuf Technol 2011; 60: 355-8.
[http://dx.doi.org/10.1016/j.cirp.2011.03.118]
[18]
Anwar S, Axinte D, Becker A. Finite element modelling of a single-particle impact during abrasive waterjet milling. Proc Inst Mech Eng. J: J Eng Tribol 2011; 225: 821-32.
[19]
Wang J, Gao N, Gong W. Abrasive waterjet machining simulation by coupling smoothed particle hydrodynamics/finite element method. Chin J Mech Eng 2010; 23(5): 568-73.
[http://dx.doi.org/10.3901/CJME.2010.05.568]
[20]
Wang J. Particle velocity models for ultra-high pressure abrasive waterjets. J Mater Process Technol 2009; 209(9): 4573-7.
[http://dx.doi.org/10.1016/j.jmatprotec.2008.10.021]
[21]
Yang M, Wang Y, Kang C, Yu F. Multiphase flow and wear in the cutting head of ultra-high pressure abrasive water jet. Chin J Mech Eng 2009; 22(5): 729-34.
[http://dx.doi.org/10.3901/CJME.2009.05.729]
[22]
Junkar M, Jurisevic B, Fajdiga M, Grah M. Finite element analysis of single-particle impact in abrasive water jet machining. Int J Impact Eng 2006; 32(7): 1095-112.
[http://dx.doi.org/10.1016/j.ijimpeng.2004.09.006]
[23]
ElTobgy M, Ng EG, Elbestawi M. Modelling of abrasive waterjet machining: A new approach. CIRP Annals – Manuf Technol 2005; 54: 285-8.
[24]
Lebar A, Junkar M. Simulation of abrasive water jet cutting process: Part 1. Unit event approach. Model Simul Mater Sci Eng 2004; 12(6): 1159-70.
[http://dx.doi.org/10.1088/0965-0393/12/6/010]
[25]
Liu H, Wang J, Brown RJ, Kelson N. Computational fluid dynamics (CFD) simulation of ultrahigh velocity abrasive waterjet. Key Eng Mater 2003; 233-236: 477-82.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.233-236.477]
[26]
Jain NK, Jain VK. Modeling of material removal in mechanical type advanced machining processes: a state-of-art review. Int J Mach Tools Manuf 2001; 41(11): 1573-635.
[http://dx.doi.org/10.1016/S0890-6955(01)00010-4]
[27]
Hassan AI, Kosmol J. Dynamic elastic–plastic analysis of 3D deformation in abrasive waterjet machining. J Mater Process Technol 2001; 113(1-3): 337-41.
[http://dx.doi.org/10.1016/S0924-0136(01)00687-2]
[28]
Sang Choi G, Heung Choi G. Process analysis and monitoring in abrasive water jet machining of alumina ceramics. Int J Mach Tools Manuf 1997; 37(3): 295-307.
[http://dx.doi.org/10.1016/S0890-6955(96)00049-1]
[29]
Liu PH-T, Schubert EH. Piercing and/or cutting devices for abrasive waterjet systems and associated systems and methods. US8821213B2 2011.
[30]
Tera N, Tsunemoto M, Aoki T, Takasugi N. Abrasive water jet nozzle and abrasive water jet machine. US20130267152A1 2012.
[31]
Olsen J, Zeng J, Veenhuisen S, Guglielmetti B. Abrasive water-jet cutting nozzle having a vented water-jet pathway. 2003.
[32]
Miller D. Waterjet assembly comprising a structural waterjet nozzle. EP2509750B1 2009.
[33]
Matsubara M, Tateiwa S, Kanai S, Yamamoto M. Abrasive water jet cutting machine. US20070037495A1 2005.
[34]
Lemma E, Chen L, Siores E, Wang J. Study of cutting fiber-reinforced composites by using abrasive water-jet with cutting head oscillation. Compos Struct 2002; 57(1-4): 297-303.
[http://dx.doi.org/10.1016/S0263-8223(02)00097-1]
[35]
Shanmugam DK, Masood SH. An investigation on kerf characteristics in abrasive waterjet cutting of layered composites. J Mater Process Technol 2009; 209(8): 3887-93.
[http://dx.doi.org/10.1016/j.jmatprotec.2008.09.001]
[36]
Patel JK, Shaikh AA. An experimental investigation of awj parameters on banana fiber reinforced composite. Int J Eng Res Technol (Ahmedabad) 2014; 3: 12.
[37]
Kalirasu S, Rajini N, Winowlin Jappes JT, Uthayakumar M, Rajesh S. Mechanical and machining performance of glass and coconut sheath fibre polyester composites using AWJM. J Reinf Plast Compos 2015; 34(7): 564-80.
[http://dx.doi.org/10.1177/0731684415574870]
[38]
Doreswamy D, Shivamurthy B, Anjaiah D, Sharma NY. An investigation of abrasive water jet machining on graphite/glass/epoxy composite. Int J Manuf Eng 2015; p. 627218.
[39]
Prabu VA, Kumaran ST, Uthayakumar M. Performance evaluation of abrasive water jet machining on banana fiber reinforced polyester composite. J Nat Fibers 2017; 14(3): 450-7.
[http://dx.doi.org/10.1080/15440478.2016.1212768]
[40]
Jani SP, Kumar AS, Khan MA, Kumar MU. Machinablity of hybrid natural fiber composite with and without filler as reinforcement. Mater Manuf Process 2016; 31(10): 1393-9.
[http://dx.doi.org/10.1080/10426914.2015.1117633]
[41]
Kalirasu S, Rajini N, Rajesh S, Kumar NK, Hariharasudhan J, Tirumangainarayanan N. Effect of surface roughness on jute fiber reinforced polyester composite using AWJM. Int J Eng Adv Technol 2019; 9: 1-4.
[42]
Premkumar T, Siva I, Amico SC. Abrasive jet machining performance of vegetable fiber polyester composite and its modelling. Int J Rec Technol Eng 2019; 8: 1-4.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy