Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Calixarene: The Dawn of a New Era in Forensic Chemistry

Author(s): Himali Upadhyay, Uma Harikrishnan*, Devanshi Bhatt, Namrata Dhadnekar, Kapil Kumar and Manthan Panchal

Volume 26, Issue 22, 2022

Published on: 25 January, 2023

Page: [2005 - 2015] Pages: 11

DOI: 10.2174/1385272827666230118094847

Price: $65

Abstract

Globally, rapid, ultrasensitive, and ultraselective detection of forensic evidence is critically required for social security and support. In the past four decades, calixarenes have been the focus of intensive research in the invention of several extractants, transporters, stationary phases, electrode ionophores, and optical and electrochemical sensors. This review is ardent about calixarene, a new class of selective and sensitive forensic sensors. It has become clear that calix[n]arenes are particularly attractive building blocks for supramolecular chemistry due to their synthesis on a large scale, distinctive concave molecular architecture, tunable inner cavity size, exceptional derivatization capabilities, and a broad range of applications. This paper opens up new avenues for the creation of on-site detection kits for forensic evidence, which will speed up the detection procedure.

Keywords: Calixarene, forensic science, analysis, explosives, pesticides, detection procedure.

Graphical Abstract
[1]
Menon, S.K.; Patel, R.K.V.; Panchal, J.G.; Mistry, B.R.; Rana, V.A. Dielectric study of novel liquid crystals based on calix[4]arene Schiff bases. Liq. Cryst., 2011, 38(2), 123-134.
[http://dx.doi.org/10.1080/02678292.2010.524943]
[2]
Diamond, D. Calixarene-based sensing agents. J. Inclusion Phenom. Mol. Recogn. Chem., 1994, 19(1-4), 149-166.
[http://dx.doi.org/10.1007/BF00708980]
[3]
Ikeda, A.; Udzu, H.; Yoshimura, M.; Shinkai, S. Inclusion of [60]fullerene in a self-assembled homooxacalix[3]arene- based dimeric capsule constructed by a Pd(II)-pyridine interaction. The Li+- binding to the lower rims can improve the inclusion ability. Tetrahedron, 2000, 56(13), 1825-1832.
[http://dx.doi.org/10.1016/S0040-4020(00)00090-9]
[4]
Shivanyuk, A.; Friese, J.C.; Döring, S.; Rebek, J., Jr Solvent-stabilized molecular capsules. J. Org. Chem., 2003, 68(17), 6489-6496.
[http://dx.doi.org/10.1021/jo034791+] [PMID: 12919008]
[5]
Corbellini, F.; Fiammengo, R.; Timmerman, P.; Crego-Calama, M.; Versluis, K.; Heck, A.J.R.; Luyten, I.; Reinhoudt, D.N. Guest encapsulation and self-assembly of molecular capsules in polar solvents via multiple ionic interactions. J. Am. Chem. Soc., 2002, 124(23), 6569-6575.
[http://dx.doi.org/10.1021/ja012058z] [PMID: 12047176]
[6]
Corbellini, F.; Di Costanzo, L.; Crego-Calama, M.; Geremia, S.; Reinhoudt, D.N. Guest encapsulation in a water-soluble molecular capsule based on ionic interactions. J. Am. Chem. Soc., 2003, 125(33), 9946-9947.
[http://dx.doi.org/10.1021/ja034535e] [PMID: 12914457]
[7]
Nuckolls, C.; Castellano, R.K.; Rebek, J. Hierarchy of order in liquid crystalline polycaps. Am. Chem. Soc. Polym. Prepr. Div. Polym. Chem., 2000, 41(1), 930-931.
[8]
Lee, M.; Lee, S.J.; Jiang, L.H. Stimuli-responsive supramolecular nanocapsules from amphiphilic calixarene assembly. J. Am. Chem. Soc., 2004, 126(40), 12724-12725.
[http://dx.doi.org/10.1021/ja045918v] [PMID: 15469237]
[9]
Yan, X.; Janout, V.; Hsu, J.T.; Regen, S.L. The gluing of a Langmuir-Blodgett bilayer. J. Am. Chem. Soc., 2003, 125(27), 8094-8095.
[http://dx.doi.org/10.1021/ja035453t] [PMID: 12837066]
[10]
Uragami, T.; Meotoiwa, T.; Miyata, T. Effects of morphology of multicomponent polymer membranes containing calixarene on permselective removal of benzene from a dilute aqueous solution of benzene. Macromolecules, 2003, 36(6), 2041-2048.
[http://dx.doi.org/10.1021/ma025863m]
[11]
Ikeda, A.; Hatano, T.; Shinkai, S.; Akiyama, T.; Yamada, S. Efficient photocurrent generation in novel self-assembled multilayers comprised of [60]fullerene-cationic homooxacalix[3]arene inclusion complex and anionic porphyrin polymer. J. Am. Chem. Soc., 2001, 123(20), 4855-4856.
[http://dx.doi.org/10.1021/ja015596k] [PMID: 11457304]
[12]
Oh, S.K.; Nakagawa, M.; Ichimura, K. Relationship between the ability to control liquid crystal alignment and wetting properties of calix[4]resorcinarene monolayers. J. Mater. Chem., 2001, 11(6), 1563-1569.
[http://dx.doi.org/10.1039/b007739i]
[13]
Wei, A. Calixarene-encapsulated nanoparticles: self-assembly into functional nanomaterials. Chem. Commun. (Camb.), 2006, (15), 1581-1591.
[http://dx.doi.org/10.1039/b515806k] [PMID: 16582988]
[14]
Rao, P.K.; Tharmavaram, M.; Pandey, G. Conventional technologies in forensic science. Technol. Forensic Sci., 2020, 2, 17-34.
[http://dx.doi.org/10.1002/9783527827688.ch2]
[15]
Royds, D.; Lewis, S.; Taylor, A. A case study in forensic chemistry: The Bali bombings. Talanta, 2005, 67(2), 262-268.
[http://dx.doi.org/10.1016/j.talanta.2005.03.026] [PMID: 18970166]
[16]
Kumazawa, T.; Seno, H.; Suzuki, O. Rapid isolation with Sep-Pak C18 cartridges and wide-bore capillary gas chromatography of bromisovalum. J. Anal. Toxicol., 1992, 16(3), 163-165.
[http://dx.doi.org/10.1093/jat/16.3.163] [PMID: 1522708]
[17]
Park, M.J.; In, S.W.; Lee, S.K.; Choi, W.K.; Park, Y.S.; Chung, H.S. Postmortem blood concentrations of organophosphorus pesticides. Forensic Sci. Int., 2009, 184(1-3), 28-31.
[http://dx.doi.org/10.1016/j.forsciint.2008.11.008] [PMID: 19117706]
[18]
Raposo, R.; Barroso, M.; Fonseca, S.; Costa, S.; Queiroz, J.A.; Gallardo, E.; Dias, M. Determination of eight selected organophosphorus insecticides in postmortem blood samples using solid-phase extraction and gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom., 2010, 24(21), 3187-3194.
[http://dx.doi.org/10.1002/rcm.4765] [PMID: 20941767]
[19]
Kasiotis, K.; Souki, H.; Tsakirakis, A.; Carageorgiou, H.; Theotokatos, S.; Haroutounian, S.; Machera, K. Headspace solid phase micro extraction gas chromatographic determination of fenthion in human serum. Int. J. Mol. Sci., 2008, 9(5), 906-913.
[http://dx.doi.org/10.3390/ijms9050906] [PMID: 19325792]
[20]
Tsoukali, H.; Raikos, N.; Theodoridis, G.; Psaroulis, D. Headspace solid phase microextraction for the gas chromatographic analysis of methyl-parathion in post-mortem human samples Application in a suicide case by intravenous injection. Forens Sci. Int., 2004, 143(2-3), 127-132.
[http://dx.doi.org/10.1016/j.forsciint.2004.02.032]
[21]
Nolan, R.J.; Rick, D.L.; Freshour, N.L.; Saunders, J.H. Chlorpyrifos: in Human Volunteers. Toxicol. Appl. Pharmacol., 1982, 73(1976), 8-15.
[22]
World Health Organization (WHO). The Public Health Impact of Chemicals: Knowns and Unknowns; , 2016. Available from: https://www.who.int/publi-cations/i/item/WHO-FWC-PHE-EPE-16-01
[23]
Vazquez-Roig, P.; Blasco, C.; Picó, Y. Advances in the analysis of legal and illegal drugs in the aquatic environment. Trends Analyt. Chem., 2013, 50, 65-77.
[http://dx.doi.org/10.1016/j.trac.2013.04.008]
[24]
Pragst, F. High performance liquid chromatography in forensic toxicological analysis. J. Anal. Toxicol., 1995, 19(6), 511-3.
[http://dx.doi.org/10.1016/S1567-7192(06)06013-X]
[25]
Lamartine, R.; Tsukada, M.; Wilson, D.; Shirata, A. Antimicrobial activity of calixarenes. C. R. Chim., 2002, 5(3), 163-169.
[http://dx.doi.org/10.1016/S1631-0748(02)01354-1]
[26]
Kalchenko, O.; Lipkowski, J.; Kalchenko, V. Chromatography in Supramolecular and Analytical Chemistry of Calixarenes, 2nd Ed; Elsevier: Amsterdam, 2017.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.13799-0]
[27]
Montes-García, V.; Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L.M. Metal nanoparticles and supramolecular macrocycles: a tale of synergy. Chemistry, 2014, 20(35), 10874-10883.
[http://dx.doi.org/10.1002/chem.201403107] [PMID: 25043786]
[28]
Zhou, Y.; Li, H.; Yang, Y.W. Controlled drug delivery systems based on calixarenes. Chin. Chem. Lett., 2015, 26(7), 825-828.
[http://dx.doi.org/10.1016/j.cclet.2015.01.038]
[29]
Khaled, E.; Khalil, M.M.; Abed el Aziz, G.M. Calixarene/carbon nanotubes based screen printed sensors for potentiometric determination of gentamicin sulphate in pharmaceutical preparations and spiked surface water samples. Sens. Actuators B Chem., 2017, 244, 876-884.
[http://dx.doi.org/10.1016/j.snb.2017.01.033]
[30]
Garaiová, Z.; Mohsin, M.A.; Vargová, V.; Banica, F.G.; Hianik, T. Complexation of cytochrome c with calixarenes incorporated into the lipid vesicles and supported membranes. Bioelectrochemistry, 2012, 87, 220-225.
[http://dx.doi.org/10.1016/j.bioelechem.2011.12.004] [PMID: 22226244]
[31]
Goodworth, K.J.; Hervé, A-C.; Stavropoulos, E.; Hervé, G.; Casades, I.; Hill, A.M.; Weingarten, G.G.; Tascon, R.E.; Colston, M.J.; Hailes, H.C. Synthesis and in vivo biological activity of large-ringed calixarenes against Mycobacterium tuberculosis. Tetrahedron, 2011, 67(2), 373-382.
[http://dx.doi.org/10.1016/j.tet.2010.11.034]
[32]
Menon, S.K.; Modi, N.R.; Pandya, A.; Lodha, A. Ultrasensitive and specific detection of dimethoate using a p-sulphonato-calix[4]resorcinarene functionalized silver nanoprobe in aqueous solution. RSC Advances, 2013, 3(27), 10623-10627.
[http://dx.doi.org/10.1039/c3ra40762d]
[33]
Cao, B.; Huang, Q.; Pan, Y. Study on the surface acoustic wave sensor with self-assembly imprinted film of calixarene derivatives to detect organophosphorus compounds. Am. J. Anal. Chem., 2012, 2012, 664-668.
[34]
Li, C.; Wang, C.; Guan, B.; Zhang, Y.; Hu, S. Electrochemical sensor for the determination of parathion based on p-tert-butylcalix[6]arene-1,4-crown-4 sol-gel film and its characterization by electrochemical methods. Sens. Actuat. B Chem., 2005, 107(1), 411-417.
[http://dx.doi.org/10.1016/j.snb.2004.10.037]
[35]
Li, X.; Zeng, Z.; Zhou, J. High thermal-stable sol-gel-coated calix[4]arene fiber for solid-phase microextraction of chlorophenols. Anal. Chim. Acta, 2004, 509(1), 27-37.
[http://dx.doi.org/10.1016/j.aca.2003.12.008]
[36]
Memon, S.; Memon, S.; Memon, N. A highly efficient p-tert -butylcalix[8]arene-based modified silica for the removal of Hexachlorocyclohexane isomers from aqueous media. Desalinat. Water Treat., 2014, 52(13-15), 2572-2582.
[http://dx.doi.org/10.1080/19443994.2013.794710]
[37]
Nikolelis, D.P.; Raftopoulou, G.; Psaroudakis, N.; Nikoleli, G. Development of an electrochemical biosensor for the rapid detection of carbofuran based on air stable lipid films with incorporated calix[4]arene phosphoryl receptor. Electroanalysis, 2008, 20(14), 1574-1580.
[http://dx.doi.org/10.1002/elan.200804225]
[38]
Evtugyn, G.A.; Shamagsumova, R.V.; Padnya, P.V.; Stoikov, I.I.; Antipin, I.S. Cholinesterase sensor based on glassy carbon electrode modified with Ag nanoparticles decorated with macrocyclic ligands. Talanta, 2014, 127, 9-17.
[http://dx.doi.org/10.1016/j.talanta.2014.03.048] [PMID: 24913851]
[39]
Sun, Y.; Mao, X.; Luo, L.; Tian, D.; Li, H. Calix[4]arene triazole-linked pyrene: click synthesis, assembly on graphene oxide, and highly sensitive carbaryl sensing in serum. Org. Biomol. Chem., 2015, 13(35), 9294-9299.
[http://dx.doi.org/10.1039/C5OB01388G] [PMID: 26235312]
[40]
Zeng, X.; Ma, J.; Luo, L.; Yang, L.; Cao, X.; Tian, D.; Li, H. Pesticide macroscopic recognition by a naphthol-appended calix[4]arene. Org. Lett., 2015, 17(12), 2976-2979.
[http://dx.doi.org/10.1021/acs.orglett.5b01075] [PMID: 26046818]
[41]
Li, H.; Qu, F. Synthesis of CdTe quantum dots in sol-gel-derived composite silica spheres coated with calix[4]arene as luminescent probes for pesticides. Chem. Mater., 2007, 19(17), 4148-4154.
[http://dx.doi.org/10.1021/cm0700089]
[42]
Zhang, G.F.; Zhan, J.Y.; Li, H.B. Selective binding of carbamate pesticides by self-assembled monolayers of calix[4]arene lipoic acid: wettability and impedance dual-signal response. Org. Lett., 2011, 13(13), 3392-3395.
[http://dx.doi.org/10.1021/ol201143z] [PMID: 21630700]
[43]
Bakas, I.; Hayat, A.; Piletsky, S.; Piletska, E.; Chehimi, M.M.; Noguer, T.; Rouillon, R. Electrochemical impedimetric sensor based on molecularly imprinted polymers/sol-gel chemistry for methidathion organophosphorous insecticide recognition. Talanta, 2014, 130, 294-298.
[http://dx.doi.org/10.1016/j.talanta.2014.07.012] [PMID: 25159412]
[44]
Facure, M.H.M.; Mercante, L.A.; Mattoso, L.H.C.; Correa, D.S. Detection of trace levels of organophosphate pesticides using an electronic tongue based on graphene hybrid nanocomposites. Talanta, 2017, 167, 59-66.
[http://dx.doi.org/10.1016/j.talanta.2017.02.005] [PMID: 28340765]
[45]
Castro Janer, E.; Klafke, G.M.; Capurro, M.L.; Schumaker, T.T.S. Cross-resistance between fipronil and lindane in Rhipicephalus (Boophilus) microplus. Vet. Parasitol., 2015, 210(1-2), 77-83.
[http://dx.doi.org/10.1016/j.vetpar.2015.03.011] [PMID: 25868846]
[46]
Tekaya, N.; Saiapina, O.; Ben Ouada, H.; Lagarde, F.; Ben Ouada, H.; Jaffrezic-Renault, N. Ultra-sensitive conductometric detection of pesticides based on inhibition of esterase activity in Arthrospira platensis. Environ. Pollut., 2013, 178, 182-188.
[http://dx.doi.org/10.1016/j.envpol.2013.03.013] [PMID: 23583674]
[47]
Gasull, M.; Bosch de Basea, M.; Puigdomènech, E.; Pumarega, J.; Porta, M. Empirical analyses of the influence of diet on human concentrations of persistent organic pollutants: A systematic review of all studies conducted in Spain. Environ. Int., 2011, 37(7), 1226-1235.
[http://dx.doi.org/10.1016/j.envint.2011.05.008] [PMID: 21683445]
[48]
Avancini, R.M.; Silva, I.S.; Rosa, A.C.S.; Sarcinelli, P.N.; de Mesquita, S.A. Organochlorine compounds in bovine milk from the state of Mato Grosso do Sul - Brazil. Chemosphere, 2013, 90(9), 2408-2413.
[http://dx.doi.org/10.1016/j.chemosphere.2012.10.069] [PMID: 23177004]
[49]
Dirtu, A.C.; Covaci, A. Estimation of daily intake of organohalogenated contaminants from food consumption and indoor dust ingestion in Romania. Environ. Sci. Technol., 2010, 44(16), 6297-6304.
[http://dx.doi.org/10.1021/es101233z] [PMID: 20704229]
[50]
Dong, C.; Zeng, Z.; Li, X. Determination of organochlorine pesticides and their metabolites in radish after headspace solid-phase microextraction using calix[4]arene fiber. Talanta, 2005, 66(3), 721-727.
[http://dx.doi.org/10.1016/j.talanta.2004.12.020] [PMID: 18970044]
[51]
Silvério, F.O.; de Alvarenga, E.S.; Moreno, S.C.; Picanço, M.C. Synthesis and insecticidal activity of new pyrethroids. Pest Manag. Sci., 2009, 65(8), 900-905.
[http://dx.doi.org/10.1002/ps.1771] [PMID: 19418526]
[52]
Yu, C.; Zhang, S.; Zhang, J.; Li, S.; Zhou, W.; Gao, H.; Lu, R. An in situ ionic liquid dispersive liquid-liquid microextraction method for the detection of pyrethroids by LC-UV in environmental water samples. J. Braz. Chem. Soc., 2013, 24(6), 1034-1040.
[http://dx.doi.org/10.5935/0103-5053.20130133]
[53]
Luo, Q.J.; Li, Y.X.; Zhang, M.Q.; Qiu, P.; Deng, Y.H. A highly sensitive, dual-signal assay based on rhodamine B covered silver nanoparticles for carbamate pesticides. Chin. Chem. Lett., 2017, 28(2), 345-349.
[http://dx.doi.org/10.1016/j.cclet.2016.10.024]
[54]
Song, Y.; Chen, J.; Sun, M.; Gong, C.; Shen, Y.; Song, Y.; Wang, L. A simple electrochemical biosensor based on AuNPs/MPS/Au electrode sensing layer for monitoring carbamate pesticides in real samples. J. Hazard. Mater., 2016, 304, 103-109.
[http://dx.doi.org/10.1016/j.jhazmat.2015.10.058] [PMID: 26547618]
[55]
de Siqueira, A.; Salvagni, F.A.; Yoshida, A.S.; Gonçalves-Junior, V.; Calefi, A.S.; Fukushima, A.R.; Spinosa, H.S.; Maiorka, P.C. Poisoning of cats and dogs by the carbamate pesticides aldicarb and carbofuran. Res. Vet. Sci., 2015, 102, 142-149.
[http://dx.doi.org/10.1016/j.rvsc.2015.08.006] [PMID: 26412534]
[56]
Memon, S.; Memon, S. An efficient p-tetranitrocalix[4]arene based adsorbent for the removal of carbofuran from aqueous media. J. Iran. Chem. Soc., 2014, 11(6), 1599-1608.
[http://dx.doi.org/10.1007/s13738-014-0432-8]
[57]
Tadeo, J.L.; Sánchez-Brunete, C.; Pérez, R.A.; Fernández, M.D. Analysis of herbicide residues in cereals, fruits and vegetables. J. Chromatogr. A, 2000, 882(1-2), 175-191.
[http://dx.doi.org/10.1016/S0021-9673(00)00103-5] [PMID: 10895942]
[58]
Gupta, P.K. Herbicides and Fungicides. In: Reproductive and Developmental Toxicology; Elsevier: Amsterdam, 2017; pp. 657-679.
[http://dx.doi.org/10.1016/B978-0-12-804239-7.00037-8]
[59]
Hamadache, M.; Hanini, S.; Benkortbi, O.; Amrane, A.; Khaouane, L.; Moussa, C.S. Artificial neural network-based equation to predict the toxicity of herbicides on rats. Chemom. Intell. Lab. Syst., 2016, 154, 7-15.
[http://dx.doi.org/10.1016/j.chemolab.2016.03.007]
[60]
Saka, M.; Tada, N.; Kamata, Y. Chronic toxicity of 1,3,5-triazine herbicides in the postembryonic development of the western clawed frog Silurana tropicalis. Ecotoxicol. Environ. Saf., 2018, 147, 373-381.
[http://dx.doi.org/10.1016/j.ecoenv.2017.08.063] [PMID: 28869887]
[61]
Asad, M.A.U.; Lavoie, M.; Song, H.; Jin, Y.; Fu, Z.; Qian, H. Interaction of chiral herbicides with soil microorganisms, algae and vascular plants. Sci. Total Environ., 2017, 580, 1287-1299.
[http://dx.doi.org/10.1016/j.scitotenv.2016.12.092] [PMID: 28003051]
[62]
Rodea-Palomares, I.; Makowski, M.; Gonzalo, S.; González-Pleiter, M.; Leganés, F.; Fernández-Piñas, F. Effect of PFOA/PFOS pre-exposure on the toxicity of the herbicides 2,4-D, Atrazine, Diuron and Paraquat to a model aquatic photosynthetic microorganism. Chemosphere, 2015, 139, 65-72.
[http://dx.doi.org/10.1016/j.chemosphere.2015.05.078] [PMID: 26070144]
[63]
Le, T.D.H.; Scharmüller, A.; Kattwinkel, M.; Kühne, R.; Schüürmann, G.; Schäfer, R.B. Contribution of waste water treatment plants to pesticide toxicity in agriculture catchments. Ecotoxicol. Environ. Saf., 2017, 145, 135-141.
[http://dx.doi.org/10.1016/j.ecoenv.2017.07.027] [PMID: 28732296]
[64]
Salinas, Y.; Martínez-Máñez, R.; Marcos, M.D.; Sancenón, F.; Costero, A.M.; Parra, M.; Gil, S. Optical chemosensors and reagents to detect explosives. Chem. Soc. Rev., 2012, 41(3), 1261-1296.
[http://dx.doi.org/10.1039/C1CS15173H] [PMID: 21947358]
[65]
Rasheed, T.; Nabeel, F.; Li, C.; Bilal, M. Rhodamine-assisted fluorescent strategy for the sensitive and selective in-field mapping of environmental pollutant Hg(II) with potential bioimaging. J. Lumin., 2019, 208, 519-526.
[http://dx.doi.org/10.1016/j.jlumin.2019.01.032]
[66]
Rasheed, T.; Nabeel, F.; Adeel, M.; Bilal, M.; Iqbal, H.M.N. “Turn-on” fluorescent sensor-based probing of toxic Hg(II) and Cu(II) with potential intracellular monitoring. Biocatal. Agric. Biotechnol., 2019, 17, 696-701.
[http://dx.doi.org/10.1016/j.bcab.2019.01.032]
[67]
Rasheed, T.; Nabeel, F.; Bilal, M.; Zhao, Y.P.; Adeel, M.; Iqbal, H.M.N. Aqueous monitoring of toxic mercury through a rhodamine-based fluorescent sensor. Math. Biosci. Eng., 2019, 16(4), 1861-1873.
[http://dx.doi.org/10.3934/mbe.2019090] [PMID: 31137189]
[68]
Rasheed, T.; Nabeel, F.; Li, C.; Zhang, Y. Rhodol assisted alternating copolymer based chromogenic vesicles for the aqueous detection and quantification of hydrazine via switch-on strategy. J. Mol. Liq., 2019, 274, 461-469.
[http://dx.doi.org/10.1016/j.molliq.2018.11.014]
[69]
Ponsaravanan, N.; Venugopalan, S.; Senthilkumar, N.; Santhosh, P.; Kavita, B.; Gurumalleshprabu, H. Voltammetric determination of nitroaromatic and nitramine explosives contamination in soil. Talanta, 2006, 69(3), 656-662.
[http://dx.doi.org/10.1016/j.talanta.2005.10.041] [PMID: 18970618]
[70]
Nabeel, F.; Rasheed, T. Rhodol-conjugated polymersome sensor for visual and highly-sensitive detection of hydrazine in aqueous media. J. Hazard. Mater., 2020, 388, 121757.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121757] [PMID: 31818652]
[71]
Rasheed, T.; Li, C.; Nabeel, F.; Qi, M.; Zhang, Y.; Yu, C. Real-time probing of mercury using an efficient “turn-on” strategy with potential as in-field mapping kit and in live cell imaging. New J. Chem., 2018, 42(13), 10940-10946.
[http://dx.doi.org/10.1039/C8NJ01746H]
[72]
Rasheed, T.; Li, C.; Nabeel, F.; Huang, W.; Zhou, Y. Self-assembly of alternating copolymer vesicles for the highly selective, sensitive and visual detection and quantification of aqueous Hg2+. Chem. Eng. J., 2019, 358, 101-109.
[http://dx.doi.org/10.1016/j.cej.2018.09.216]
[73]
Rasheed, T.; Li, C.; Fu, L.; Nabeel, F.; Yu, C.; Gong, L.; Zhou, Y. Development and characterization of newly engineered chemosensor with intracellular monitoring potentialities and lowest detection of toxic elements. J. Mol. Liq., 2018, 272, 440-449.
[http://dx.doi.org/10.1016/j.molliq.2018.09.112]
[74]
Rasheed, T.; Li, C.; Bilal, M.; Yu, C.; Iqbal, H.M.N. Potentially toxic elements and environmentally-related pollutants recognition using colorimetric and ratiometric fluorescent probes. Sci. Total Environ., 2018, 640-641, 174-193.
[http://dx.doi.org/10.1016/j.scitotenv.2018.05.232] [PMID: 29859435]
[75]
Rasheed, T.; Li, C.; Zhang, Y.; Nabeel, F.; Peng, J.; Qi, J.; Gong, L.; Yu, C. Rhodamine-based multianalyte colorimetric probe with potentialities as on-site assay kit and in biological systems. Sens. Actuators B Chem., 2018, 258, 115-124.
[http://dx.doi.org/10.1016/j.snb.2017.11.100]
[76]
Kushler, M.; Nadel, S.; York, D.; Dietsch, N.; Gander, S. “Energy Efficiency Resource Standards: The Next Great Leap Forward?”; [2006 Summer Study on Energy Efficiency in Building, American Council for an Energy Efficient Economy], Washington, DC, 2002, pp. 206-217.
[77]
Jenkins, T.F.; Leggett, D.C.; Ranney, T.A. Vapor signatures from. Talanta, 2001, 54(3), 501-513.
[78]
Dey, S.; Modi, K.; Panchal, U.; Panchal, M.; Jain, V.K. Detection of small molecular toxins using azacalix[4]arene architecture and its theoretical investigations. J. Mol. Liq., 2021, 337, 116337.
[http://dx.doi.org/10.1016/j.molliq.2021.116337]
[79]
Mehta, V.; Athar, M.; Jha, P.C.; Kongor, A.; Panchal, M.; Jain, V.K. A turn-off fluorescence sensor for insensitive munition using anthraquinone-appended oxacalix[4]arene and its computational studies. New J. Chem., 2017, 41(12), 5125-5132.
[http://dx.doi.org/10.1039/C7NJ01111C]
[80]
Costa, A.I.; Prata, J.V. Substituted p-phenylene ethynylene trimers as fluorescent sensors for nitroaromatic explosives. Sens. Actuat. B Chem., 2012, 161(1), 251-260.
[http://dx.doi.org/10.1016/j.snb.2011.10.027]
[81]
Barata, P.D.; Prata, J.V. Cooperative effects in the detection of a nitroaliphatic liquid explosive and an explosive taggant in the vapor phase by calix[4]arene-based carbazole-containing conjugated polymers. ChemPlusChem, 2014, 79(1), 83-89.
[http://dx.doi.org/10.1002/cplu.201300280] [PMID: 31986770]
[82]
Barata, P.D.; Prata, J.V. New entities for sensory chemistry based on calix[4]arene-carbazole conjugates: From synthesis to applications. Supramol. Chem., 2013, 25(12), 782-797.
[http://dx.doi.org/10.1080/10610278.2013.804185]
[83]
Panchal, U.; Modi, K.; Dey, S.; Prajapati, U.; Patel, C.; Jain, V.K. A resorcinarene-based “turn-off” fluorescence sensor for 4-nitrotoluene: Insights from fluorescence and 1 H NMR titration with computational approach. J. Lumin., 2017, 184, 74-82.
[http://dx.doi.org/10.1016/j.jlumin.2016.11.066]
[84]
Narula, A.; Hussain, M.A.; Upadhyay, A.; Rao, C.P. 1,3-Di-naphthalimide Conjugate of Calix[4]arene as a sensitive and selective sensor for trinitrophenol and this turns reversible when hybridized with carrageenan as beads. ACS Omega, 2020, 5(40), 25747-25756.
[http://dx.doi.org/10.1021/acsomega.0c03060] [PMID: 33073100]
[85]
Sun, X.; Wang, Y.; Lei, Y. Fluorescence based explosive detection: from mechanisms to sensory materials. Chem. Soc. Rev., 2015, 44(22), 8019-8061.
[http://dx.doi.org/10.1039/C5CS00496A] [PMID: 26335504]
[86]
Parajuli, S.; Miao, W. Sensitive determination of hexamethylene triperoxide diamine explosives, using electrogenerated chemiluminescence enhanced by silver nitrate. Anal. Chem., 2009, 81(13), 5267-5272.
[http://dx.doi.org/10.1021/ac900489a] [PMID: 19514734]
[87]
Gopalakrishnan, D.; Dichtel, W.R. Direct detection of RDX vapor using a conjugated polymer network. J. Am. Chem. Soc., 2013, 135(22), 8357-8362.
[http://dx.doi.org/10.1021/ja402668e] [PMID: 23641956]
[88]
Ganiga, M.; Cyriac, J. Detection of PETN and RDX using a FRET-based fluorescence sensor system. Anal. Methods, 2015, 7(13), 5412-5418.
[http://dx.doi.org/10.1039/C5AY00416K]
[89]
Wang, X.; Guo, Y.; Li, D.; Chen, H.; Sun, R. Fluorescent amphiphilic cellulose nanoaggregates for sensing trace explosives in aqueous solution. Chem. Commun. (Camb.), 2012, 48(45), 5569-5571.
[http://dx.doi.org/10.1039/c2cc30208j] [PMID: 22362418]
[90]
Bandela, A.K.; Bandaru, S.; Rao, C.P. A Fluorescent 1,3-diaminona-phthalimide conjugate of calix[4]arene for sensitive and selective detection of trinitrophenol: spectroscopy, microscopy, and computational studies, and its applicability using cellulose strips. Chemistry, 2015, 21(38), 13364-13374.
[http://dx.doi.org/10.1002/chem.201500787] [PMID: 26239263]
[91]
Wu, C.; Zhao, J.L.; Jiang, X.K.; Ni, X.L.; Zeng, X.; Redshaw, C.; Yamato, T. Click-modified hexahomotrioxacalix[3]arenes as fluorometric and colorimetric dual-modal chemosensors for 2,4,6-trinitrophenol. Anal. Chim. Acta, 2016, 936, 216-221.
[http://dx.doi.org/10.1016/j.aca.2016.06.045] [PMID: 27566358]
[92]
Lee, Y.H.; Liu, H.; Lee, J.Y.; Kim, S.H.; Kim, S.K.; Sessler, J.L.; Kim, Y.; Kim, J.S. Dipyrenylcalix[4]arene--a fluorescence-based chemosensor for trinitroaromatic explosives. Chemistry, 2010, 16(20), 5895-5901.
[http://dx.doi.org/10.1002/chem.200903439] [PMID: 20432415]
[93]
Lachas, H.; Richaud, R.; Herod, A.A.; Dugwell, D.R.; Kandiyoti, R. Determination of trace elements by inductively coupled plasma mass spectrometry of biomass and fuel oil reference materials using milligram sample sizes. Rapid Commun. Mass Spectrom., 2000, 14(5), 335-343.
[http://dx.doi.org/10.1002/(SICI)1097-0231(20000315)14:5<335:AID-RCM854>3.0.CO;2-0] [PMID: 10700035]
[94]
Ababneh, F.A.; Al-Momani, I.F. Assessments of toxic heavy metals contamination in cosmetic products. Environ. Forens, 2018, 19(2), 134-142.
[http://dx.doi.org/10.1080/15275922.2018.1448908]
[95]
Santos, C.; El Zahran, T.; Weiland, J.; Anwar, M.; Schier, J. Characterizing chemical terrorism incidents collected by the global terrorism database, 1970-2015. Prehosp. Disaster Med., 2019, 34(4), 385-392.
[http://dx.doi.org/10.1017/S1049023X19004539] [PMID: 31280729]
[96]
Brown, H.M.; McDaniel, T.J.; Fedick, P.W.; Mulligan, C.C. The current role of mass spectrometry in forensics and future prospects. Anal. Methods, 2020, 12(32), 3974-3997.
[http://dx.doi.org/10.1039/D0AY01113D] [PMID: 32720670]
[97]
Amarnath Mishra, S.S.K. Heavy metal toxicity: A blind evil. J. Forensics Res., 2014, 5(2)
[http://dx.doi.org/10.4172/2157-7145.1000e116]
[98]
Ulrich, A.; Moor, C.; Vonmont, H.; Jordi, H.R.; Lory, M. ICP?MS trace-element analysis as a forensic tool. Anal. Bioanal. Chem., 2004, 378(4), 1059-1068.
[http://dx.doi.org/10.1007/s00216-003-2434-8] [PMID: 14735285]
[99]
Sayin, S.; Ozcan, F.; Yilmaz, M. Synthesis of calix[4]arene bearing pyridinium units supported silica gel for sorption of arsenate and dichromate anions. Desalination, 2010, 262(1-3), 99-105.
[http://dx.doi.org/10.1016/j.desal.2010.05.053]
[100]
Gubbuk, I.H.; Gürfidan, L.; Erdemir, S.; Yilmaz, M. Surface modification of sporopollenin with calixarene derivative: Characterization and application for metal removal. Water Air Soil Pollut., 2012, 223(5), 2623-2632.
[http://dx.doi.org/10.1007/s11270-011-1054-8]
[101]
Vyas, G.; Bhatt, S.; Paul, P. Synthesis of calixarene-capped silver nanoparticles for colorimetric and amperometric detection of mercury (Hg II, Hg 0). ACS Omega, 2019, 4(2), 3860-3870.
[http://dx.doi.org/10.1021/acsomega.8b03299] [PMID: 31459596]
[102]
Tyagi, S.; Agarwal, H.; Ikram, S. Potentiometric polymeric membrane electrodes for mercury detection using calixarene ionophores. Water Sci. Technol., 2010, 61(3), 693-704.
[http://dx.doi.org/10.2166/wst.2010.860] [PMID: 20150706]
[103]
Depauw, A.; Kumar, N.; Ha-Thi, M-H.; Leray, I. Calixarene-based fluorescent sensors for cesium cations containing bodipy fluorophore. J. Phys. Chem. A, 2015, 119(23), 6065-6073.
[104]
Razali, A.S.; Supian, F.L.; Salleh, M.M.; Abu Bakar, S. Characterization and detection of cadmium ion using modification calixarene with multiwalled carbon nanotubes. Int. J. Chem. Mol. Eng., 2015, 9(2), 304-307.
[105]
Zhao, W.; Wang, W.; Chang, H.; Cui, S.; Hu, K.; He, L.; Lu, K.; Liu, J.; Wu, Y.; Qian, J.; Zhang, S. Tetraazacalix[2]arene[2]triazine modified silica gel: A novel multi-interaction stationary phase for mixed-mode chromatography. J. Chromatogr. A, 2012, 1251, 74-81.
[http://dx.doi.org/10.1016/j.chroma.2012.06.030] [PMID: 22770387]
[106]
Hu, K.; Feng, S.; Wu, M.; Wang, S.; Zhao, W.; Jiang, Q.; Yu, A.; Zhang, S. Development of a V-shape bis(tetraoxacalix[2]arene[2]triazine) stationary phase for High performance liquid chromatography. Talanta, 2014, 130, 63-70.
[http://dx.doi.org/10.1016/j.talanta.2014.06.054] [PMID: 25159380]
[107]
Tabakci, M.; Erdemir, S.; Yilmaz, M. Preparation, characterization of cellulose-grafted with calix[4]arene polymers for the adsorption of heavy metals and dichromate anions. J. Hazard. Mater., 2007, 148(1-2), 428-435.
[http://dx.doi.org/10.1016/j.jhazmat.2007.02.057] [PMID: 17418488]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy