Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Remodeling of the Gut Microbiota in Colorectal Cancer and its Association with Obesity

Author(s): Nima Zafari, Mahla Velayati, Shima Mehrabadi, Sedigheh Damavandi*, Majid Khazaei, Seyed Mahdi Hassanian, Gordon A. Ferns and Amir Avan*

Volume 29, Issue 4, 2023

Published on: 23 January, 2023

Page: [256 - 271] Pages: 16

DOI: 10.2174/1381612829666230118123018

Price: $65

Abstract

The considerable burden of colorectal cancer and the increasing prevalence in young adults emphasizes the necessity of understanding its underlying mechanisms and risk factors as well as providing more effective treatments. There is growing evidence of a positive relationship between obesity and colorectal cancer. Furthermore, the prominent role of gut microbiota dysbiosis in colorectal carcinogenesis is becoming more evident. Sequencing studies demonstrate an altered composition and ecology of intestinal microorganisms in both colorectal cancer and obese patients and have pinpointed some specific bacteria as the key role players. The purpose of this review is to provide a general outlook of how gut microbiota may impact the initiation and promotion of colorectal cancer and describes probable links between gut microbiota and obesity. We also provide evidence about targeting the microbiota as an intervention strategy for both ameliorating the risk of cancer and augmenting the therapy efficacy.

Keywords: Colorectal cancer, obesity, gut microbiota, dysbiosis, probiotics, prebiotics.

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Schlesinger S, Aleksandrova K, Abar L, et al. Adult weight gain and colorectal adenomas-a systematic review and meta-analysis. Ann Oncol 2017; 28(6): 1217-29.
[http://dx.doi.org/10.1093/annonc/mdx080] [PMID: 28327995]
[3]
Ye P, Xi Y, Huang Z, Xu P. Linking obesity with colorectal cancer: Epidemiology and mechanistic insights. Cancers 2020; 12(6): 1408.
[http://dx.doi.org/10.3390/cancers12061408] [PMID: 32486076]
[4]
Khazaei M, Avan A, Zafari N, et al. Pharmacological targeting of epithelial-to-mesenchymal transition in colorectal cancer. Curr Pharm Des 2022; 28(28): 2298-311.
[http://dx.doi.org/10.2174/1381612828666220728152350] [PMID: 35909286]
[5]
Cox AJ, West NP, Cripps AW. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol 2015; 3(3): 207-15.
[http://dx.doi.org/10.1016/S2213-8587(14)70134-2] [PMID: 25066177]
[6]
Zafari N, Velayati M, Fahim M, et al. Role of gut bacterial and non-bacterial microbiota in alcohol-associated liver disease: Molecular mechanisms, biomarkers, and therapeutic prospective. Life Sci 2022; 305: 120760.
[http://dx.doi.org/10.1016/j.lfs.2022.120760] [PMID: 35787997]
[7]
Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: Current status and the future ahead. Gastroenterology 2014; 146(6): 1489-99.
[http://dx.doi.org/10.1053/j.gastro.2014.02.009] [PMID: 24560869]
[8]
Kant R, Chandra L, Verma V, et al. Gut microbiota interactions with anti-diabetic medications and pathogenesis of type 2 diabetes mellitus. World J Methodol 2022; 12(4): 246-57.
[http://dx.doi.org/10.5662/wjm.v12.i4.246] [PMID: 36159100]
[9]
Di Ciaula A, Bonfrate L, Portincasa P. The role of microbiota in nonalcoholic fatty liver disease. Eur J Clin Invest 2022; 52(7): e13768.
[http://dx.doi.org/10.1111/eci.13768] [PMID: 35294774]
[10]
Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms 2020; 8(11): 1715.
[http://dx.doi.org/10.3390/microorganisms8111715] [PMID: 33139627]
[11]
Grigor’eva IN. Gallstone disease, obesity and the firmicutes/bacteroidetes ratio as a possible biomarker of gut dysbiosis. J Pers Med 2020; 11(1): 13.
[http://dx.doi.org/10.3390/jpm11010013] [PMID: 33375615]
[12]
Dikeocha IJ, Al-Kabsi AM, Eid EEM, Hussin S, Alshawsh MA. Probiotics supplementation in patients with colorectal cancer: A systematic review of randomized controlled trials. Nutr Rev 2021; 80(1): 22-49.
[http://dx.doi.org/10.1093/nutrit/nuab006] [PMID: 34027974]
[13]
Wierzbicka A, Mańkowska-Wierzbicka D, Mardas M, Stelmach-Mardas M. Role of probiotics in modulating human gut microbiota populations and activities in patients with colorectal cancer-a systematic review of clinical trials. Nutrients 2021; 13(4): 1160.
[http://dx.doi.org/10.3390/nu13041160] [PMID: 33915854]
[14]
Brasiel PGA, Dutra Luquetti SCP, Peluzio MCG, Novaes RD, Gonçalves RV. Preclinical evidence of probiotics in colorectal carcinogenesis: A systematic review. Dig Dis Sci 2020; 65(11): 3197-210.
[http://dx.doi.org/10.1007/s10620-020-06062-3] [PMID: 31960202]
[15]
Koi M, Okita Y, Carethers JM. Fusobacterium nucleatum infection in colorectal cancer: Linking inflammation, DNA mismatch repair and genetic and epigenetic alterations. J Anus Rectum Colon 2018; 2(2): 37-46.
[http://dx.doi.org/10.23922/jarc.2017-055] [PMID: 30116794]
[16]
Tahara T, Yamamoto E, Suzuki H, et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res 2014; 74(5): 1311-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1865] [PMID: 24385213]
[17]
Kadosh E, Snir-Alkalay I, Venkatachalam A, et al. The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. Nature 2020; 586(7827): 133-8.
[http://dx.doi.org/10.1038/s41586-020-2541-0] [PMID: 32728212]
[18]
Tian M, Wang X, Sun J, et al. IRF3 prevents colorectal tumorigenesis via inhibiting the nuclear translocation of β-catenin. Nat Commun 2020; 11(1): 5762.
[http://dx.doi.org/10.1038/s41467-020-19627-7] [PMID: 33188184]
[19]
Pastille E, Faßnacht T, Adamczyk A, Ngo Thi Phuong N, Buer J, Westendorf AM. Inhibition of TLR4 signaling impedes tumor growth in colitis-associated colon cancer. Front Immunol 2021; 12: 669747.
[http://dx.doi.org/10.3389/fimmu.2021.669747] [PMID: 34025672]
[20]
Burgueño JF, Fritsch J, González EE, et al. Epithelial TLR4 signaling activates DUOX2 to induce microbiota-driven tumorigenesis. Gastroenterology 2021; 160(3): 797-808.e6.
[http://dx.doi.org/10.1053/j.gastro.2020.10.031] [PMID: 33127391]
[21]
Kordahi MC, Stanaway IB, Avril M, et al. Genomic and functional characterization of a mucosal symbiont involved in early-stage colorectal cancer. Cell Host Microbe 2021; 29(10): 1589-1598.e6.
[http://dx.doi.org/10.1016/j.chom.2021.08.013] [PMID: 34536346]
[22]
Li R, Zhou R, Wang H, et al. Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer. Cell Death Differ 2019; 26(11): 2447-63.
[http://dx.doi.org/10.1038/s41418-019-0312-y] [PMID: 30850734]
[23]
Kim JH, Kordahi MC, Chac D, DePaolo RW. Toll-like receptor-6 signaling prevents inflammation and impacts composition of the microbiota during inflammation-induced colorectal cancer. Cancer Prev Res 2020; 13(1): 25-40.
[http://dx.doi.org/10.1158/1940-6207.CAPR-19-0286] [PMID: 31771941]
[24]
Sittipo P, Lobionda S, Choi K, Sari IN, Kwon HY, Lee YK. Toll- like receptor 2-mediated suppression of colorectal cancer pathogenesis by polysaccharide A from Bacteroides fragilis. Front Microbiol 2018; 9: 1588.
[http://dx.doi.org/10.3389/fmicb.2018.01588] [PMID: 30065713]
[25]
Ridlon JM, Wolf PG, Gaskins HR. Taurocholic acid metabolism by gut microbes and colon cancer. Gut Microbes 2016; 7(3): 201-15.
[http://dx.doi.org/10.1080/19490976.2016.1150414] [PMID: 27003186]
[26]
Gadaleta RM, van Erpecum KJ, Oldenburg B, et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 2011; 60(4): 463-72.
[http://dx.doi.org/10.1136/gut.2010.212159] [PMID: 21242261]
[27]
Gérard P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens 2013; 3(1): 14-24.
[http://dx.doi.org/10.3390/pathogens3010014] [PMID: 25437605]
[28]
Torres J, Bao X, Iuga AC, et al. Farnesoid X receptor expression is decreased in colonic mucosa of patients with primary sclerosing cholangitis and colitis-associated neoplasia. Inflamm Bowel Dis 2013; 19(2): 275-82.
[http://dx.doi.org/10.1097/MIB.0b013e318286ff2e] [PMID: 23348121]
[29]
Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol 2018; 15(2): 111-28.
[http://dx.doi.org/10.1038/nrgastro.2017.119] [PMID: 29018272]
[30]
Cani PD, Possemiers S, Van de Wiele T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009; 58(8): 1091-103.
[http://dx.doi.org/10.1136/gut.2008.165886] [PMID: 19240062]
[31]
Larraufie P, Martin-Gallausiaux C, Lapaque N, et al. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci Rep 2018; 8(1): 74.
[http://dx.doi.org/10.1038/s41598-017-18259-0] [PMID: 29311617]
[32]
Frost G, Sleeth ML, Sahuri-Arisoylu M, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 2014; 5(1): 3611.
[http://dx.doi.org/10.1038/ncomms4611] [PMID: 24781306]
[33]
Yao H, Fan C, Lu Y, et al. Alteration of gut microbiota affects expression of adiponectin and resistin through modifying DNA methylation in high-fat diet-induced obese mice. Genes Nutr 2020; 15(1): 12.
[http://dx.doi.org/10.1186/s12263-020-00671-3] [PMID: 32586265]
[34]
Qiu X, Macchietto MG, Liu X, et al. Identification of gut microbiota and microbial metabolites regulated by an antimicrobial peptide lipocalin 2 in high fat diet-induced obesity. Int J Obes 2021; 45(1): 143-54.
[http://dx.doi.org/10.1038/s41366-020-00712-2] [PMID: 33214705]
[35]
Machate DJ, Figueiredo PS, Marcelino G, et al. Fatty acid diets: Regulation of gut microbiota composition and obesity and its related metabolic dysbiosis. Int J Mol Sci 2020; 21(11): 4093.
[http://dx.doi.org/10.3390/ijms21114093] [PMID: 32521778]
[36]
Shuwen H, Miao D, Quan Q, et al. Protective effect of the “food-microorganism-SCFAs” axis on colorectal cancer: From basic research to practical application. J Cancer Res Clin Oncol 2019; 145(9): 2169-97.
[http://dx.doi.org/10.1007/s00432-019-02997-x] [PMID: 31401674]
[37]
Tang Y, Chen Y, Jiang H, Robbins GT, Nie D. G-protein-coupled receptor for short-chain fatty acids suppresses colon cancer. Int J Cancer 2011; 128(4): 847-56.
[http://dx.doi.org/10.1002/ijc.25638] [PMID: 20979106]
[38]
Wang G, Yu Y, Wang YZ, et al. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy. J Cell Physiol 2019; 234(10): 17023-49.
[http://dx.doi.org/10.1002/jcp.28436] [PMID: 30888065]
[39]
Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA 2014; 111(6): 2247-52.
[http://dx.doi.org/10.1073/pnas.1322269111] [PMID: 24390544]
[40]
Fung KYC, Cosgrove L, Lockett T, Head R, Topping DL. A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br J Nutr 2012; 108(5): 820-31.
[http://dx.doi.org/10.1017/S0007114512001948] [PMID: 22676885]
[41]
Sivaprakasam S, Gurav A, Paschall AV, et al. An essential role of Ffar2 (Gpr43) in dietary fibre-mediated promotion of healthy composition of gut microbiota and suppression of intestinal carcinogenesis. Oncogenesis 2016; 5(6): e238.
[http://dx.doi.org/10.1038/oncsis.2016.38] [PMID: 27348268]
[42]
Pan P, Oshima K, Huang YW, et al. Loss of FFAR2 promotes colon cancer by epigenetic dysregulation of inflammation suppressors. Int J Cancer 2018; 143(4): 886-96.
[http://dx.doi.org/10.1002/ijc.31366] [PMID: 29524208]
[43]
Chen D, Jin D, Huang S, et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota. Cancer Lett 2020; 469: 456-67.
[http://dx.doi.org/10.1016/j.canlet.2019.11.019] [PMID: 31734354]
[44]
Chang SC, Shen MH, Liu CY, Pu CM, Hu JM, Huang CJ. A gut butyrate-producing bacterium Butyricicoccus pullicaecorum regulates short‑chain fatty acid transporter and receptor to reduce the progression of 1,2-dimethylhydrazine-associated colorectal cancer. Oncol Lett 2020; 20(6): 327.
[http://dx.doi.org/10.3892/ol.2020.12190] [PMID: 33101496]
[45]
Deng T, Lyon CJ, Bergin S, Caligiuri MA, Hsueh WA. Obesity, inflammation, and cancer. Annu Rev Pathol 2016; 11(1): 421-49.
[http://dx.doi.org/10.1146/annurev-pathol-012615-044359] [PMID: 27193454]
[46]
Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56(7): 1761-72.
[http://dx.doi.org/10.2337/db06-1491] [PMID: 17456850]
[47]
Davis CD. The gut microbiome and its role in obesity. Nutr Today 2016; 51(4): 167-74.
[http://dx.doi.org/10.1097/NT.0000000000000167] [PMID: 27795585]
[48]
Pendyala S, Walker JM, Holt PR. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology 2012; 142(5): 1100-1101.e2.
[http://dx.doi.org/10.1053/j.gastro.2012.01.034] [PMID: 22326433]
[49]
Lam YY, Ha CWY, Campbell CR, et al. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS One 2012; 7(3): e34233.
[http://dx.doi.org/10.1371/journal.pone.0034233] [PMID: 22457829]
[50]
Chassaing B, Raja SM, Lewis JD, Srinivasan S, Gewirtz AT. Colonic microbiota encroachment correlates with dysglycemia in humans. Cell Mol Gastroenterol Hepatol 2017; 4(2): 205-21.
[http://dx.doi.org/10.1016/j.jcmgh.2017.04.001] [PMID: 28649593]
[51]
Dingemanse C, Belzer C, van Hijum SAFT, et al. Akkermansia muciniphila and Helicobacter typhlonius modulate intestinal tumor development in mice. Carcinogenesis 2015; 36(11): 1388-96.
[http://dx.doi.org/10.1093/carcin/bgv120] [PMID: 26320104]
[52]
Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 2013; 110(22): 9066-71.
[http://dx.doi.org/10.1073/pnas.1219451110] [PMID: 23671105]
[53]
Long X, Wong CC, Tong L, et al. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity. Nat Microbiol 2019; 4(12): 2319-30.
[http://dx.doi.org/10.1038/s41564-019-0541-3] [PMID: 31501538]
[54]
Yang Y, Li L, Xu C, et al. Cross-talk between the gut microbiota and monocyte-like macrophages mediates an inflammatory response to promote colitis-associated tumourigenesis. Gut 2021; 70(8): 1495-506.
[http://dx.doi.org/10.1136/gutjnl-2020-320777] [PMID: 33122176]
[55]
Wunderlich CM, Ackermann PJ, Ostermann AL, et al. Obesity exacerbates colitis-associated cancer via IL-6-regulated macrophage polarisation and CCL-20/CCR-6-mediated lymphocyte recruitment. Nat Commun 2018; 9(1): 1646.
[http://dx.doi.org/10.1038/s41467-018-03773-0] [PMID: 29695802]
[56]
Rosser EC, Oleinika K, Tonon S, et al. Regulatory B cells are induced by gut microbiota-driven interleukin-1β and interleukin-6 production. Nat Med 2014; 20(11): 1334-9.
[http://dx.doi.org/10.1038/nm.3680] [PMID: 25326801]
[57]
Sánchez-Alcoholado L, Ordóñez R, Otero A, et al. Gut microbiota-mediated inflammation and gut permeability in patients with obesity and colorectal cancer. Int J Mol Sci 2020; 21(18): 6782.
[http://dx.doi.org/10.3390/ijms21186782] [PMID: 32947866]
[58]
Pfalzer AC, Nesbeth PDC, Parnell LD, et al. Diet and genetically-induced obesity differentially affect the fecal microbiome and metabolome in Apc1638N mice. PLoS One 2015; 10(8): e0135758.
[http://dx.doi.org/10.1371/journal.pone.0135758] [PMID: 26284788]
[59]
Shoji M, Sasaki Y, Abe Y, et al. Characteristics of the gut microbiome profile in obese patients with colorectal cancer. JGH Open 2021; 5(4): 498-507.
[http://dx.doi.org/10.1002/jgh3.12529] [PMID: 33860101]
[60]
Greathouse KL, White JR, Padgett RN, et al. Gut microbiome meta-analysis reveals dysbiosis is independent of body mass index in predicting risk of obesity-associated CRC. BMJ Open Gastroenterol 2019; 6(1): e000247.
[http://dx.doi.org/10.1136/bmjgast-2018-000247] [PMID: 30899534]
[61]
Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Human gut microbes associated with obesity. Nature 2006; 444(7122): 1022-3.
[http://dx.doi.org/10.1038/4441022a] [PMID: 17183309]
[62]
Obanda DN, Keenan MJ, Page R, et al. Gut microbiota composition and predicted microbial metabolic pathways of obesity prone and obesity resistant outbred sprague-dawley CD rats may account for differences in their phenotype. Front Nutr 2021; 8: 746515.
[http://dx.doi.org/10.3389/fnut.2021.746515] [PMID: 34950687]
[63]
Liu R, Hong J, Xu X, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med 2017; 23(7): 859-68.
[http://dx.doi.org/10.1038/nm.4358] [PMID: 28628112]
[64]
Curtasu MV, Tafintseva V, Bendiks ZA, et al. Obesity-related metabolome and gut microbiota profiles of Juvenile Göttingen Minipigs-long-term intake of fructose and resistant starch. Metabolites 2020; 10(11): 456.
[http://dx.doi.org/10.3390/metabo10110456] [PMID: 33198236]
[65]
Lin H, An Y, Tang H, Wang Y. Alterations of bile acids and gut microbiota in obesity induced by high fat diet in rat model. J Agric Food Chem 2019; 67(13): 3624-32.
[http://dx.doi.org/10.1021/acs.jafc.9b00249] [PMID: 30832480]
[66]
Feng Q, Liang S, Jia H, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun 2015; 6(1): 6528.
[http://dx.doi.org/10.1038/ncomms7528] [PMID: 25758642]
[67]
Wang J, Wang Y, Li Z, Gao X, Huang D. Global analysis of microbiota signatures in four major types of gastrointestinal cancer. Front Oncol 2021; 11: 685641.
[http://dx.doi.org/10.3389/fonc.2021.685641] [PMID: 34422640]
[68]
Liu Y, Li X, Yang Y, et al. Exploring gut microbiota in patients with colorectal disease based on 16S rRNA gene amplicon and shallow metagenomic sequencing. Front Mol Biosci 2021; 8: 703638.
[http://dx.doi.org/10.3389/fmolb.2021.703638] [PMID: 34307461]
[69]
Aprile F, Bruno G, Palma R, et al. Microbiota alterations in precancerous colon lesions: A systematic review. Cancers 2021; 13(12): 3061.
[http://dx.doi.org/10.3390/cancers13123061] [PMID: 34205378]
[70]
Yachida S, Mizutani S, Shiroma H, et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat Med 2019; 25(6): 968-76.
[http://dx.doi.org/10.1038/s41591-019-0458-7] [PMID: 31171880]
[71]
Saito K, Koido S, Odamaki T, et al. Metagenomic analyses of the gut microbiota associated with colorectal adenoma. PLoS One 2019; 14(2): e0212406.
[http://dx.doi.org/10.1371/journal.pone.0212406] [PMID: 30794590]
[72]
Dai Z, Coker OO, Nakatsu G, et al. Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome 2018; 6(1): 70.
[http://dx.doi.org/10.1186/s40168-018-0451-2] [PMID: 29642940]
[73]
Thomas AM, Manghi P, Asnicar F, et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat Med 2019; 25(4): 667-78.
[http://dx.doi.org/10.1038/s41591-019-0405-7] [PMID: 30936548]
[74]
Nakatsu G, Li X, Zhou H, et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat Commun 2015; 6(1): 8727.
[http://dx.doi.org/10.1038/ncomms9727] [PMID: 26515465]
[75]
Xie YH, Gao QY, Cai GX, et al. Fecal Clostridium symbiosum for noninvasive detection of early and advanced colorectal cancer: Test and validation studies. EBioMedicine 2017; 25: 32-40.
[http://dx.doi.org/10.1016/j.ebiom.2017.10.005] [PMID: 29033369]
[76]
Yi Y, Shen L, Shi W, et al. Gut microbiome components predict response to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer: A prospective, longitudinal study. Clin Cancer Res 2021; 27(5): 1329-40.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-3445] [PMID: 33298472]
[77]
Serna G, Ruiz-Pace F, Hernando J, et al. Fusobacterium nucleatum persistence and risk of recurrence after preoperative treatment in locally advanced rectal cancer. Ann Oncol 2020; 31(10): 1366-75.
[http://dx.doi.org/10.1016/j.annonc.2020.06.003] [PMID: 32569727]
[78]
Cremonesi E, Governa V, Garzon JFG, et al. Gut microbiota modulate T cell trafficking into human colorectal cancer. Gut 2018; 67(11): 1984-94.
[http://dx.doi.org/10.1136/gutjnl-2016-313498] [PMID: 29437871]
[79]
Roberti MP, Yonekura S, Duong CPM, et al. Chemotherapy-induced ileal crypt apoptosis and the ileal microbiome shape immunosurveillance and prognosis of proximal colon cancer. Nat Med 2020; 26(6): 919-31.
[http://dx.doi.org/10.1038/s41591-020-0882-8] [PMID: 32451498]
[80]
Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 2017; 170(3): 548-563.e16.
[http://dx.doi.org/10.1016/j.cell.2017.07.008] [PMID: 28753429]
[81]
Zhuo Q, Yu B, Zhou J, et al. Lysates of Lactobacillus acidophilus combined with CTLA-4-blocking antibodies enhance antitumor immunity in a mouse colon cancer model. Sci Rep 2019; 9(1): 20128.
[http://dx.doi.org/10.1038/s41598-019-56661-y] [PMID: 31882868]
[82]
Shi L, Sheng J, Chen G, et al. Combining IL-2-based immunotherapy with commensal probiotics produces enhanced antitumor immune response and tumor clearance. J Immunother Cancer 2020; 8(2): e000973.
[http://dx.doi.org/10.1136/jitc-2020-000973] [PMID: 33028692]
[83]
Hajjar R, Santos MM, Dagbert F, Richard CS. Current evidence on the relation between gut microbiota and intestinal anastomotic leak in colorectal surgery. Am J Surg 2019; 218(5): 1000-7.
[http://dx.doi.org/10.1016/j.amjsurg.2019.07.001] [PMID: 31320106]
[84]
Kotzampassi K, Stavrou G, Damoraki G, et al. A four-probiotics regimen reduces postoperative complications after colorectal surgery: A randomized, double-blind, placebo-controlled study. World J Surg 2015; 39(11): 2776-83.
[http://dx.doi.org/10.1007/s00268-015-3071-z] [PMID: 25894405]
[85]
Liu ZH, Huang MJ, Zhang XW, et al. The effects of perioperative probiotic treatment on serum zonulin concentration and subsequent postoperative infectious complications after colorectal cancer surgery: A double-center and double-blind randomized clinical trial. Am J Clin Nutr 2013; 97(1): 117-26.
[http://dx.doi.org/10.3945/ajcn.112.040949] [PMID: 23235200]
[86]
Komatsu S, Sakamoto E, Norimizu S, et al. Efficacy of perioperative synbiotics treatment for the prevention of surgical site infection after laparoscopic colorectal surgery: A randomized controlled trial. Surg Today 2016; 46(4): 479-90.
[http://dx.doi.org/10.1007/s00595-015-1178-3] [PMID: 25933911]
[87]
Osto M, Abegg K, Bueter M, le Roux CW, Cani PD, Lutz TA. Roux-en-Y gastric bypass surgery in rats alters gut microbiota profile along the intestine. Physiol Behav 2013; 119: 92-6.
[http://dx.doi.org/10.1016/j.physbeh.2013.06.008] [PMID: 23770330]
[88]
Liou AP, Paziuk M, Luevano JM Jr, Machineni S, Turnbaugh PJ, Kaplan LM. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med 2013; 5(178): 178ra41.
[http://dx.doi.org/10.1126/scitranslmed.3005687] [PMID: 23536013]
[89]
Derogar M, Hull MA, Kant P, Östlund M, Lu Y, Lagergren J. Increased risk of colorectal cancer after obesity surgery. Ann Surg 2013; 258(6): 983-8.
[http://dx.doi.org/10.1097/SLA.0b013e318288463a] [PMID: 23470581]
[90]
Woodard GA, Encarnacion B, Downey JR, et al. Probiotics improve outcomes after Roux-en-Y gastric bypass surgery: A prospective randomized trial. J Gastrointest Surg 2009; 13(7): 1198-204.
[http://dx.doi.org/10.1007/s11605-009-0891-x] [PMID: 19381735]
[91]
Chen JC, Lee WJ, Tsou JJ, Liu TP, Tsai PL. Effect of probiotics on postoperative quality of gastric bypass surgeries: A prospective randomized trial. Surg Obes Relat Dis 2016; 12(1): 57-61.
[http://dx.doi.org/10.1016/j.soard.2015.07.010] [PMID: 26499352]
[92]
Wagner NRF, Ramos MRZ, de Oliveira Carlos L, et al. Effects of probiotics supplementation on gastrointestinal symptoms and SIBO after Roux-en-Y Gastric Bypass: A prospective, randomized, double-blind, placebo-controlled trial. Obes Surg 2021; 31(1): 143-50.
[http://dx.doi.org/10.1007/s11695-020-04900-x] [PMID: 32780258]
[93]
Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 2017; 14(8): 491-502.
[http://dx.doi.org/10.1038/nrgastro.2017.75] [PMID: 28611480]
[94]
Fei Y, Wang Y, Pang Y, et al. Xylooligosaccharide modulates gut microbiota and alleviates colonic inflammation caused by high fat diet induced obesity. Front Physiol 2020; 10: 1601.
[http://dx.doi.org/10.3389/fphys.2019.01601] [PMID: 32038285]
[95]
Jedinak A, Dudhgaonkar S, Sliva D. Activated macrophages induce metastatic behavior of colon cancer cells. Immunobiology 2010; 215(3): 242-9.
[http://dx.doi.org/10.1016/j.imbio.2009.03.004] [PMID: 19457576]
[96]
Kang JC, Chen JS, Lee CH, Chang JJ, Shieh YS. Intratumoral macrophage counts correlate with tumor progression in colorectal cancer. J Surg Oncol 2010; 102(3): 242-8.
[http://dx.doi.org/10.1002/jso.21617] [PMID: 20740582]
[97]
Bader JE, Enos RT, Velázquez KT, et al. Macrophage depletion using clodronate liposomes decreases tumorigenesis and alters gut microbiota in the AOM/DSS mouse model of colon cancer. Am J Physiol Gastrointest Liver Physiol 2018; 314(1): G22-31.
[http://dx.doi.org/10.1152/ajpgi.00229.2017] [PMID: 29025731]
[98]
Brennan CA, Nakatsu G, Gallini Comeau CA, et al. Aspirin modulation of the colorectal cancer-associated microbe Fusobacterium nucleatum. MBio 2021; 12(2): e00547-21.
[http://dx.doi.org/10.1128/mBio.00547-21] [PMID: 33824205]
[99]
Zhao R, Coker OO, Wu J, et al. Aspirin reduces colorectal tumor development in mice and gut microbes reduce its bioavailability and chemopreventive effects. Gastroenterology 2020; 159(3): 969-983.e4.
[http://dx.doi.org/10.1053/j.gastro.2020.05.004] [PMID: 32387495]
[100]
Song CH, Kim N, Nam RH, Choi SI, Lee HN, Surh YJ. 17β-Estradiol supplementation changes gut microbiota diversity in intact and colorectal cancer-induced ICR male mice. Sci Rep 2020; 10(1): 12283.
[http://dx.doi.org/10.1038/s41598-020-69112-w] [PMID: 32704056]
[101]
Mudd AM, Gu T, Munagala R, Jeyabalan J, Egilmez NK, Gupta RC. Chemoprevention of colorectal cancer by anthocyanidins and mitigation of metabolic shifts induced by dysbiosis of the gut microbiome. Cancer Prev Res 2020; 13(1): 41-52.
[http://dx.doi.org/10.1158/1940-6207.CAPR-19-0362] [PMID: 31796466]
[102]
Terasaki M, Uehara O, Ogasa S, et al. Alteration of fecal microbiota by fucoxanthin results in prevention of colorectal cancer in AOM/DSS mice. Carcinogenesis 2021; 42(2): 210-9.
[http://dx.doi.org/10.1093/carcin/bgaa100] [PMID: 32940665]
[103]
Zhang H, Lan M, Cui G, Zhu W. The influence of caerulomycin A on the intestinal microbiota in SD rats. Mar Drugs 2020; 18(5): 277.
[http://dx.doi.org/10.3390/md18050277] [PMID: 32456087]
[104]
Ji X, Hou C, Zhang X, et al. Microbiome-metabolomic analysis of the impact of Zizyphus jujuba cv. Muzao polysaccharides consumption on colorectal cancer mice fecal microbiota and metabolites. Int J Biol Macromol 2019; 131: 1067-76.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.175] [PMID: 30926487]
[105]
Ji X, Hou C, Gao Y, Xue Y, Yan Y, Guo X. Metagenomic analysis of gut microbiota modulatory effects of jujube (Ziziphus jujuba Mill.) polysaccharides in a colorectal cancer mouse model. Food Funct 2020; 11(1): 163-73.
[http://dx.doi.org/10.1039/C9FO02171J] [PMID: 31830158]
[106]
Chen H, Zhang F, Zhang J, Zhang X, Guo Y, Yao Q. A holistic view of berberine inhibiting intestinal carcinogenesis in conventional mice based on microbiome-metabolomics analysis. Front Immunol 2020; 11: 588079.
[http://dx.doi.org/10.3389/fimmu.2020.588079] [PMID: 33072135]
[107]
Khazaei M, Avan A, Zafari N, et al. Metabolic pathways regulating colorectal cancer: A potential therapeutic approach. Curr Pharm Des 2022; 28(36): 2995-3009.
[http://dx.doi.org/10.2174/1381612828666220922111342] [PMID: 36154599]
[108]
Hill C, Guarner F, Reid G, et al. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 2014; 11(8): 506-14.
[http://dx.doi.org/10.1038/nrgastro.2014.66] [PMID: 24912386]
[109]
Molska M, Reguła J. Potential mechanisms of probiotics action in the prevention and treatment of colorectal cancer. Nutrients 2019; 11(10): 2453.
[http://dx.doi.org/10.3390/nu11102453] [PMID: 31615096]
[110]
Delcenserie V, Martel D, Lamoureux M, Amiot J, Boutin Y, Roy D. Immunomodulatory effects of probiotics in the intestinal tract. Curr Issues Mol Biol 2008; 10(1-2): 37-54.
[PMID: 18525105]
[111]
Zagato E, Pozzi C, Bertocchi A, et al. Endogenous murine microbiota member Faecalibaculum rodentium and its human homologue protect from intestinal tumour growth. Nat Microbiol 2020; 5(3): 511-24.
[http://dx.doi.org/10.1038/s41564-019-0649-5] [PMID: 31988379]
[112]
Li Q, Hu W, Liu WX, et al. Streptococcus thermophilus inhibits colorectal tumorigenesis through secreting β-galactosidase. Gastroenterology 2021; 160(4): 1179-1193.e14.
[http://dx.doi.org/10.1053/j.gastro.2020.09.003] [PMID: 32920015]
[113]
Wang H, Wang L, Xie Z, et al. Nitric oxide (NO) and NO synthases (NOS)-based targeted therapy for colon cancer. Cancers 2020; 12(7): 1881.
[http://dx.doi.org/10.3390/cancers12071881] [PMID: 32668616]
[114]
Choi JH, Moon CM, Shin TS, et al. Lactobacillus paracasei-derived extracellular vesicles attenuate the intestinal inflammatory response by augmenting the endoplasmic reticulum stress pathway. Exp Mol Med 2020; 52(3): 423-37.
[http://dx.doi.org/10.1038/s12276-019-0359-3] [PMID: 32123288]
[115]
Chang JH, Shim YY, Cha SK, Reaney MJT, Chee KM. Effect of Lactobacillus acidophilus KFRI342 on the development of chemically induced precancerous growths in the rat colon. J Med Microbiol 2012; 61(3): 361-8.
[http://dx.doi.org/10.1099/jmm.0.035154-0] [PMID: 22034161]
[116]
Kahouli I, Malhotra M, Westfall S, Alaoui-Jamali MA, Prakash S. Design and validation of an orally administrated active L. fermentum, L. acidophilus probiotic formulation using colorectal cancer Apc Min/+ mouse model. Appl Microbiol Biotechnol 2017; 101(5): 1999-2019.
[http://dx.doi.org/10.1007/s00253-016-7885-x] [PMID: 27837314]
[117]
Zhang M, Fan X, Fang B, Zhu C, Zhu J, Ren F. Effects of Lactobacillus salivarius Ren on cancer prevention and intestinal microbiota in 1, 2-dimethylhydrazine-induced rat model. J Microbiol 2015; 53(6): 398-405.
[http://dx.doi.org/10.1007/s12275-015-5046-z] [PMID: 26025172]
[118]
Dong Y, Zhu J, Zhang M, Ge S, Zhao L. Probiotic Lactobacillus salivarius Ren prevent dimethylhydrazine-induced colorectal cancer through protein kinase B inhibition. Appl Microbiol Biotechnol 2020; 104(17): 7377-89.
[http://dx.doi.org/10.1007/s00253-020-10775-w] [PMID: 32666185]
[119]
Gamallat Y, Meyiah A, Kuugbee ED, et al. Lactobacillus rhamnosus induced epithelial cell apoptosis, ameliorates inflammation and prevents colon cancer development in an animal model. Biomed Pharmacother 2016; 83: 536-41.
[http://dx.doi.org/10.1016/j.biopha.2016.07.001] [PMID: 27447122]
[120]
Lopez M, Li N, Kataria J, Russell M, Neu J. Live and ultraviolet-inactivated Lactobacillus rhamnosus GG decrease flagellin-induced interleukin-8 production in Caco-2 cells. J Nutr 2008; 138(11): 2264-8.
[http://dx.doi.org/10.3945/jn.108.093658] [PMID: 18936229]
[121]
Xu H, Hiraishi K, Kurahara LH, et al. Inhibitory effects of breast milk-derived Lactobacillus rhamnosus probio-M9 on colitis-associated carcinogenesis by restoration of the gut microbiota in a mouse model. Nutrients 2021; 13(4): 1143.
[http://dx.doi.org/10.3390/nu13041143] [PMID: 33808480]
[122]
Greenhalgh K, Ramiro-Garcia J, Heinken A, et al. Integrated in vitro and in silico modeling delineates the molecular effects of a synbiotic regimen on colorectal-cancer-derived cells. Cell Rep 2019; 27(5): 1621-1632.e9.
[http://dx.doi.org/10.1016/j.celrep.2019.04.001] [PMID: 31042485]
[123]
Andersen V, Vogel LK, Kopp TI, et al. High ABCC2 and low ABCG2 gene expression are early events in the colorectal adenoma-carcinoma sequence. PLoS One 2015; 10(3): e0119255.
[http://dx.doi.org/10.1371/journal.pone.0119255] [PMID: 25793771]
[124]
Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat Rev Cancer 2002; 2(1): 48-58.
[http://dx.doi.org/10.1038/nrc706] [PMID: 11902585]
[125]
Oh NS, Lee JY, Kim YT, Kim SH, Lee JH. Cancer-protective effect of a synbiotic combination between Lactobacillus gasseri 505 and a Cudrania tricuspidata leaf extract on colitis-associated colorectal cancer. Gut Microbes 2020; 12(1): 1785803.
[http://dx.doi.org/10.1080/19490976.2020.1785803] [PMID: 32663105]
[126]
Benito I, Encío IJ, Milagro FI, et al. Microencapsulated Bifidobacterium bifidum and Lactobacillus gasseri in combination with quercetin inhibit colorectal cancer development in ApcMin/+ Mice. Int J Mol Sci 2021; 22(9): 4906.
[http://dx.doi.org/10.3390/ijms22094906] [PMID: 34063173]
[127]
Moniri NH, Farah Q. Short-chain free-fatty acid G protein-coupled receptors in colon cancer. Biochem Pharmacol 2021; 186: 114483.
[http://dx.doi.org/10.1016/j.bcp.2021.114483] [PMID: 33631190]
[128]
Zheng DW, Li RQ, An JX, et al. Prebiotics-encapsulated probiotic spores regulate gut microbiota and suppress colon cancer. Adv Mater 2020; 32(45): 2004529.
[http://dx.doi.org/10.1002/adma.202004529] [PMID: 33006175]
[129]
Dai C, Zheng CQ, Meng F, Zhou Z, Sang L, Jiang M. VSL#3 probiotics exerts the anti-inflammatory activity via PI3k/Akt and NF-κB pathway in rat model of DSS-induced colitis. Mol Cell Biochem 2013; 374(1-2): 1-11.
[http://dx.doi.org/10.1007/s11010-012-1488-3] [PMID: 23271629]
[130]
Cruz BCS, Sousa Moraes LF, De Nadai Marcon L, et al. Evaluation of the efficacy of probiotic VSL#3 and synbiotic VSL#3 and yacon-based product in reducing oxidative stress and intestinal permeability in mice induced to colorectal carcinogenesis. J Food Sci 2021; 86(4): 1448-62.
[http://dx.doi.org/10.1111/1750-3841.15690] [PMID: 33761141]
[131]
dos Santos Cruz BC, da Silva Duarte V, Giacomini A, et al. Synbiotic VSL#3 and yacon-based product modulate the intestinal microbiota and prevent the development of pre-neoplastic lesions in a colorectal carcinogenesis model. Appl Microbiol Biotechnol 2020; 104(20): 8837-57.
[http://dx.doi.org/10.1007/s00253-020-10863-x] [PMID: 32902682]
[132]
Cruz BCS, Conceição LL, Mendes TAO, Ferreira CLLF, Gonçalves RV, Peluzio MCG. Use of the synbiotic VSL#3 and yacon-based concentrate attenuates intestinal damage and reduces the abundance of Candidatus saccharimonas in a colitis-associated carcinogenesis model. Food Res Int 2020; 137: 109721.
[http://dx.doi.org/10.1016/j.foodres.2020.109721] [PMID: 33233290]
[133]
Prizment AE, Staley C, Onyeaghala GC, et al. Randomised clinical study: oral aspirin 325 mg daily vs. placebo alters gut microbial composition and bacterial taxa associated with colorectal cancer risk. Aliment Pharmacol Ther 2020; 52(6): 976-87.
[http://dx.doi.org/10.1111/apt.16013] [PMID: 32770859]
[134]
Hibberd AA, Lyra A, Ouwehand AC, et al. Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. BMJ Open Gastroenterol 2017; 4(1): e000145.
[http://dx.doi.org/10.1136/bmjgast-2017-000145] [PMID: 28944067]
[135]
So WKW, Chan JYW, Law BMH, et al. Effects of a rice bran dietary intervention on the composition of the intestinal microbiota of adults with a high risk of colorectal cancer: A pilot randomised- controlled trial. Nutrients 2021; 13(2): 526.
[http://dx.doi.org/10.3390/nu13020526] [PMID: 33561964]
[136]
Chen YX, Gao QY, Zou TH, et al. Berberine versus placebo for the prevention of recurrence of colorectal adenoma: A multicentre, double-blinded, randomised controlled study. Lancet Gastroenterol Hepatol 2020; 5(3): 267-75.
[http://dx.doi.org/10.1016/S2468-1253(19)30409-1] [PMID: 31926918]
[137]
Limburg PJ, Mahoney MR, Ziegler KLA, et al. Randomized phase II trial of sulindac, atorvastatin, and prebiotic dietary fiber for colorectal cancer chemoprevention. Cancer Prev Res 2011; 4(2): 259-69.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0215] [PMID: 21209397]
[138]
Pearson T, Caporaso JG, Yellowhair M, et al. Effects of ursodeoxycholic acid on the gut microbiome and colorectal adenoma development. Cancer Med 2019; 8(2): 617-28.
[http://dx.doi.org/10.1002/cam4.1965] [PMID: 30652422]
[139]
Rafter J, Bennett M, Caderni G, et al. Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am J Clin Nutr 2007; 85(2): 488-96.
[http://dx.doi.org/10.1093/ajcn/85.2.488] [PMID: 17284748]
[140]
do Carmo MAV, Fidelis M, de Oliveira PF, et al. Ellagitannins from jabuticaba (Myrciaria jaboticaba) seeds attenuated inflammation, oxidative stress, aberrant crypt foci, and modulated gut microbiota in rats with 1,2 dimethyl hydrazine-induced colon carcinogenesis. Food Chem Toxicol 2021; 154: 112287.
[http://dx.doi.org/10.1016/j.fct.2021.112287] [PMID: 34058233]
[141]
Ma X, Zhou Z, Zhang X, et al. Sodium butyrate modulates gut microbiota and immune response in colorectal cancer liver metastatic mice. Cell Biol Toxicol 2020; 36(5): 509-15.
[http://dx.doi.org/10.1007/s10565-020-09518-4] [PMID: 32172331]
[142]
Jiang F, Liu M, Wang H, et al. Wu Mei Wan attenuates CAC by regulating gut microbiota and the NF-kB/IL6-STAT3 signaling pathway. Biomed Pharmacother 2020; 125: 109982.
[http://dx.doi.org/10.1016/j.biopha.2020.109982] [PMID: 32119646]
[143]
Gong Y, Dong R, Gao X, et al. Neohesperidin prevents colorectal tumorigenesis by altering the gut microbiota. Pharmacol Res 2019; 148: 104460.
[http://dx.doi.org/10.1016/j.phrs.2019.104460] [PMID: 31560944]
[144]
Lu JF, Zhu MQ, Zhang H, et al. Neohesperidin attenuates obesity by altering the composition of the gut microbiota in high-fat diet-fed mice. FASEB J 2020; 34(9): 12053-71.
[http://dx.doi.org/10.1096/fj.201903102RR] [PMID: 32729978]
[145]
Chen L, Chen MY, Shao L, et al. Panax notoginseng saponins prevent colitis-associated colorectal cancer development: the role of gut microbiota. Chin J Nat Med 2020; 18(7): 500-7.
[http://dx.doi.org/10.1016/S1875-5364(20)30060-1] [PMID: 32616190]
[146]
Huang X, Hong X, Wang J, et al. Metformin elicits antitumour effect by modulation of the gut microbiota and rescues Fusobacterium nucleatum-induced colorectal tumourigenesis. EBioMedicine 2020; 61: 103037.
[http://dx.doi.org/10.1016/j.ebiom.2020.103037] [PMID: 33039709]
[147]
Li Y, Li ZX, Xie CY, et al. Gegen Qinlian decoction enhances immunity and protects intestinal barrier function in colorectal cancer patients via gut microbiota. World J Gastroenterol 2020; 26(48): 7633-51.
[http://dx.doi.org/10.3748/wjg.v26.i48.7633] [PMID: 33505141]
[148]
Xue M, Liang H, Ji X, et al. Effects of fucoidan on gut flora and tumor prevention in 1,2-dimethylhydrazine-induced colorectal carcinogenesis. J Nutr Biochem 2020; 82: 108396.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108396] [PMID: 32388163]
[149]
Zhu L, Zhang L, Zhang J, et al. Evodiamine inhibits high-fat diet-induced colitis-associated cancer in mice through regulating the gut microbiota. J Integr Med 2021; 19(1): 56-65.
[http://dx.doi.org/10.1016/j.joim.2020.11.001] [PMID: 33277208]
[150]
Zhu HC, Jia XK, Fan Y, et al. Alisol B 23-acetate ameliorates azoxymethane/dextran sodium sulfate-induced male murine colitis-associated colorectal cancer via modulating the composition of gut microbiota and improving intestinal barrier. Front Cell Infect Microbiol 2021; 11: 640225.
[http://dx.doi.org/10.3389/fcimb.2021.640225] [PMID: 33996624]
[151]
Li Q, Chen C, Liu C, et al. The effects of cellulose on AOM/DSS-Treated C57BL/6 colorectal cancer mice by changing intestinal flora composition and inflammatory factors. Nutr Cancer 2021; 73(3): 502-13.
[http://dx.doi.org/10.1080/01635581.2020.1756355] [PMID: 32351134]
[152]
Cho HW, Rhee KJ, Eom YB. Zerumbone restores gut microbiota composition in ETBF colonized AOM/DSS mice. J Microbiol Biotechnol 2020; 30(11): 1640-50.
[http://dx.doi.org/10.4014/jmb.2006.06034] [PMID: 32958727]
[153]
Yang C, Zhao Y, Im S, Nakatsu C, Jones-Hall Y, Jiang Q. Vitamin E delta-tocotrienol and metabolite 13′-carboxychromanol inhibit colitis-associated colon tumorigenesis and modulate gut microbiota in mice. J Nutr Biochem 2021; 89: 108567.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108567] [PMID: 33347911]
[154]
Khan I, Huang G, Li X, et al. Mushroom polysaccharides and jiaogulan saponins exert cancer preventive effects by shaping the gut microbiota and microenvironment in Apc mice. Pharmacol Res 2019; 148: 104448.
[http://dx.doi.org/10.1016/j.phrs.2019.104448] [PMID: 31499195]
[155]
Guo C, Guo D, Fang L, et al. Ganoderma lucidum polysaccharide modulates gut microbiota and immune cell function to inhibit inflammation and tumorigenesis in colon. Carbohydr Polym 2021; 267: 118231.
[http://dx.doi.org/10.1016/j.carbpol.2021.118231] [PMID: 34119183]
[156]
Chen L, Jiang B, Zhong C, et al. Chemoprevention of colorectal cancer by black raspberry anthocyanins involved the modulation of gut microbiota and SFRP2 demethylation. Carcinogenesis 2018; 39(3): 471-81.
[http://dx.doi.org/10.1093/carcin/bgy009] [PMID: 29361151]
[157]
Guo M, Li Z. Polysaccharides isolated from Nostoc commune vaucher inhibit colitis-associated colon tumorigenesis in mice and modulate gut microbiota. Food Funct 2019; 10(10): 6873-81.
[http://dx.doi.org/10.1039/C9FO00296K] [PMID: 31584586]
[158]
Oh BS, Choi WJ, Kim JS, et al. Cell-free supernatant of Odoribacter splanchnicus isolated from human feces exhibits anti-colorectal cancer activity. Front Microbiol 2021; 12: 736343.
[http://dx.doi.org/10.3389/fmicb.2021.736343] [PMID: 34867852]
[159]
Tiptiri-Kourpeti A, Spyridopoulou K, Santarmaki V, et al. Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of trail in colon carcinoma cells. PLoS One 2016; 11(2): e0147960.
[http://dx.doi.org/10.1371/journal.pone.0147960] [PMID: 26849051]
[160]
Gosai V, ambalam P, Raman M, et al. Protective effect of Lactobacillus rhamnosus 231 against N-Methyl-N′-nitro-N-nitrosoguanidine in animal model. Gut Microbes 2011; 2(6): 319-25.
[http://dx.doi.org/10.4161/gmic.18755] [PMID: 22157237]
[161]
Wang T, Zhang L, Wang P, et al. Lactobacillus coryniformis MXJ32 administration ameliorates azoxymethane/dextran sulfate sodium-induced colitis-associated colorectal cancer via reshaping intestinal microenvironment and alleviating inflammatory response. Eur J Nutr 2021.
[PMID: 34185157]
[162]
Silveira DSC, Veronez LC, Lopes-Júnior LC, Anatriello E, Brunaldi MO, Pereira-da-Silva G. Lactobacillus bulgaricus inhibits colitis-associated cancer via a negative regulation of intestinal inflammation in azoxymethane/dextran sodium sulfate model. World J Gastroenterol 2020; 26(43): 6782-94.
[http://dx.doi.org/10.3748/wjg.v26.i43.6782] [PMID: 33268961]
[163]
Rong J, Liu S, Hu C, Liu C. Single probiotic supplement suppresses colitis-associated colorectal tumorigenesis by modulating inflammatory development and microbial homeostasis. J Gastroenterol Hepatol 2019; 34(7): 1182-92.
[http://dx.doi.org/10.1111/jgh.14516] [PMID: 30357910]
[164]
Yue Y, Ye K, Lu J, et al. Probiotic strain Lactobacillus plantarum YYC-3 prevents colon cancer in mice by regulating the tumour microenvironment. Biomed Pharmacother 2020; 127: 110159.
[http://dx.doi.org/10.1016/j.biopha.2020.110159] [PMID: 32353824]
[165]
Wang Q, Wang K, Wu W, et al. Administration of Bifidobacterium bifidum CGMCC 15068 modulates gut microbiota and metabolome in azoxymethane (AOM)/dextran sulphate sodium (DSS)-induced colitis-associated colon cancer (CAC) in mice. Appl Microbiol Biotechnol 2020; 104(13): 5915-28.
[http://dx.doi.org/10.1007/s00253-020-10621-z] [PMID: 32367312]
[166]
Chung IC, OuYang CN, Yuan SN, et al. Pretreatment with a heat-killed probiotic modulates the NLRP3 inflammasome and attenuates colitis-associated colorectal cancer in mice. Nutrients 2019; 11(3): 516.
[http://dx.doi.org/10.3390/nu11030516] [PMID: 30823406]
[167]
Park E, Jeon GI, Park JS, Paik HD. A probiotic strain of Bacillus polyfermenticus reduces DMH induced precancerous lesions in F344 male rat. Biol Pharm Bull 2007; 30(3): 569-74.
[http://dx.doi.org/10.1248/bpb.30.569] [PMID: 17329858]
[168]
Chung Y, Ryu Y, An BC, et al. A synthetic probiotic engineered for colorectal cancer therapy modulates gut microbiota. Microbiome 2021; 9(1): 122.
[http://dx.doi.org/10.1186/s40168-021-01071-4] [PMID: 34039418]
[169]
Song H, Wang W, Shen B, et al. Pretreatment with probiotic Bifico ameliorates colitis-associated cancer in mice: Transcriptome and gut flora profiling. Cancer Sci 2018; 109(3): 666-77.
[http://dx.doi.org/10.1111/cas.13497] [PMID: 29288512]
[170]
Molan AL, Liu Z, Plimmer G. Evaluation of the effect of blackcurrant products on gut microbiota and on markers of risk for colon cancer in humans. Phytother Res 2014; 28(3): 416-22.
[http://dx.doi.org/10.1002/ptr.5009] [PMID: 23674271]
[171]
Brown DG, Borresen EC, Brown RJ, Ryan EP. Heat-stabilised rice bran consumption by colorectal cancer survivors modulates stool metabolite profiles and metabolic networks: A randomised controlled trial. Br J Nutr 2017; 117(9): 1244-56.
[http://dx.doi.org/10.1017/S0007114517001106] [PMID: 28643618]
[172]
Sun L, Yan Y, Chen D, Yang Y. Quxie capsule modulating gut microbiome and its association with T cell regulation in patients with metastatic colorectal cancer: Result from a randomized controlled clinical trial. Integr Cancer Ther 2020; 19
[http://dx.doi.org/10.1177/1534735420969820] [PMID: 33243018]
[173]
Gianotti L, Morelli L, Galbiati F, et al. A randomized double-blind trial on perioperative administration of probiotics in colorectal cancer patients. World J Gastroenterol 2010; 16(2): 167-75.
[http://dx.doi.org/10.3748/wjg.v16.i2.167] [PMID: 20066735]
[174]
Worthley DL, Le Leu RK, Whitehall VL, et al. A human, double-blind, placebo-controlled, crossover trial of prebiotic, probiotic, and synbiotic supplementation: Effects on luminal, inflammatory, epigenetic, and epithelial biomarkers of colorectal cancer. Am J Clin Nutr 2009; 90(3): 578-86.
[http://dx.doi.org/10.3945/ajcn.2009.28106] [PMID: 19640954]
[175]
Park IJ, Lee JH, Kye BH, et al. Effects of probiotics on the symptoms and surgical outcomes after anterior resection of colon cancer (POSTCARE): A randomized, double-blind, placebo-controlled trial. J Clin Med 2020; 9(7): 2181.
[http://dx.doi.org/10.3390/jcm9072181] [PMID: 32664289]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy