Mini-Review Article

Recent Avenues in Treatment of Liver Diseases: Role of Nanotechnology

Author(s): Madhusmita Bhuyan, Malkiet Kaur, Udesh Kaushal, Manju Nagpal*, Manjinder Singh and Geeta Aggarwal

Volume 24, Issue 4, 2023

Published on: 14 February, 2023

Page: [320 - 331] Pages: 12

DOI: 10.2174/1389450124666230119151124

Price: $65

conference banner
Abstract

Background: Worldwide, millions of people are affected by liver disorders and issues, and the successful treatment of patients seems challenging even after many treatment strategies. Presently, doctors are left with treatments like liver transplantation and resection. Researchers found it challenging to target the liver due to various drawbacks such as opsonization, mechanical entrapment, and RES uptake.

Methods: Literature (from the past ten years) on different research data on the treatment of liver diseases and study reports on the development of various nanocarriers targeting the liver have been collected using multiple search engines such as ScienceDirect, j-gate, google scholar, PubMed, scihub, etc. and data have been compiled accordingly.

Results: The basics of liver anatomy and various liver cells and pathophysiology of liver diseases, and liver targeting have been mentioned better to understand the further treatment of various liver disorders. Various Liver diseases such as hepatitis B, liver fibrosis, hepatocellular carcinoma, acute liver failure, and liver cirrhosis have been detailed in multiple research studies related to their treatment. Various strategies for active and passive liver targeting have also been overviewed. Several advanced reported nanocarriers (liposomes, polymeric micelles, nanoparticles, micro and nanoemulsions, and phytosomes) are mentioned and their potential in treating liver disorders has been summarized by compiling research reports related to these nanocarriers.

Conclusion: The fabrication of nanomedicine incorporating nanocarriers and biomaterials for treating liver diseases is a big challenge. Understanding various aspects of liver anatomy and liver cells is the prime requirement while designing successful liver-targeted nano/microcarriers. Also, the choice of advanced or modified polymeric material in liver targeting is very crucial for their specific liver cell targeting, for their biocompatibility and biodegradability point of view.

Keywords: Liver targeting, hepatocytes, Liver cirrhosis, Nanocarriers, Stellate cells, Epithelial cells.

Graphical Abstract
[1]
Tortora GJ, Derrickson BH. Principles of anatomy and physiology. John Wiley & Sons 2018; pp. 2-22.
[2]
Nguyen VTT, Law MG, Dore GJ. Hepatitis B-related hepatocellular carcinoma: Epidemiological characteristics and disease burden. J Viral Hepat 2009; 16(7): 453-63.
[http://dx.doi.org/10.1111/j.1365-2893.2009.01117.x] [PMID: 19302335]
[3]
Te HS, Jensen DM. Epidemiology of hepatitis B and C viruses: A global overview. Clin Liver Dis 2010; 14(1): 1-21, vii.
[http://dx.doi.org/10.1016/j.cld.2009.11.009] [PMID: 20123436]
[4]
Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol 2019; 70(1): 151-71.
[http://dx.doi.org/10.1016/j.jhep.2018.09.014] [PMID: 30266282]
[5]
Rohilla R, Garg T, Goyal AK, Rath G. Herbal and polymeric approaches for liver-targeting drug delivery: Novel strategies and their significance. Drug Deliv 2016; 23(5): 1645-61.
[PMID: 25101832]
[6]
Shilpi S, Shivvedi R, Gurnany E. Drug targeting strategies for liver cancer and other liver diseases. MOJ Drug Des DevelTher 2018; 2: 171-7.
[7]
Marcellin P, Kutala BK. Liver diseases: A major, neglected global public health problem requiring urgent actions and large-scale screening. Liver Int 2018; 38(S1): 2-6.
[http://dx.doi.org/10.1111/liv.13682] [PMID: 29427496]
[8]
Böttger R, Pauli G, Chao PH, AL Fayez N, Hohenwarter L, Li SD. Lipid-based nanoparticle technologies for liver targeting. Adv Drug Deliv Rev 2020; 154-155: 79-101.
[http://dx.doi.org/10.1016/j.addr.2020.06.017] [PMID: 32574575]
[9]
[10]
Lavanchy D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J Viral Hepat 2004; 11(2): 97-107.
[http://dx.doi.org/10.1046/j.1365-2893.2003.00487.x] [PMID: 14996343]
[11]
Liaw YF, Chu CM. Hepatitis B virus infection. Lancet 2009; 373(9663): 582-92.
[http://dx.doi.org/10.1016/S0140-6736(09)60207-5] [PMID: 19217993]
[12]
Sorrell MF, Belongia EA, Costa J, et al. National Institutes of Health consensus development conference statement: Management of hepatitis B. Hepatology 2009; 49(S5): S4-12.
[13]
Ganem D, Prince AM. Hepatitis B virus infection-natural history and clinical consequences. N Engl J Med 2004; 350(11): 1118-29.
[http://dx.doi.org/10.1056/NEJMra031087] [PMID: 15014185]
[14]
Huang H, Huang HC, Chiou WC, et al. Ergosterol peroxide inhibits HBV infection by inhibiting the binding of the pre-S1 domain of LHBsAg to NTCP. Antiviral Res 2021; 195: 105184.
[http://dx.doi.org/10.1016/j.antiviral.2021.105184] [PMID: 34627935]
[15]
Weber S, Gressner OA, Hall R, Grünhage F, Lammert F. Genetic determinants in hepatic fibrosis: From experimental models to fibrogenic gene signatures in humans. Clin Liver Dis 2008; 12(4): 747-57.
[http://dx.doi.org/10.1016/j.cld.2008.07.012] [PMID: 18984464]
[16]
Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005; 115(2): 209-18.
[http://dx.doi.org/10.1172/JCI24282] [PMID: 15690074]
[17]
Rockey DC. Current and future anti-fibrotic therapies for chronic liver disease. Clin Liver Dis 2008; 12(4): 939-62.
[http://dx.doi.org/10.1016/j.cld.2008.07.011] [PMID: 18984475]
[18]
Sung YC, Liu YC, Chao PH, et al. Combined delivery of sorafenib and a MEK inhibitor using CXCR4-targeted nanoparticles reduces hepatic fibrosis and prevents tumor development. Theranostics 2018; 8(4): 894-905.
[http://dx.doi.org/10.7150/thno.21168] [PMID: 29463989]
[19]
Qiao JB, Fan QQ, Xing L, et al. Vitamin A-decorated biocompatible micelles for chemogene therapy of liver fibrosis. J Control Release 2018; 283: 113-25.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.032] [PMID: 29857004]
[20]
Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology 2005; 42(5): 1208-36.
[http://dx.doi.org/10.1002/hep.20933] [PMID: 16250051]
[21]
Lopez PM, Villanueva A, Llovet JM. Systematic review: Evidence-based management of hepatocellular carcinoma - an updated analysis of randomized controlled trials. Aliment Pharmacol Ther 2006; 23(11): 1535-47.
[http://dx.doi.org/10.1111/j.1365-2036.2006.02932.x] [PMID: 16696801]
[22]
Chen JT, Ma R, Sun SC, Zhu XF, Xu XL, Mu Q. Synthesis and biological evaluation of cyclopeptide GG-8-6 and its analogues as anti-hepatocellular carcinoma agents. Bioorg Med Chem 2018; 26(3): 609-22.
[http://dx.doi.org/10.1016/j.bmc.2017.12.028] [PMID: 29310863]
[23]
Ganguly S, Dewanjee S, Sen R, et al. Apigenin-loaded galactose tailored PLGA nanoparticles: A possible strategy for liver targeting to treat hepatocellular carcinoma. Colloids Surf B Biointerfaces 2021; 204: 111778.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111778] [PMID: 33915380]
[24]
Su RY, Ling SB, Shan QN, et al. Efficacy and safety of sirolimus early conversion protocol in liver transplant patients with hepatocellular carcinoma: A single-arm, multicenter, prospective study. Hepatobiliary Pancreat Dis Int 2022; 21(2): 106-2.
[PMID: 34583911]
[25]
Wu F, Xue H, Li X, et al. Enhanced targeted delivery of adenine to hepatocellular carcinoma using glycyrrhetinic acid-functionalized nanoparticles in vivo and in vitro. Biomed Pharmacother 2020; 131: 110682.
[http://dx.doi.org/10.1016/j.biopha.2020.110682] [PMID: 32947204]
[26]
Meng H, Shen M, Li J, et al. Novel SREBP1 inhibitor cinobufotalin suppresses proliferation of hepatocellular carcinoma by targeting lipogenesis. Eur J Pharmacol 2021; 906: 174280.
[http://dx.doi.org/10.1016/j.ejphar.2021.174280] [PMID: 34174265]
[27]
Ostapowicz G, Fontana RJ, Schiødt FV, et al. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann Intern Med 2002; 137(12): 947-54.
[http://dx.doi.org/10.7326/0003-4819-137-12-200212170-00007] [PMID: 12484709]
[28]
O’Grady JG. Acute liver failure. Postgrad Med J 2005; 81(953): 148-54.
[http://dx.doi.org/10.1136/pgmj.2004.026005] [PMID: 15749789]
[29]
Nagórniewicz B, Mardhian DF, Booijink R, Storm G, Prakash J, Bansal R. Engineered relaxin as theranostic nanomedicine to diagnose and ameliorate liver cirrhosis. Nanomedicine 2019; 17: 106-18.
[http://dx.doi.org/10.1016/j.nano.2018.12.008] [PMID: 30677498]
[30]
Uzzaman A, Zhang X, Qiao Z, et al. Discovery of small extracellular vesicle proteins from human serum for liver cirrhosis and liver cancer. Biochimie 2020; 177: 132-41.
[http://dx.doi.org/10.1016/j.biochi.2020.08.013] [PMID: 32835735]
[31]
Lu X, Jiang M, Tian J, et al. Growth arrest-specific transcript 5 (GAS5) exerts important roles on the treatment of BM45 cells of liver cirrhosis. Mol Ther Nucleic Acids 2020; 22: 1154-63.
[http://dx.doi.org/10.1016/j.omtn.2020.10.024] [PMID: 33312752]
[32]
Ren Q, Li X, Mu J, et al. Population pharmacokinetics of voriconazole and optimization of dosage regimens based on Monte Carlo simulation in patients with liver cirrhosis. J Pharm Sci 2019; 108(12): 3923-31.
[http://dx.doi.org/10.1016/j.xphs.2019.09.019] [PMID: 31562869]
[33]
Dong X, Gu R, Zhu X, et al. Evaluating prodrug characteristics of a novel anticoagulant fusion protein neorudin, a prodrug targeting release of hirudin variant 2-Lys47 at the thrombosis site, by means of in vitro pharmacokinetics. Eur J Pharm Sci 2018; 121: 166-77.
[http://dx.doi.org/10.1016/j.ejps.2018.05.025] [PMID: 29802897]
[34]
Santos-Magalhães NS, Mosqueira VCF. Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev 2010; 62(4-5): 560-75.
[http://dx.doi.org/10.1016/j.addr.2009.11.024] [PMID: 19914313]
[35]
Wang H, Thorling CA, Liang X, et al. Diagnostic imaging and therapeutic application of nanoparticles targeting the liver. J Mater Chem B Mater Biol Med 2015; 3(6): 939-58.
[http://dx.doi.org/10.1039/C4TB01611D] [PMID: 32261972]
[36]
Romero EL, Morilla MJ, Regts J, Koning GA, Scherphof GL. On the mechanism of hepatic transendothelial passage of large liposomes. FEBS let 1999; 448(1): 193-6.
[http://dx.doi.org/10.1016/S0014-5793(99)00364-6]
[37]
Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46(12 Pt 1): 6387-92.
[PMID: 2946403]
[38]
Gu FX, Karnik R, Wang AZ, et al. Targeted nanoparticles for cancer therapy. Nano Today 2007; 2(3): 14-21.
[http://dx.doi.org/10.1016/S1748-0132(07)70083-X]
[39]
Lai LF, Guo HX. Preparation of new 5-fluorouracil-loaded zein nanoparticles for liver targeting. Int J Pharm 2011; 404(1-2): 317-23.
[http://dx.doi.org/10.1016/j.ijpharm.2010.11.025] [PMID: 21094232]
[40]
Guo L, Kang L, Liu X, et al. A novel nanosuspension of andrographolide: Preparation, characterization and passive liver target evaluation in rats. Eur J Pharm Sci 2017; 104: 13-22.
[http://dx.doi.org/10.1016/j.ejps.2017.03.017] [PMID: 28315464]
[41]
Bu P, Chen KY, Xiang K, et al. Aldolase B-mediated fructose metabolism drives metabolic reprogramming of colon cancer liver metastasis. Cell Metab 2018; 27(6): 1249-1262.e4.
[http://dx.doi.org/10.1016/j.cmet.2018.04.003] [PMID: 29706565]
[42]
Yang N, Ye Z, Li F, Mahato RI. HPMA polymer-based site-specific delivery of oligonucleotides to hepatic stellate cells. Bioconjug Chem 2009; 20(2): 213-21.
[http://dx.doi.org/10.1021/bc800237t] [PMID: 19133717]
[43]
Adrian JE, Poelstra K, Scherphof GL, et al. Effects of a new bioactive lipid-based drug carrier on cultured hepatic stellate cells and liver fibrosis in bile duct-ligated rats. J Pharmacol Exp Ther 2007; 321(2): 536-43.
[http://dx.doi.org/10.1124/jpet.106.117945] [PMID: 17314198]
[44]
Sato Y, Murase K, Kato J, et al. Resolution of liver cirrhosis using vitamin A–coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol 2008; 26(4): 431-42.
[http://dx.doi.org/10.1038/nbt1396] [PMID: 18376398]
[45]
Cheong SJ, Lee CM, Kim SL, et al. Superparamagnetic iron oxide nanoparticles-loaded chitosan-linoleic acid nanoparticles as an effective hepatocyte-targeted gene delivery system. Int J Pharm 2009; 372(1-2): 169-76.
[http://dx.doi.org/10.1016/j.ijpharm.2009.01.009] [PMID: 19429277]
[46]
Elnaggar MH, Abushouk AI, Hassan AH, et al. Nanomedicine as a putative approach for active targeting of hepatocellular carcinoma. Semin Cancer Biol. Academic Press 2021; Vol. 69: pp. 91-9.
[47]
Dong H, Wu G, Xu H, et al. N-acetylaminogalactosyl-decorated biodegradable PLGA-TPGS copolymer nanoparticles containing emodin for the active targeting therapy of liver cancer. Artif Cells Nanomed Biotechnol 2018; 46(S2): 260-72.
[48]
e Silva ATM, Maia ALC, de Oliveira Silva J, et al. Synthesis of cholesterol-based neoglycoconjugates and their use in the preparation of liposomes for active liver targeting. Carbohydr Res 2018; 465: 52-7.
[http://dx.doi.org/10.1016/j.carres.2018.06.008]
[49]
Moghimi SM, Hunter AC, Murray JC. Nanomedicine: Current status and future prospects. FASEB J 2005; 19(3): 311-30.
[http://dx.doi.org/10.1096/fj.04-2747rev] [PMID: 15746175]
[50]
Teli KM, Mutalik S, Rajanikant GK. Nanotechnology and nanomedicine: Going small means aiming big. Curr Pharm Des 2010; 16(16): 1882-92.
[http://dx.doi.org/10.2174/138161210791208992] [PMID: 20222866]
[51]
Barar J, Omidi Y. Dysregulated pH in tumor microenvironment checkmates cancer therapy. Bioimpacts 2013; 3(4): 149-62.
[PMID: 24455478]
[52]
Omidi Y, Barar J. Targeting tumor microenvironment: Crossing tumor interstitial fluid by multifunctional nanomedicines. Bioimpacts 2014; 4(2): 55-67.
[PMID: 25035848]
[53]
Tejada-Berges T, Granai CO, Gordinier M, Gajewski W. Caelyx/doxil for the treatment of metastatic ovarian and breast cancer. Expert Rev Anticancer Ther 2002; 2(2): 143-50.
[http://dx.doi.org/10.1586/14737140.2.2.143] [PMID: 12113236]
[54]
Gradishar WJ. Albumin-bound paclitaxel: A next-generation taxane. Expert Opin Pharmacother 2006; 7(8): 1041-53.
[http://dx.doi.org/10.1517/14656566.7.8.1041] [PMID: 16722814]
[55]
Möschwitzer J, Müller RH. New method for the effective production of ultrafine drug nanocrystals. J Nanosci Nanotechnol 2006; 6(9): 3145-53.
[http://dx.doi.org/10.1166/jnn.2006.480] [PMID: 17048530]
[56]
Schek RM, Hollister SJ, Krebsbach PH. Delivery and protection of adenoviruses using biocompatible hydrogels for localized gene therapy. Mol Ther 2004; 9(1): 130-8.
[http://dx.doi.org/10.1016/j.ymthe.2003.10.002] [PMID: 14741786]
[57]
Mahmoud K, Swidan S, El-Nabarawi M, Teaima M. Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: A comprehensive review on targeting and recent advances. J Nanobiotechnology 2022; 20(1): 109.
[http://dx.doi.org/10.1186/s12951-022-01309-9] [PMID: 35248080]
[58]
Melgert BN, Beljaars L, Meijer DK, Poelstra K. Cell specific delivery of anti-inflammatory drugs to hepatic endothelial and Kupffer cells for the treatment of inflammatory liver diseases. Methods princmedchem 2001; 12: 89-120.
[http://dx.doi.org/10.1002/352760006X.ch4]
[59]
Kole L, Das L, Das PK. Synergistic effect of interferon-γ and mannosylated liposome-incorporated doxorubicin in the therapy of experimental visceral leishmaniasis. J Infect Dis 1999; 180(3): 811-20.
[http://dx.doi.org/10.1086/314929] [PMID: 10438370]
[60]
Thomas K, Nijenhuis AM, Dontje BJ, Daemen T, Scherphof G. Antitumor reactivity induced by liposomal MTP-PE in a liver metastasis model of colon cancer in the rat. Clin Exp Metastasis 1995; 13(5): 328-36.
[http://dx.doi.org/10.1007/BF00121909] [PMID: 7641418]
[61]
Hattori Y, Kawakami S, Yamashita F, Hashida M. Controlled biodistribution of galactosylated liposomes and incorporated probucol in hepatocyte-selective drug targeting. J Control Release 2000; 69(3): 369-77.
[http://dx.doi.org/10.1016/S0168-3659(00)00338-2] [PMID: 11102677]
[62]
Osaka S, Tsuji H, Kiwada H. Uptake of liposomes surface-modified with glycyrrhizin by primary cultured rat hepatocytes. Biol Pharm Bull 1994; 17(7): 940-3.
[http://dx.doi.org/10.1248/bpb.17.940] [PMID: 8000382]
[63]
Pohlen U, Reszka R, Schneider P, Buhr HJ, Berger G. Stealth liposomal 5-fluorouracil with or without degradable starch microspheres for hepatic arterial infusion in the treatment of liver metastases. An animal study in VX-2 liver tumor-bearing rabbits. Anticancer Res 2004; 24(3a): 1699-704.
[PMID: 15274343]
[64]
Fatouh AM, Elshafeey AH, Abdelbary A. Galactosylated chitosan coated liposomes of ledipasvir for liver targeting: hemical synthesis, statistical optimization, in-vitro and in-vivo evaluation. J Pharm Sci 2021; 110(3): 1148-59.
[http://dx.doi.org/10.1016/j.xphs.2020.10.002] [PMID: 33039437]
[65]
Zhu J, Wang Q, Li H, et al. Galangin-loaded, liver targeting liposomes: Optimization and hepatoprotective efficacy. J Drug Deliv Sci Technol 2018; 46: 339-47.
[http://dx.doi.org/10.1016/j.jddst.2018.05.034]
[66]
Wei X, Yang D, Xing Z, et al. Quercetin loaded liposomes modified with galactosylated chitosan prevent LPS/D-GalN induced acute liver injury. Mater Sci Eng C 2021; 131: 112527.
[http://dx.doi.org/10.1016/j.msec.2021.112527] [PMID: 34857306]
[67]
Kreuter J. Colloidal drug delivery systems. CRC Press 1994.
[68]
Li C, Zhang D, Guo H, et al. Preparation and characterization of galactosylated bovine serum albumin nanoparticles for liver-targeted delivery of oridonin. Int J Pharm 2013; 448(1): 79-86.
[http://dx.doi.org/10.1016/j.ijpharm.2013.03.019] [PMID: 23518367]
[69]
Lin A, Liu Y, Huang Y, et al. Glycyrrhizin surface-modified chitosan nanoparticles for hepatocyte-targeted delivery. Int J Pharm 2008; 359(1-2): 247-53.
[http://dx.doi.org/10.1016/j.ijpharm.2008.03.039] [PMID: 18457928]
[70]
Liang HF, Chen CT, Chen SC, et al. Paclitaxel-loaded poly(γ-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials 2006; 27(9): 2051-9.
[http://dx.doi.org/10.1016/j.biomaterials.2005.10.027] [PMID: 16307794]
[71]
Wang Q, Zhang L, Hu W, et al. Norcantharidin-associated galactosylated chitosan nanoparticles for hepatocyte-targeted delivery. Nanomedicine 2010; 6(2): 371-81.
[http://dx.doi.org/10.1016/j.nano.2009.07.006] [PMID: 19699319]
[72]
Gupta PN, Mahor S, Rawat A, Khatri K, Goyal A, Vyas SP. Lectin anchored stabilized biodegradable nanoparticles for oral immunization. Int J Pharm 2006; 318(1-2): 163-73.
[http://dx.doi.org/10.1016/j.ijpharm.2006.03.017] [PMID: 16621367]
[73]
Bibby DC, Talmadge JE, Dalal MK, et al. Pharmacokinetics and biodistribution of RGD-targeted doxorubicin-loaded nanoparticles in tumor-bearing mice. Int J Pharm 2005; 293(1-2): 281-90.
[http://dx.doi.org/10.1016/j.ijpharm.2004.12.021] [PMID: 15778066]
[74]
Stella B, Arpicco S, Peracchia MT, et al. Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci 2000; 89(11): 1452-64.
[http://dx.doi.org/10.1002/1520-6017(200011)89:11<1452::AID-JPS8>3.0.CO;2-P] [PMID: 11015690]
[75]
Liu T, Song Y, Huang Z, et al. Photothermal photodynamic therapy and enhanced radiotherapy of targeting copolymer-coated liquid metal nanoparticles on liver cancer. Colloids Surf B Biointerfaces 2021; 207: 112023.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112023] [PMID: 34403983]
[76]
Shi L, Seshadri DV, Poyil MM, et al. Therapeutic potential of galactosamine-modified hollow silica nanoparticle for improved drug targeting to liver cancer. J King Saud Univ Sci 2021; 33(4): 101434.
[http://dx.doi.org/10.1016/j.jksus.2021.101434]
[77]
Ding Y, Zhang S, Sun Z, et al. Preclinical validation of silibinin/albumin nanoparticles as an applicable system against acute liver injury. Acta Biomater 2022; 146: 385-95.
[http://dx.doi.org/10.1016/j.actbio.2022.04.021] [PMID: 35460909]
[78]
Zhou JE, Sun L, Liu L, et al. Hepatic macrophage targeted siRNA lipid nanoparticles treat non-alcoholic steatohepatitis. J Control Release 2022; 343: 175-86.
[http://dx.doi.org/10.1016/j.jconrel.2022.01.038] [PMID: 35092721]
[79]
Kumar V. Nanocarriers for delivery of small molecules and miRNAs for the treatment of liver fibrosis and pancreatic cancer Thesis and Dissertation 2016.
[80]
Yang KW, Li XR, Yang ZL, Li PZ, Wang F, Liu Y. Novel polyion complex micelles for liver-targeted delivery of diammonium glycyrrhizinate: In vitro and in vivo characterization. J Biomed Mater Res A 2009; 88A(1): 140-8.
[http://dx.doi.org/10.1002/jbm.a.31866] [PMID: 18260143]
[81]
Patil S, Ujalambkar V, Rathore A, Rojatkar S, Pokharkar V. Galangin loaded galactosylated pluronic F68 polymeric micelles for liver targeting. Biomed Pharmacother 2019; 112: 108691.
[http://dx.doi.org/10.1016/j.biopha.2019.108691] [PMID: 30798131]
[82]
Ma H, Jiang C. Dehydroascorbic acid and pGPMA dual modified pH-sensitive polymeric micelles for target treatment of liver cancer. J Pharm Sci 2018; 107(2): 595-603.
[http://dx.doi.org/10.1016/j.xphs.2017.09.011] [PMID: 29024701]
[83]
Miao J, Yang X, Shang X, et al. Hepatocyte-targeting and microenvironmentally responsive glycolipid-like polymer micelles for gene therapy of hepatitis B. Mol Ther Nucleic Acids 2021; 24: 127-39.
[http://dx.doi.org/10.1016/j.omtn.2021.02.013] [PMID: 33738144]
[84]
Hide D, Gil M, Andrade F, et al. Simvastatin-loaded polymeric micelles are more effective and less toxic than conventional statins in a pre-clinical model of advanced chronic liver disease. Nanomedicine 2020; 29: 102267.
[http://dx.doi.org/10.1016/j.nano.2020.102267] [PMID: 32681987]
[85]
Moscarella S, Giusti A, Marra F, et al. Therapeutic and antilipoperoxidant effects of silybin-phosphatidylcholine complex in chronic liver disease: Preliminary results. Curr Ther Res Clin Exp 1993; 53(1): 98-102.
[http://dx.doi.org/10.1016/S0011-393X(05)80160-2]
[86]
Patel J, Patel R, Khambholja K, Patel N. An overview of phytosomes as an advanced herbal drug delivery system. Asian J Pharm Sci 2009; 4(6): 363-71.
[87]
Yanyu X, Yunmei S, Zhipeng C, Qineng P. The preparation of silybin–phospholipid complex and the study on its pharmacokinetics in rats. Int J Pharm 2006; 307(1): 77-82.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.001] [PMID: 16300915]
[88]
Komeil IA, El-Refaie WM, Gowayed MA, et al. Oral genistein-loaded phytosomes with enhanced hepatic uptake, residence and improved therapeutic efficacy against hepatocellular carcinoma. Int J Pharm 2021; 601: 120564.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120564] [PMID: 33812970]
[89]
Aswathanarayan JB, Vittal RR. Nanoemulsions and their potential applications in food industry. Front Sustain Food Syst 2019; 3: 95.
[http://dx.doi.org/10.3389/fsufs.2019.00095]
[90]
Souto EB, Cano A, Martins-Gomes C, Coutinho TE, Zielińska A, Silva AM. Microemulsions and nanoemulsions in skin drug delivery. Bioengineering 2022; 9(4): 158.
[http://dx.doi.org/10.3390/bioengineering9040158] [PMID: 35447718]
[91]
Agame-Lagunes B, Grube-Pagola P, García-Varela R, Alexander-Aguilera A, García HS. Effect of curcumin nanoemulsions stabilized with MAG and DAG-MCFAs in a fructose-induced hepatic steatosis rat model. Pharmaceutics 2021; 13(4): 509.
[http://dx.doi.org/10.3390/pharmaceutics13040509] [PMID: 33917706]
[92]
Li J, Canseco D, Wang Y, et al. Assessing the safety of transarterial locoregional delivery of low-density lipoprotein docosahexaenoic acid nanoparticles to the rat liver. Eur J Pharm Biopharm 2021; 158: 273-83.
[http://dx.doi.org/10.1016/j.ejpb.2020.10.018] [PMID: 33242579]
[93]
Luciano-Mateo F, Cabré N, Fernández-Arroyo S, et al. Chemokine (C-C motif) ligand 2 gene ablation protects low-density lipoprotein and paraoxonase-1 double deficient mice from liver injury, oxidative stress and inflammation. Biochim Biophys Acta Mol Basis Dis 2019; 1865(6): 1555-66.
[http://dx.doi.org/10.1016/j.bbadis.2019.03.006] [PMID: 30905786]
[94]
Okusaka T, Okada S, Ishii H, et al. Transarterial chemotherapy with zinostatin stimalamer for hepatocellular carcinoma. Oncology 1998; 55(4): 276-83.
[http://dx.doi.org/10.1159/000011863] [PMID: 9663415]
[95]
Benne N, ter Braake D, Stoppelenburg AJ, Broere F. Nanoparticles for inducing antigen-specific T cell tolerance in autoimmune diseases. Front Immunol 2022; 13: 864403.
[http://dx.doi.org/10.3389/fimmu.2022.864403] [PMID: 35392079]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy