Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Mini-Review Article

Antimicrobial Therapeutic Strategies for Enterococcus faecalis In Dental Infections - Past, Present and Future

Author(s): Lokitha R., Namitha Nandakumar, Harish K., Arulmozhi P., Aarthi Jayakumar, Anbarasi K. and Benedict Paul C.*

Volume 21, Issue 3, 2023

Published on: 15 February, 2023

Article ID: e200123212930 Pages: 11

DOI: 10.2174/2211352521666230120100928

Price: $65

Abstract

Enterococcus faecalis is a common opportunistic pathogen that can infect various tissues in the human body and in particular, the oral cavity. It has been implicated in periodontal disease, oral mucosal lesions in immunocompromised patients, peri-implantitis, peri-radicular abscesses, and root canal infections. They are also most prevalent in secondary endodontic infections and are recognized as treatment-resistant bacteria in the root canal. Virulence factors help in this pathogenicity as some factors aid its adherence to the surface. It has become a research focus in recent times for its resistance to various antibiotics like vancomycin and so, the search for alternative therapeutic approaches has also evolved. Although various chemical irrigants such as sodium hypochlorite (NaOCl), chlorhexidine (CHX), iodine potassium iodide (IKI), calcium hydroxide (Ca(OH)2) and chlorine dioxide (ClO2) have been used for years, the use of plant extracts and essential oils have attracted the researchers to explore their activity against various dental pathogens like E. faecalis. Recently, it has been found that the phages are more effective in treating biofilm than antibiotics and it has also been observed that they are effective when used in combination with antibiotics. In this review, we have presented various treatment strategies that have been in use for treating dental infections and also discussed future therapeutic approaches, which, may help unfold promising novel strategies.

Keywords: Dental infections, Enterococcus faecalis, antimicrobial agents, antibiotics, chemical irrigants, phytocompounds, essential oils, plant extracts, bacteriophages.

Graphical Abstract
[1]
Teixeira, L.M.; Merquior, V.L.C. Enterococcus. In: Molecular Typing in Bacterial Infections; Humana Press: Totowa, NJ, 2013; pp. 17-26.
[http://dx.doi.org/10.1007/978-1-62703-185-1_2]
[2]
Esmail, M.A.M.; Abdulghany, H.M.; Khairy, R.M.M. Prevalence of multidrug-resistant Enterococcus faecalis in hospital-acquired surgical wound infections and bacteremia: concomitant analysis of antimicrobial resistance genes. Infect Dis (Auckl), 2019, 12, 1178633719882929.
[http://dx.doi.org/10.1177/1178633719882929]
[3]
Stuart, C.; Schwartz, S.; Beeson, T.; Owatz, C. Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. J. Endod., 2006, 32(2), 93-98.
[http://dx.doi.org/10.1016/j.joen.2005.10.049] [PMID: 16427453]
[4]
Gomes, B.P.F.A.; Pinheiro, E.T.; Sousa, E.L.R.; Jacinto, R.C.; Zaia, A.A.; Ferraz, C.C.R.; de Souza-Filho, F.J. Enterococcus faecalis in dental root canals detected by culture and by polymerase chain reaction analysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2006, 102(2), 247-253.
[http://dx.doi.org/10.1016/j.tripleo.2005.11.031] [PMID: 16876070]
[5]
Dahlén, G. Bacterial infections of the oral mucosa. Periodontol. 2000, 2009, 49(1), 13-38.
[http://dx.doi.org/10.1111/j.1600-0757.2008.00295.x] [PMID: 19152524]
[6]
Zoletti, G.O.; Pereira, E.M.; Schuenck, R.P.; Teixeira, L.M.; Siqueira, J.F., Jr; dos Santos, K.R.N. Characterization of virulence factors and clonal diversity of Enterococcus faecalis isolates from treated dental root canals. Res. Microbiol., 2011, 162(2), 151-158.
[http://dx.doi.org/10.1016/j.resmic.2010.09.018] [PMID: 21111042]
[7]
Salah, R.; Dar-Odeh, N.; Abu Hammad, O.; Shehabi, A.A. Prevalence of putative virulence factors and antimicrobial susceptibility of Enterococcus faecalis isolates from patients with dental diseases. BMC Oral Health, 2008, 8(1), 17.
[http://dx.doi.org/10.1186/1472-6831-8-17] [PMID: 18513445]
[8]
Cogulu, D.; Uzel, A.; Oncag, O.; Aksoy, S.; Eronat, C. Detection of Enterococcus faecalis in necrotic teeth root canals by culture and polymerase chain reaction methods. Eur. J. Dent., 2007, 1(4), 216-221.
[http://dx.doi.org/10.1055/s-0039-1698342] [PMID: 19212470]
[9]
Najafi, K.; Ganbarov, K.; Gholizadeh, P.; Tanomand, A.; Rezaee, M.A.; Mahmood, S.S.; Asgharzadeh, M.; Kafil, H.S. Oral cavity infection by Enterococcus faecalis: virulence factors and pathogenesis. Rev. Med. Microbiol., 2020, 31(2), 51-60.
[http://dx.doi.org/10.1097/MRM.0000000000000168]
[10]
Reynaud af Geijersstam, A.; Culak, R.; Molenaar, L.; Chattaway, M.; Røslie, E.; Peciuliene, V.; Haapasalo, M.; Shah, H.N. Comparative analysis of virulence determinants and mass spectral profiles of Finnish and Lithuanian endodontic Enterococcus faecalis isolates. Oral Microbiol. Immunol., 2007, 22(2), 87-94.
[http://dx.doi.org/10.1111/j.1399-302X.2007.00327.x] [PMID: 17311631]
[11]
Souto, R.; Colombo, A.P.V. Prevalence of Enterococcus faecalis in subgingival biofilm and saliva of subjects with chronic periodontal infection. Arch. Oral Biol., 2008, 53(2), 155-160.
[http://dx.doi.org/10.1016/j.archoralbio.2007.08.004] [PMID: 17897617]
[12]
Rôças, I.; Siqueira, J., Jr; Santos, K. Association of Enterococcus faecalis with different forms of periradicular diseases. J. Endod., 2004, 30(5), 315-320.
[http://dx.doi.org/10.1097/00004770-200405000-00004] [PMID: 15107642]
[13]
Kayaoglu, G.; Ørstavik, D. Virulence factors of Enterococcus faecalis: Relationship to endodontic disease. Crit. Rev. Oral Biol. Med., 2004, 15(5), 308-320.
[http://dx.doi.org/10.1177/154411130401500506] [PMID: 15470268]
[14]
de Almeida, J.; Cechella, B.; Bernardi, A.; de Lima Pimenta, A.; Felippe, W.; Felippe, W. Effectiveness of nanoparticles solutions and conventional endodontic irrigants against Enterococcus faecalis biofilm. Indian J. Dent. Res., 2018, 29(3), 347-351.
[http://dx.doi.org/10.4103/ijdr.IJDR_634_15] [PMID: 29900920]
[15]
Ahangari, Z.; Mojtahed Bidabadi, M.; Asnaashari, M.; Rahmati, A.; Tabatabaei, F.S. Comparison of the antimicrobial efficacy of calcium hydroxide and photodynamic therapy against Enterococcus faecalis and Candida albicans in teeth with periapical lesions; An in vivo study. J. Lasers Med. Sci., 2017, 8(2), 72-78.
[http://dx.doi.org/10.15171/jlms.2017.13] [PMID: 28652899]
[16]
Alghamdi, F.; Shakir, M. The influence of Enterococcus faecalis as a dental root canal pathogen on endodontic treatment: A systematic review. Cureus, 2020, 12(3), e7257.
[http://dx.doi.org/10.7759/cureus.7257] [PMID: 32292671]
[17]
Athanassiadis, B.; Abbott, P.V.; Walsh, L.J. The use of calcium hydroxide, antibiotics and biocides as antimicrobial medicaments in endodontics. Aust. Dent. J., 2007, 52(1)(Suppl.), S64-S82.
[http://dx.doi.org/10.1111/j.1834-7819.2007.tb00527.x] [PMID: 17546863]
[18]
Pinheiro, E.T.; Gomes, B.P.F.A.; Drucker, D.B.; Zaia, A.A.; Ferraz, C.C.R.; Souza-Filho, F.J. Antimicrobial susceptibility of Enterococcus faecalis isolated from canals of root filled teeth with periapical lesions. Int. Endod. J., 2004, 37(11), 756-763.
[http://dx.doi.org/10.1111/j.1365-2591.2004.00865.x] [PMID: 15479258]
[19]
Abbott, P.V. Selective and intelligent use of antibiotics in endodontics. Aust. Endod. J., 2000, 26(1), 30-39.
[http://dx.doi.org/10.1111/j.1747-4477.2000.tb00149.x] [PMID: 11359295]
[20]
Roda, R.P.; Bagán, J.V.; Sanchis, B.J.M.; Pastor, E.C. Antibiotic use in dental practice. A review. Med. Oral Patol. Oral Cir. Bucal., 2007, 12, E186-92.
[21]
Ghosh, D. Antibiotic use in dental practice: A review. Indian J. Public Health Res. Dev., 2019, 10(11), 212.
[http://dx.doi.org/10.5958/0976-5506.2019.03458.2]
[22]
Oberoi, S.S.; Dhingra, C.; Sharma, G.; Sardana, D. Antibiotics in dental practice: how justified are we. Int. Dent. J., 2015, 65(1), 4-10.
[http://dx.doi.org/10.1111/idj.12146] [PMID: 25510967]
[23]
Qiu, W.; Zhou, Y.; Li, Z.; Huang, T.; Xiao, Y.; Cheng, L.; Peng, X.; Zhang, L.; Ren, B. Application of antibiotics/antimicrobial agents on dental caries. BioMed Res. Int., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/5658212] [PMID: 32076608]
[24]
Peedikayil, F.C. Antibiotics: Use and misuse in pediatric dentistry. J. Indian Soc. Pedod. Prev. Dent., 2011, 29(4), 282-287.
[http://dx.doi.org/10.4103/0970-4388.86368] [PMID: 22016310]
[25]
Peedikayil, F.C. Antibiotics in odontogenic infections - An update. J. Antimicrob. Agents, 2016, 2(2), 1-3.
[http://dx.doi.org/10.4172/2472-1212.1000117]
[26]
Sweeney, L.C.; Dave, J.; Chambers, P.A.; Heritage, J. Antibiotic resistance in general dental practice-A cause for concern? J. Antimicrob. Chemother., 2004, 53(4), 567-576.
[http://dx.doi.org/10.1093/jac/dkh137] [PMID: 14985274]
[27]
Vellappally, S.; Divakar, D.D.; Al Kheraif, A.A.; Ramakrishnaiah, R.; Alqahtani, A.; Dalati, M.H.N.; Anil, S.; Khan, A.A.; Harikrishna Varma, P.R. Occurrence of vancomycin-resistant Staphylococcus aureus in the oral cavity of patients with dental caries. Acta Microbiol. Immunol. Hung., 2017, 64(3), 343-351.
[http://dx.doi.org/10.1556/030.64.2017.033] [PMID: 28889756]
[28]
Oates, J.A.; Wood, A.J.J.; Donowitz, G.R.; Mandell, G.L. Betalactam antibiotics. N. Engl. J. Med., 1988, 318(8), 490-500.
[http://dx.doi.org/10.1056/NEJM198802253180806]
[29]
Waxman, D.J.; Strominger, J.L. Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotics. Annu. Rev. Biochem., 1983, 52(1), 825-869.
[http://dx.doi.org/10.1146/annurev.bi.52.070183.004141] [PMID: 6351730]
[30]
Majiduddin, F.K.; Materon, I.C.; Palzkill, T.G. Molecular analysis of beta-lactamase structure and function. Int. J. Med. Microbiol., 2002, 292(2), 127-137.
[http://dx.doi.org/10.1078/1438-4221-00198] [PMID: 12195735]
[31]
Bush, K. Beta-lactamase inhibitors from laboratory to clinic. Clin. Microbiol. Rev., 1988, 1(1), 109-123.
[http://dx.doi.org/10.1128/CMR.1.1.109] [PMID: 3060240]
[32]
White, A.R.; Kaye, C.; Poupard, J.; Pypstra, R.; Woodnutt, G.; Wynne, B. Augmentin(R) (amoxicillin/clavulanate) in the treatment of community-acquired respiratory tract infection: a review of the continuing development of an innovative antimicrobial agent. J. Antimicrob. Chemother., 2004, 53(90001)(Suppl. 1), 3i-20.
[http://dx.doi.org/10.1093/jac/dkh050] [PMID: 14726431]
[33]
Foulstone, M.; Reading, C. Assay of amoxicillin and clavulanic acid, the components of Augmentin, in biological fluids with high-performance liquid chromatography. Antimicrob. Agents Chemother., 1982, 22(5), 753-762.
[http://dx.doi.org/10.1128/AAC.22.5.753] [PMID: 7181486]
[34]
Appelbaum, P.C. The emergence of vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus. Clin. Microbiol. Infect., 2006, 12(Suppl. 1), 16-23.
[http://dx.doi.org/10.1111/j.1469-0691.2006.01344.x] [PMID: 16445720]
[35]
Sarkar, P.; Yarlagadda, V.; Ghosh, C.; Haldar, J. A review on cell wall synthesis inhibitors with an emphasis on glycopeptide antibiotics. MedChemComm, 2017, 8(3), 516-533.
[http://dx.doi.org/10.1039/C6MD00585C] [PMID: 30108769]
[36]
Sigeti, J.S.; Guiney, D.G., Jr; Davis, C.E. Mechanism of action of metronidazole on Bacteroides fragilis. J. Infect. Dis., 1983, 148(6), 1083-1089.
[http://dx.doi.org/10.1093/infdis/148.6.1083] [PMID: 6197496]
[37]
Shinkai, M.; Henke, M.O.; Rubin, B.K. Macrolide antibiotics as immunomodulatory medications: Proposed mechanisms of action. Pharmacol. Ther., 2008, 117(3), 393-405.
[http://dx.doi.org/10.1016/j.pharmthera.2007.11.001] [PMID: 18289694]
[38]
Moore, P.A. Dental therapeutic indications for the newer long-acting macrolide antibiotics. J. Am. Dent. Assoc., 1999, 130(9), 1341-1343.
[http://dx.doi.org/10.14219/jada.archive.1999.0404] [PMID: 10492541]
[39]
Mikulík, K.; Karnetová, J.; Quyen, N.; Blumauerová, M.; Komersová, I.; Vanêk, Z. Interaction of tetracycline with protein synthesizing system of Streptomyces aureofaciens. J. Antibiot. (Tokyo), 1971, 24(12), 801-809.
[http://dx.doi.org/10.7164/antibiotics.24.801] [PMID: 5140527]
[40]
Chopra, I. Tetracycline analogs whose primary target is not the bacterial ribosome. Antimicrob. Agents Chemother., 1994, 38(4), 637-640.
[http://dx.doi.org/10.1128/AAC.38.4.637] [PMID: 8031024]
[41]
LeBel, M. Ciprofloxacin: chemistry, mechanism of action, resistance, antimicrobial spectrum, pharmacokinetics, clinical trials, and adverse reactions. Pharmacotherapy, 1988, 8(1), 3-30.
[http://dx.doi.org/10.1002/j.1875-9114.1988.tb04058.x] [PMID: 2836821]
[42]
Rams, T.E.; Feik, D.; Mortensen, J.E.; Degener, J.E.; van Winkelhoff, A.J. Antibiotic susceptibility of periodontal Enterococcus faecalis. J. Periodontol., 2013, 84(7), 1026-1033.
[http://dx.doi.org/10.1902/jop.2012.120050] [PMID: 23106507]
[43]
Lins, R.X.; de Oliveira Andrade, A.; Hirata Junior, R.; Wilson, M.J.; Lewis, M.A.O.; Williams, D.W.; Fidel, R.A.S. Antimicrobial resistance and virulence traits of Enterococcus faecalis from primary endodontic infections. J. Dent., 2013, 41(9), 779-786.
[http://dx.doi.org/10.1016/j.jdent.2013.07.004] [PMID: 23851130]
[44]
Alam, T; Nakazawa, F; Nakajo, K; Uematsu, H; Hoshino, E. Susceptibility of Enterococcus faecalis to a combination of antibacterial drugs (3Mix) in vitro. J. Oral Biosci., 2005, 47, 315-320.
[http://dx.doi.org/10.1016/S1349-0079(05)80014-3]
[45]
Hoelscher, A.; Bahcall, J.; Maki, J. In vitro evaluation of the antimicrobial effects of a root canal sealer-antibiotic combination against Enterococcus faecalis. J. Endod., 2006, 32(2), 145-147.
[http://dx.doi.org/10.1016/j.joen.2005.10.031] [PMID: 16427465]
[46]
Garg, A.K.; Agrawal, N.; Tewari, R.K.; Kumar, A.; Chandra, A. Antibiotic prescription pattern among Indian oral healthcare providers: a cross-sectional survey. J. Antimicrob. Chemother., 2014, 69(2), 526-528.
[http://dx.doi.org/10.1093/jac/dkt351] [PMID: 24080499]
[47]
Dar-Odeh, N.; Abu-Hammad, O.A.; Al-Omiri, M.K.; Khraisat, A.S.; Shehabi, A.A. Antibiotic prescribing practices by dentists: a review. Ther. Clin. Risk Manag., 2010, 6, 301-306.
[http://dx.doi.org/10.2147/TCRM.S9736] [PMID: 20668712]
[48]
Gouliouris, T.; Warne, B.; Cartwright, E.J.P.; Bedford, L.; Weerasuriya, C.K.; Raven, K.E.; Brown, N.M.; Török, M.E.; Limmathurotsakul, D.; Peacock, S.J. Duration of exposure to multiple antibiotics is associated with increased risk of VRE bacteraemia: a nested case-control study. J. Antimicrob. Chemother., 2018, 73(6), 1692-1699.
[http://dx.doi.org/10.1093/jac/dky075] [PMID: 29548009]
[49]
Moellering Jr, R.C. Vancomycin‐resistant enterococci. Clin. Infect. Dis., 1998, 26(5), 1196-1199.
[http://dx.doi.org/10.1086/520283]
[50]
Gazin, M.; Lammens, C.; Goossens, H.; Malhotra-Kumar, S. Evaluation of GeneOhm VanR and Xpert vanA/vanB molecular assays for the rapid detection of vancomycin-resistant enterococci. Eur. J. Clin. Microbiol. Infect. Dis., 2012, 31(3), 273-276.
[http://dx.doi.org/10.1007/s10096-011-1306-y] [PMID: 21667270]
[51]
Gazzola, S.; Cocconcelli, P.S. Vancomycin heteroresistance and biofilm formation in Staphylococcus epidermidis from food. Microbiology (Reading), 2008, 154(10), 3224-3231.
[http://dx.doi.org/10.1099/mic.0.2008/021154-0] [PMID: 18832327]
[52]
Cui, L.; Ma, X.; Sato, K.; Okuma, K.; Tenover, F.C.; Mamizuka, E.M.; Gemmell, C.G.; Kim, M.N.; Ploy, M.C.; El Solh, N.; Ferraz, V.; Hiramatsu, K. Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. J. Clin. Microbiol., 2003, 41(1), 5-14.
[http://dx.doi.org/10.1128/JCM.41.1.5-14.2003] [PMID: 12517819]
[53]
Boneca, I.G.; Chiosis, G. Vancomycin resistance: occurrence, mechanisms and strategies to combat it. Expert Opin. Ther. Targets, 2003, 7(3), 311-328.
[http://dx.doi.org/10.1517/14728222.7.3.311] [PMID: 12783569]
[54]
Fasanaro, T.S. Bleaching teeth: history, chemicals, and methods used for common tooth discolorations. J. Esthet. Restor. Dent., 1992, 4(3), 71-78.
[http://dx.doi.org/10.1111/j.1708-8240.1992.tb00666.x] [PMID: 1389350]
[55]
Marshall, M.V.; Cancro, L.P.; Fischman, S.L. Hydrogen peroxide: a review of its use in dentistry. J. Periodontol., 1995, 66(9), 786-796.
[http://dx.doi.org/10.1902/jop.1995.66.9.786] [PMID: 7500245]
[56]
Agrawal, V.; Kapoor, S.; Agrawal, I. Critical review on eliminating endodontic dental infections using herbal products. J. Diet. Suppl., 2017, 14(2), 229-240.
[http://dx.doi.org/10.1080/19390211.2016.1207004] [PMID: 27715358]
[57]
Estrela, C.; Estrela, C.R.A.; Barbin, E.L.; Spanó, J.C.E.; Marchesan, M.A.; Pécora, J.D. Mechanism of action of sodium hypochlorite. 2002, 13, 113-117.
[58]
Zehnder, M.; Grawehr, M.; Hasselgren, G.; Waltimo, T. Tissue-dissolution capacity and dentin-disinfecting potential of calcium hydroxide mixed with irrigating solutions. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2003, 96(5), 608-613.
[http://dx.doi.org/10.1016/S1079-2104(03)00157-4] [PMID: 14600697]
[59]
Kandaswamy, D.; Venkateshbabu, N. Root canal irrigants. J. Conserv. Dent., 2010, 13(4), 256-264.
[http://dx.doi.org/10.4103/0972-0707.73378] [PMID: 21217955]
[60]
Mupparapu, M.; Kothari, K.R.M. Review of surface disinfection protocols in dentistry: a 2019 update. Quintessence Int., 2019, 50(1), 58-65.
[PMID: 30600327]
[61]
Clarkson, R.M.; Moule, A.J. Sodium hypochlorite and its use as an endodontic irrigant. Aust. Dent. J., 1998, 43(3), 250-256.
[http://dx.doi.org/10.1111/j.1834-7819.1998.tb00173.x] [PMID: 9775472]
[62]
Gonçalves, L.S.; Rodrigues, R.C.V.; Andrade Junior, C.V.; Soares, R.G.; Vettore, M.V. The effect of sodium hypochlorite and chlorhexidine as irrigant solutions for root canal disinfection: a systematic review of clinical trials. J. Endod., 2016, 42(4), 527-532.
[http://dx.doi.org/10.1016/j.joen.2015.12.021] [PMID: 26852149]
[63]
Russell, A.D.; Path, F.R.C. Chlorhexidine: Antibacterial action and bacterial resistance. Infection, 1986, 14(5), 212-215.
[http://dx.doi.org/10.1007/BF01644264] [PMID: 3539812]
[64]
Shreya, S. Chlorhexidine as an irrigant in endodontics -A review. Res. J. Pharm. Biol. Chem. Sci., 2016.
[65]
Jenkins, S.; Addy, M.; Wade, W. The mechanism of action of chlorhexidine. A study of plaque growth on enamel inserts in vivo. J. Clin. Periodontol., 1988, 15(7), 415-424.
[http://dx.doi.org/10.1111/j.1600-051X.1988.tb01595.x] [PMID: 3183067]
[66]
Sassone, L.M.; Fidel, R.A.S.; Murad, C.F.; Fidel, S.R.; Hirata Jr, R. Antimicrobial activity of sodium hypochlorite and chlorhexidine by two different tests. Aust. Endod. J., 2008, 34(1), 19-24.
[http://dx.doi.org/10.1111/j.1747-4477.2007.00071.x] [PMID: 18352899]
[67]
Gomes, B.P.F.A.; Ferraz, C.C.; Vianna, M.E.; Berber, V.B.; Teixeira, F.B.; Souza-Filho, F.J. In vitro antimicrobial activity of several concentrations of sodium hypochlorite and chlorhexidine gluconate in the elimination of Enterococcus faecalis. Int. Endod. J., 2001, 34(6), 424-428.
[http://dx.doi.org/10.1046/j.1365-2591.2001.00410.x] [PMID: 11556507]
[68]
Chang, Y.C.; Huang, F.M.; Tai, K.W.; Chou, M.Y. The effect of sodium hypochlorite and chlorhexidine on cultured human periodontal ligament cells. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2001, 92(4), 446-450.
[http://dx.doi.org/10.1067/moe.2001.116812] [PMID: 11598582]
[69]
Estrela, C.; Holland, R. Calcium hydroxide: study based on scientific evidences. J. Appl. Oral Sci., 2003, 11(4), 269-282.
[http://dx.doi.org/10.1590/S1678-77572003000400002] [PMID: 21394401]
[70]
Estrela, C.; Sydney, G.B.; Bammann, L.L.; Felippe Júnior, O. Mechanism of action of calcium and hydroxyl ions of calcium hydroxide on tissue and bacteria. Braz. Dent. J., 1995, 6(2), 85-90.
[PMID: 8688662]
[71]
Foreman, P.C.; Barnes, I.E. A review of calcium hydroxide. Int. Endod. J., 1990, 23(6), 283-297.
[http://dx.doi.org/10.1111/j.1365-2591.1990.tb00108.x] [PMID: 2098345]
[72]
Mohammadi, Z.; Dummer, P.M.H. Properties and applications of calcium hydroxide in endodontics and dental traumatology. Int. Endod. J., 2011, 44(8), 697-730.
[http://dx.doi.org/10.1111/j.1365-2591.2011.01886.x] [PMID: 21535021]
[73]
Sirén, E.K.; Haapasalo, M.P.P.; Waltimo, T.M.T.; Ørstavik, D. In vitro antibacterial effect of calcium hydroxide combined with chlorhexidine or iodine potassium iodide on Enterococcus faecalis. Eur. J. Oral Sci., 2004, 112(4), 326-331.
[http://dx.doi.org/10.1111/j.1600-0722.2004.00144.x] [PMID: 15279651]
[74]
Rödig, T.; Vogel, S.; Zapf, A.; Hülsmann, M. Efficacy of different irrigants in the removal of calcium hydroxide from root canals. Int. Endod. J., 2010, 43(6), 519-527.
[http://dx.doi.org/10.1111/j.1365-2591.2010.01709.x] [PMID: 20536580]
[75]
Napte, B; Srinidhi, S. Endodontic irrigants. J. Dent. Allied Sci., 2015, 4, 25.
[http://dx.doi.org/10.4103/2277-4696.167536]
[76]
Joshi, N.; Prajapati, K. Antimicrobial efficacy of 0.5% Iodine potassium iodide as intracanal irrigant against Enterococcus faecalis at apical third of canal. J. Nepal Dent. Assoc., 2014, 14(2), 17.
[77]
Abbaszadegan, A.; Khayat, A.; Motamedifar, M. Comparison of antimicrobial efficacy of IKI and NaOCl irrigants in infected root canals: An in vivo study. Iran. Endod. J., 2010, 5(3), 101-106.
[PMID: 23130035]
[78]
Wayman, B.E.; Kopp, W.M.; Pinero, G.J.; Lazzari, E.P. Citric and lactic acids as root canal irrigants in vitro. J. Endod., 1979, 5(9), 258-265.
[http://dx.doi.org/10.1016/S0099-2399(79)80171-5] [PMID: 297768]
[79]
Malheiros, C.F.; Marques, M.M.; Gavini, G. In vitro evaluation of the cytotoxic effects of acid solutions used as canal irrigants. J. Endod., 2005, 31(10), 746-748.
[http://dx.doi.org/10.1097/01.don.0000157994.49432.67] [PMID: 16186755]
[80]
Vineet; Moksha Nayak, R. Enterococcus faecalis: An enigma in root canal infections. Int. Res. J. Pharm. Biosci., 2016, 3(1), 12-21.
[81]
Singla, M.G.; Garg, A.; Gupta, S. MTAD in endodontics: an update review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2011, 112(3), e70-e76.
[http://dx.doi.org/10.1016/j.tripleo.2011.02.015] [PMID: 21546282]
[82]
Shabahang, S.; Torabinejad, M. Effect of MTAD on Enterococcus faecalis-contaminated root canals of extracted human teeth. J. Endod., 2003, 29(9), 576-579.
[http://dx.doi.org/10.1097/00004770-200309000-00008] [PMID: 14503830]
[83]
Portenier, I.; Waltimo, T.; Ørstavik, D.; Haapasalo, M. Killing of Enterococcus faecalis by MTAD and chlorhexidine digluconate with or without cetrimide in the presence or absence of dentine powder or BSA. J. Endod., 2006, 32(2), 138-141.
[http://dx.doi.org/10.1016/j.joen.2005.10.027] [PMID: 16427463]
[84]
Torabinejad, M.; Shabahang, S.; Aprecio, R.; Kettering, J. The antimicrobial effect of MTAD: an in vitro investigation. J. Endod., 2003, 29(6), 400-403.
[http://dx.doi.org/10.1097/00004770-200306000-00005] [PMID: 12814224]
[85]
Giardino, L.; Ambu, E.; Savoldi, E.; Rimondini, R.; Cassanelli, C.; Debbia, E. Comparative evaluation of antimicrobial efficacy of sodium hypochlorite, MTAD, and Tetraclean against Enterococcus faecalis biofilm. J. Endod., 2007, 33(7), 852-855.
[http://dx.doi.org/10.1016/j.joen.2007.02.012] [PMID: 17804328]
[86]
Bidault, P.; Chandad, F.; Grenier, D. Risk of bacterial resistance associated with systemic antibiotic therapy in periodontology. J. Can. Dent. Assoc., 2007, 73(8), 721-725.
[PMID: 17949540]
[87]
Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; Greko, C.; So, A.D.; Bigdeli, M.; Tomson, G.; Woodhouse, W.; Ombaka, E.; Peralta, A.Q.; Qamar, F.N.; Mir, F.; Kariuki, S.; Bhutta, Z.A.; Coates, A.; Bergstrom, R.; Wright, G.D.; Brown, E.D.; Cars, O. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis., 2013, 13(12), 1057-1098.
[http://dx.doi.org/10.1016/S1473-3099(13)70318-9] [PMID: 24252483]
[88]
Mahizan, N.A.; Yang, S.K.; Moo, C.L.; Song, A.A.L.; Chong, C.M.; Chong, C.W.; Abushelaibi, A.; Lim, S.H.E.; Lai, K.S. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules, 2019, 24(14), 2631.
[http://dx.doi.org/10.3390/molecules24142631] [PMID: 31330955]
[89]
Mandal, S.M.; Roy, A.; Ghosh, A.K.; Hazra, T.K.; Basak, A.; Franco, O.L. Challenges and future prospects of antibiotic therapy: from peptides to phages utilization. Front. Pharmacol., 2014, 5, 105.
[http://dx.doi.org/10.3389/fphar.2014.00105] [PMID: 24860506]
[90]
Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res., 2017, 196, 44-68.
[http://dx.doi.org/10.1016/j.micres.2016.12.003] [PMID: 28164790]
[91]
Godowski, K.C. Antimicrobial action of sanguinarine. J. Clin. Dent., 1989, 1(4), 96-101.
[PMID: 2700895]
[92]
Kelley, C.; Zhang, Y.; Parhi, A.; Kaul, M.; Pilch, D.S.; LaVoie, E.J. 3-Phenyl substituted 6,7-dimethoxyisoquinoline derivatives as FtsZtargeting antibacterial agents. Bioorg. Med. Chem., 2012, 20(24), 7012-7029.
[http://dx.doi.org/10.1016/j.bmc.2012.10.009] [PMID: 23127490]
[93]
Park, H.O.W.O.N.; Choi, K.D.; Shin, I.S. Antimicrobial activity of isothiocyanates (ITCs) extracted from horseradish (Armoracia rusticana) root against oral microorganisms. Biocontrol Sci., 2013, 18(3), 163-168.
[http://dx.doi.org/10.4265/bio.18.163] [PMID: 24077540]
[94]
Kinae, N.; Masuda, H.; Shin, I.S.; Furugori, M.; Shimoi, K. Functional properties of wasabi and horseradish. Biofactors, 2000, 13(1-4), 265-269.
[http://dx.doi.org/10.1002/biof.5520130140] [PMID: 11237192]
[95]
Dias, C.; Aires, A.; Bennett, R.N.; Rosa, E.A.S.; Saavedra, M.J. First study on antimicriobial activity and synergy between isothiocyanates and antibiotics against selected Gram-negative and Gram-positive pathogenic bacteria from clinical and animal source. Med. Chem., 2012, 8(3), 474-480.
[http://dx.doi.org/10.2174/1573406411208030474] [PMID: 22530889]
[96]
Kuźma, Ł.; Różalski, M.; Walencka, E.; Różalska, B.; Wysokińska, H. Antimicrobial activity of diterpenoids from hairy roots of Salvia sclarea L.: Salvipisone as a potential anti-biofilm agent active against antibiotic resistant Staphylococci. Phytomedicine, 2007, 14(1), 31-35.
[http://dx.doi.org/10.1016/j.phymed.2005.10.008] [PMID: 17190643]
[97]
Krauze-Baranowska, M.; Majdan, M.; Hałasa, R.; Głód, D.; Kula, M.; Fecka, I.; Orzeł, A. The antimicrobial activity of fruits from some cultivar varieties of Rubus idaeus and Rubus occidentalis. Food Funct., 2014, 5(10), 2536-2541.
[http://dx.doi.org/10.1039/C4FO00129J] [PMID: 25131001]
[98]
Lee, P.; Tan, K.S. Effects of Epigallocatechin gallate against Enterococcus faecalis biofilm and virulence. Arch. Oral Biol., 2015, 60(3), 393-399.
[http://dx.doi.org/10.1016/j.archoralbio.2014.11.014] [PMID: 25526623]
[99]
Jeong, K.W.; Lee, J.Y.; Kang, D.I.; Lee, J.U.; Shin, S.Y.; Kim, Y. Screening of flavonoids as candidate antibiotics against Enterococcus faecalis. J. Nat. Prod., 2009, 72(4), 719-724.
[http://dx.doi.org/10.1021/np800698d] [PMID: 19236029]
[100]
Łysakowska, M.; Sienkiewicz, M.; Banaszek, K.; Sokołowski, J. The sensitivity of endodontic enterococcus spp. strains to geranium essential oil. Molecules, 2015, 20(12), 22881-22889.
[http://dx.doi.org/10.3390/molecules201219888] [PMID: 26703546]
[101]
Opalchenova, G.; Obreshkova, D. Comparative studies on the activity of basil-an essential oil from Ocimum basilicum L.-against multidrug resistant clinical isolates of the genera Staphylococcus, Enterococcus and Pseudomonas by using different test methods. J. Microbiol. Methods, 2003, 54(1), 105-110.
[http://dx.doi.org/10.1016/S0167-7012(03)00012-5] [PMID: 12732427]
[102]
Bruni, R.; Medici, A.; Andreotti, E.; Fantin, C.; Muzzoli, M.; Dehesa, M.; Romagnoli, C.; Sacchetti, G. Chemical composition and biological activities of Ishpingo essential oil, a traditional Ecuadorian spice from Ocotea quixos (Lam.) Kosterm. (Lauraceae) flower calices. Food Chem., 2004, 85(3), 415-421.
[http://dx.doi.org/10.1016/j.foodchem.2003.07.019]
[103]
Veras, H.N.H.; Rodrigues, F.F.G.; Botelho, M.A.; Menezes, I.R.A.; Coutinho, H.D.M.; da Costa, J.G.M. Antimicrobial effect of Lippia sidoides and thymol on Enterococcus faecalis biofilm of the bacterium isolated from root canals. ScientificWorldJournal, 2014, 2014, 1-5.
[http://dx.doi.org/10.1155/2014/471580] [PMID: 24683344]
[104]
Fisher, K.; Phillips, C. Potential antimicrobial uses of essential oils in food: is citrus the answer? Trends Food Sci. Technol., 2008, 19(3), 156-164.
[http://dx.doi.org/10.1016/j.tifs.2007.11.006]
[105]
Fisher, K.; Phillips, C. The mechanism of action of a citrus oil blend against Enterococcus faecium and Enterococcus faecalis. J. Appl. Microbiol., 2009, 106(4), 1343-1349.
[http://dx.doi.org/10.1111/j.1365-2672.2008.04102.x] [PMID: 19187138]
[106]
Laird, K.; Armitage, D.; Phillips, C. Reduction of surface contamination and biofilms of Enterococcus sp. and Staphylococcus aureus using a citrus-based vapour. J. Hosp. Infect., 2012, 80(1), 61-66.
[http://dx.doi.org/10.1016/j.jhin.2011.04.008] [PMID: 22153952]
[107]
Sharma, A.; Chandraker, S.; Patel, V.K.; Ramteke, P. Antibacterial activity of medicinal plants against pathogens causing complicated urinary tract infections. Indian J. Pharm. Sci., 2009, 71(2), 136-139.
[http://dx.doi.org/10.4103/0250-474X.54279] [PMID: 20336211]
[108]
Khan, R.; Islam, B.; Akram, M.; Shakil, S.; Ahmad, A.A.; Ali, S.M.; Siddiqui, M.; Khan, A. Antimicrobial activity of five herbal extracts against multi drug resistant (MDR) strains of bacteria and fungus of clinical origin. Molecules, 2009, 14(2), 586-597.
[http://dx.doi.org/10.3390/molecules14020586] [PMID: 19214149]
[109]
Marasini, B.P.; Baral, P.; Aryal, P.; Ghimire, K.R.; Neupane, S.; Dahal, N.; Singh, A.; Ghimire, L.; Shrestha, K. Evaluation of antibacterial activity of some traditionally used medicinal plants against human pathogenic bacteria. BioMed Res. Int., 2015, 2015, 1-6.
[http://dx.doi.org/10.1155/2015/265425] [PMID: 25738151]
[110]
Mahomoodally, M.F.; Gurib-Fakim, A.; Subratty, A.H. Antimicrobial activities and phytochemical profiles of endemic medicinal plants of mauritius. Pharm. Biol., 2005, 43(3), 237-242.
[http://dx.doi.org/10.1080/13880200590928825]
[111]
Elisha, I.L.; Botha, F.S.; McGaw, L.J.; Eloff, J.N. The antibacterial activity of extracts of nine plant species with good activity against Escherichia coli against five other bacteria and cytotoxicity of extracts. BMC Complement. Altern. Med., 2017, 17(1), 133.
[http://dx.doi.org/10.1186/s12906-017-1645-z] [PMID: 28241818]
[112]
Famuyide, I.M.; Aro, A.O.; Fasina, F.O.; Eloff, J.N.; McGaw, L.J. Antibacterial and antibiofilm activity of acetone leaf extracts of nine under-investigated South African Eugenia and Syzygium (Myrtaceae) species and their selectivity indices. BMC Complement. Altern. Med., 2019, 19(1), 141.
[http://dx.doi.org/10.1186/s12906-019-2547-z] [PMID: 31221162]
[113]
Palombo, E.A.; Semple, S.J. Antibacterial activity of traditional Australian medicinal plants. J. Ethnopharmacol., 2001, 77(2-3), 151-157.
[http://dx.doi.org/10.1016/S0378-8741(01)00290-2] [PMID: 11535358]
[114]
Mehrgan, H.; Mojab, F.; Pakdaman, S.; Poursaeed, M. Antibacterial activity of Thymus pubescens methanolic extract. Iran. J. Pharm. Res., 2008, 7(4), 291-295.
[115]
Ushimaru, P.I.; da Silva, M.T.N.; Di Stasi, L.C.; Barbosa, L.; Junior, A.F. Antibacterial activity of medicinal plant extracts. 2007, 38, 717-719.
[116]
Zacchino, S.A.; Butassi, E.; Cordisco, E.; Svetaz, L.A. Hybrid combinations containing natural products and antimicrobial drugs that interfere with bacterial and fungal biofilms. Phytomedicine, 2017, 37, 14-26.
[http://dx.doi.org/10.1016/j.phymed.2017.10.021] [PMID: 29174600]
[117]
Soltani, R.; Fazeli, H.; Bahri Najafi, R.; Jelokhanian, A. evaluation of the synergistic effect of tomatidine with several antibiotics against standard and clinical isolates of Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli. Iran. J. Pharm. Res., 2017, 16(1), 290-296.
[PMID: 28496482]
[118]
Lin, D.M.; Koskella, B.; Lin, H.C. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. Ther., 2017, 8(3), 162-173.
[http://dx.doi.org/10.4292/wjgpt.v8.i3.162] [PMID: 28828194]
[119]
Jault, P.; Leclerc, T.; Jennes, S.; Pirnay, J.P.; Que, Y.A.; Resch, G.; Rousseau, A.F.; Ravat, F.; Carsin, H.; Le Floch, R.; Schaal, J.V.; Soler, C.; Fevre, C.; Arnaud, I.; Bretaudeau, L.; Gabard, J. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis., 2019, 19(1), 35-45.
[http://dx.doi.org/10.1016/S1473-3099(18)30482-1] [PMID: 30292481]
[120]
Morozova, V.V.; Vlassov, V.V.; Tikunova, N.V. Applications of bacteriophages in the treatment of localized infections in humans. Front. Microbiol., 2018, 9, 1696.
[http://dx.doi.org/10.3389/fmicb.2018.01696] [PMID: 30116226]
[121]
Summers, W.C. Félix d’Herelle and the Origins of Molecular Biology; Yale University Press, 1999.
[122]
Bruynoghe, R. Twort-d’Herelle Phenomenon (Harben Lectures). J. State Med., 1927, 35, 683.
[123]
Summers, W.C. Cholera and plague in India: the bacteriophage inquiry of 1927-1936. J. Hist. Med. Allied Sci., 1993, 48(3), 275-301.
[http://dx.doi.org/10.1093/jhmas/48.3.275] [PMID: 8409365]
[124]
Sulakvelidze, A.; Alavidze, Z.; Morris Jr, J.G. Bacteriophage Therapy. Antimicrob. Agents Chemother., 2001, 45(3), 649-659.
[http://dx.doi.org/10.1128/AAC.45.3.649-659.2001] [PMID: 11181338]
[125]
Summers, W.C. Bacteriophage Therapy. Annu. Rev. Microbiol., 2001, 55(1), 437-451.
[http://dx.doi.org/10.1146/annurev.micro.55.1.437] [PMID: 11544363]
[126]
Eaton, M.D.; Bayne-Jones, S. Bacteriophage therapy. J. Am. Med. Assoc., 1934, 103(23), 1769-1776.
[http://dx.doi.org/10.1001/jama.1934.72750490003007]
[127]
Krueger, A.P.; Scribner, J. The bacteriophage. J. Am. Med. Assoc., 1941, 116(19), 2160-2167.
[http://dx.doi.org/10.1001/jama.1941.62820190016010]
[128]
Abedon, S.T.; Kuhl, S.J.; Blasdel, B.G.; Kutter, E.M. Phage treatment of human infections. Bacteriophage, 2011, 1(2), 66-85.
[http://dx.doi.org/10.4161/bact.1.2.15845] [PMID: 22334863]
[129]
Kutateladze, M.; Adamia, R. Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol., 2010, 28(12), 591-595.
[http://dx.doi.org/10.1016/j.tibtech.2010.08.001] [PMID: 20810181]
[130]
Cantón, R.; Morosini, M.I. Emergence and spread of antibiotic resistance following exposure to antibiotics. FEMS Microbiol. Rev., 2011, 35(5), 977-991.
[http://dx.doi.org/10.1111/j.1574-6976.2011.00295.x] [PMID: 21722146]
[131]
Ventola, C.L. The antibiotic resistance crisis: part 1: causes and threats. P&T, 2015, 40(4), 277-283.
[PMID: 25859123]
[132]
Sarhan, W.A.; Azzazy, H.M.E. Phage approved in food, why not as a therapeutic? Expert Rev. Anti Infect. Ther., 2015, 13(1), 91-101.
[http://dx.doi.org/10.1586/14787210.2015.990383] [PMID: 25488141]
[133]
Parasion, S.; Kwiatek, M.; Gryko, R.; Mizak, L.; Malm, A. Bacteriophages as an alternative strategy for fighting biofilm development. Pol. J. Microbiol., 2014, 63(2), 137-145.
[http://dx.doi.org/10.33073/pjm-2014-019] [PMID: 25115107]
[134]
Khalifa, L.; Shlezinger, M.; Beyth, S.; Houri-Haddad, Y.; Coppenhagen-Glazer, S.; Beyth, N.; Hazan, R. Phage therapy against Enterococcus faecalis in dental root canals. J. Oral Microbiol., 2016, 8(1), 32157.
[http://dx.doi.org/10.3402/jom.v8.32157] [PMID: 27640530]
[135]
Jett, B.D.; Huycke, M.M.; Gilmore, M.S. Virulence of enterococci. Clin. Microbiol. Rev., 1994, 7(4), 462-478.
[http://dx.doi.org/10.1128/CMR.7.4.462] [PMID: 7834601]
[136]
Pinheiro, E.T.; Mayer, M.P.A. Enterococcus faecalis in oral infections. J. Interdiscipl. Med. Dent. Sci., 2014, 3(1), 1-5.
[137]
O’Driscoll, T.; Crank, C.W. Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infect. Drug Resist., 2015, 8, 217-230.
[PMID: 26244026]
[138]
Stevens, R.H.; Porras, O.D.; Delisle, A.L. Bacteriophages induced from lysogenic root canal isolates of Enterococcus faecalis. Oral Microbiol. Immunol., 2009, 24(4), 278-284.
[http://dx.doi.org/10.1111/j.1399-302X.2009.00506.x] [PMID: 19572888]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy