Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Palladium-Catalyzed C-N Coupling in the Synthesis of Benzodiazepines

Author(s): Pooja Grewal and Navjeet Kaur*

Volume 26, Issue 22, 2022

Published on: 23 January, 2023

Page: [1993 - 2004] Pages: 12

DOI: 10.2174/1385272827666230111162038

Price: $65

conference banner
Abstract

This review article is focused on the reactions, which include the syntheses of various classes of benzodiazepines in the presence of a Pd catalyst. The catalyst used here belongs to the transition metal group and nowadays, there is keen interest in numerous methods for the coupling reaction in the presence of a catalyst to prepare the biologically active heterocyclic compounds. In particular, the use of domino reactions as inter- or intramolecular processes is reported as an efficient and eco-compatible tool to obtain differently functionalized benzodiazepines. 2,3-benzodiazepines having pharmaceutical interest are synthesized via asymmetric catalysis. The catalyst used in this synthesis is palladium-chiral bidentate phosphine complex and thiazolium-derived carbine. The 1,3-benzodiazepines are prepared by A3 coupling. In this reaction, the propargylamine was first added to the isocyanates. After that, hydroxylation of alkyne occurs in the presence of a Pd catalyst in a one-pot manner to yield the 1,3-benzodiazepines.

Keywords: 1, 3-Benzodiazepines, 2, 3-benzodiazepines, 2.4-benzodiazepines, palladium, Pd(OAc)2, Pd2(dba)3, C-N coupling.

Next »
Graphical Abstract
[1]
Balaban, A.T.; Oniciu, D.C.; Katritzky, A.R. Aromaticity as a cornerstone of heterocyclic chemistry. Chem. Rev., 2004, 104(5), 2777-2812.
[http://dx.doi.org/10.1021/cr0306790] [PMID: 15137807]
[2]
Kaur, N.; Verma, Y.; Ahlawat, N.; Grewal, P.; Bhardwaj, P.; Jangid, N.K. Copper-assisted synthesis of five-membered O- heterocycles. Inorg. Nano-Metal Chem., 2020, 50(8), 705-740.
[http://dx.doi.org/10.1080/24701556.2020.1724144]
[3]
Kaur, N. Application of silver-promoted reactions in the synthesis of five-membered O -heterocycles. Synth. Commun., 2019, 49(6), 743-789.
[http://dx.doi.org/10.1080/00397911.2019.1570525]
[4]
Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Jangid, N.K. Metal and organo-complex promoted synthesis of fused five-membered O -heterocycles. Synth. Commun., 2020, 50(4), 457-505.
[http://dx.doi.org/10.1080/00397911.2019.1700522]
[5]
Kaur, N. Applications of gold catalysts for the synthesis of five-membered O -heterocycles. Inorg. Nano-Metal Chem., 2017, 47(2), 163-187.
[http://dx.doi.org/10.1080/15533174.2015.1068809]
[6]
Kaur, N.; Grewal, P.; Poonia, K. Dicarbonyl compounds in O- heterocycle synthesis. Synth. Commun., 2021, 51(16), 2423-2444.
[http://dx.doi.org/10.1080/00397911.2021.1941114]
[7]
Kaur, N. Ruthenium catalysis in six-membered O -heterocycles synthesis. Synth. Commun., 2018, 48(13), 1551-1587.
[http://dx.doi.org/10.1080/00397911.2018.1457698]
[8]
Kaur, N. Green synthesis of three- to five-membered O -heterocycles using ionic liquids. Synth. Commun., 2018, 48(13), 1588-1613.
[http://dx.doi.org/10.1080/00397911.2018.1458243]
[9]
Kaur, N. Ultrasound-assisted green synthesis of five-membered O- and S- heterocycles. Synth. Commun., 2018, 48(14), 1715-1738.
[http://dx.doi.org/10.1080/00397911.2018.1460671]
[10]
Kaur, N. Photochemical mediated reactions in five-membered O- heterocycles synthesis. Synth. Commun., 2018, 48(17), 2119-2149.
[http://dx.doi.org/10.1080/00397911.2018.1485165]
[11]
Kaur, N. Mercury-catalyzed synthesis of heterocycles. Synth. Commun., 2018, 48(21), 2715-2749.
[http://dx.doi.org/10.1080/00397911.2018.1497657]
[12]
Kaur, N. Palladium-catalyzed approach to the synthesis of five-membered O-heterocycles. Inorg. Chem. Commun., 2014, 49, 86-119.
[http://dx.doi.org/10.1016/j.inoche.2014.09.024]
[13]
Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Gold-catalyzed C–O bond forming reactions for the synthesis of six-membered O-heterocycles. SN Appl. Sci., 2019, 1(8), 903.
[http://dx.doi.org/10.1007/s42452-019-0920-7]
[14]
Kaur, N. Ionic liquid assisted synthesis of six-membered oxygen heterocycles. SN Appl. Sci., 2019, 1(8), 932.
[http://dx.doi.org/10.1007/s42452-019-0861-1]
[15]
Kaur, N.; Kishore, D. Solid-phase synthetic approach toward the synthesis of oxygen containing heterocycles. Synth. Commun., 2014, 44(8), 1019-1042.
[http://dx.doi.org/10.1080/00397911.2012.760131]
[16]
Kaur, N.; Kishore, D. Microwave-assisted synthesis of six-membered S-heterocycles. Synth. Commun., 2014, 44(18), 2615-2644.
[http://dx.doi.org/10.1080/00397911.2013.792354]
[17]
Kaur, N. Palladium-catalyzed approach to the synthesis of S-heterocycles. Catal. Rev., Sci. Eng., 2015, 57(4), 478-564.
[http://dx.doi.org/10.1080/01614940.2015.1082824]
[18]
Kaur, N. Ionic liquid assisted synthesis of S -heterocycles. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(3), 165-185.
[http://dx.doi.org/10.1080/10426507.2018.1539492]
[19]
(a) Kaur, N. Metal and non-metal catalysts in the synthesis of five-membered S-heterocycles. Curr. Org. Synth., 2019, 16, 258-275.;
(b) Kaur, N. Microwave-assisted synthesis of five membered S-heterocycles. J. Iran. Chem. Soc., 2014, 11, 523-564.
[http://dx.doi.org/10.1007/s13738-013-0325-2]
[20]
Kaur, N. Ionic liquid: An efficient and recyclable medium for the synthesis of fused six-membered oxygen heterocycles. Synth. Commun., 2019, 49(13), 1679-1707.
[http://dx.doi.org/10.1080/00397911.2019.1568149]
[21]
(a) Kaur, N. Methods for metal and non-metal catalyzed synthesis of six membered oxygen containing poly-heterocycles. Curr. Org. Synth., 2017, 14(4), 531-556.
[http://dx.doi.org/10.2174/1570179413666161021104941];
(b) Kaur, N.; Ahlawat, N.; Grewal, P.; Bhardwaj, P.; Verma, Y. Organo or metal complex catalyzed synthesis of five-membered oxygen heterocycles. Curr. Org. Chem., 2020, 23(25), 2822-2847.
[http://dx.doi.org/10.2174/1385272823666191122111351]
[22]
(a) Bacolini, G. Topics Heterocycl. Syst. Synth. React. Prop, 1996, 1, 103-110.;
(b) Kaur, N. Copper catalysts in the synthesis of five-membered N-polyheterocycles. Curr. Org. Synth., 2018, 15(7), 940-971.
[http://dx.doi.org/10.2174/1570179415666180815144442];
(c) Kaur, N. Recent developments in the synthesis of nitrogen containing five-membered polyheterocycles using rhodium catalysts. Synth. Commun., 2018, 48(19), 2457-2474.
[http://dx.doi.org/10.1080/00397911.2018.1487070];
(d) Kaur, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Devi, M. Application of titanium catalysts for the syntheses of heterocycles. Synth. Commun., 2019, 49(15), 1847-1894.
[http://dx.doi.org/10.1080/00397911.2019.1606922];
(e) Devi, M.; Jaiswal, S.; Jain, S.; Kaur, N.; Dwivedi, J. Synthetic and biological attributes of pyrimidine derivatives: a recent update. Curr. Org. Synth., 2021, 18(8), 790-825.
[http://dx.doi.org/10.2174/1570179418666210706152515] [PMID: 34886770]
[23]
(a) Brichacek, M.; Njardarson, J.T. Creative approaches towards the synthesis of 2,5-dihydro- furans, thiophenes, and pyrroles. One method does not fit all! Org. Biomol. Chem., 2009, 7(9), 1761-1770.
[http://dx.doi.org/10.1039/b900236g] [PMID: 19590767];
(b) Kaur, N. Multiple nitrogen-containing heterocycles: Metal and non-metal assisted synthesis. Synth. Commun., 2019, 49(13), 1633-1658.
[http://dx.doi.org/10.1080/00397911.2018.1542497];
(c) Kaur, N.; Grewal, P.; Bhardwaj, P.; Devi, M.; Verma, Y. Nickel-catalyzed synthesis of five-membered heterocycles. Synth. Commun., 2019, 49(12), 1543-1577.
[http://dx.doi.org/10.1080/00397911.2019.1594306];
(d) Kaur, N. Gold and silver assisted synthesis of five-membered oxygen and nitrogen containing heterocycles. Synth. Commun., 2019, 49(12), 1459-1485.
[http://dx.doi.org/10.1080/00397911.2019.1575423];
(e) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Photochemical reactions in five and six-membered polyheterocycles synthesis. Synth. Commun., 2019, 49(18), 2281-2318.
[http://dx.doi.org/10.1080/00397911.2019.1622732];
(f) Kaur, N.; Bhardwaj, P.; Gupta, M. Recent developments in the synthesis of five- and six-membered N-heterocycles from dicarbonyl compounds. Curr. Org. Chem., 2021, 25(22), 2765-2790.
[http://dx.doi.org/10.2174/1385272825666210812102416];
(g) Kaur, N. Photochemical reactions: synthesis of six-membered N-heterocycles. Curr. Org. Synth., 2017, 14(7), 972-998.
[http://dx.doi.org/10.2174/1570179414666170201150701];
(h) Kaur, N. Ionic liquids: promising but challenging solvents for the synthesis of N-heterocycles. Mini Rev. Org. Chem., 2017, 14(1), 3-23.
[http://dx.doi.org/10.2174/1570193X13666161019120050];
(i) Kaur, N. Metal catalysts for the formation of six-membered N-polyheterocycles. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2016, 46(7), 983-1020.
[http://dx.doi.org/10.1080/15533174.2014.989620]
[24]
(a) Sheldon, R.A. Catalysis: the key to waste minimization. J. Chem. Technol. Biotechnol., 1997, 68(4), 381-388.
[http://dx.doi.org/10.1002/(SICI)1097-4660(199704)68:4<381:AID-JCTB620>3.0.CO;2-3];
(b) Kaur, N. Synthesis of three-membered and four-membered heterocycles with the assistance of photochemical reactions. J. Heterocycl. Chem., 2019, 56(4), 1141-1167.
[http://dx.doi.org/10.1002/jhet.3491];
(c) Kaur, N.; Grewal, P.; Bhardwaj, P.; Devi, M.; Ahlawat, N.; Verma, Y. Synthesis of five-membered N -heterocycles using silver metal. Synth. Commun., 2019, 49(22), 3058-3100.
[http://dx.doi.org/10.1080/00397911.2019.1655767];
(d) Kaur, N.; Verma, Y.; Grewal, P.; Ahlawat, N.; Bhardwaj, P.; Jangid, N.K. Palladium acetate assisted synthesis of five-membered N- polyheterocycles. Synth. Commun., 2020, 50(11), 1567-1621.
[http://dx.doi.org/10.1080/00397911.2020.1723640];
(e) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Jangid, N.K. Cu-assisted C–N bond formations in six-membered N -heterocycle synthesis. Synth. Commun., 2020, 50(8), 1075-1132.
[http://dx.doi.org/10.1080/00397911.2019.1695278]
[25]
(a) Dabholkar, V.V.; Ansari, F.Y. Novel pyrimidine derivatives by sonication and traditional thermal methods. Green Chem. Lett. Rev., 2010, 3(3), 245-248.
[http://dx.doi.org/10.1080/17518251003749353];
(b) Kaur, N.; Ahlawat, N.; Bhardwaj, P.; Verma, Y.; Grewal, P.; Jangid, N.K. Ag-mediated synthesis of six-membered N -heterocycles. Synth. Commun., 2020, 50(6), 753-795.
[http://dx.doi.org/10.1080/00397911.2019.1703196];
(c) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Jangid, N.K. Silver-assisted syntheses of fused five-membered N-heterocycles. Curr. Org. Chem., 2021, 25(19), 2232-2257.
[http://dx.doi.org/10.2174/1385272825666210716144555];
(d) Kaur, N. Application of microwave-assisted synthesis in the synthesis of fused six-membered heterocycles with N-heteroatom. Synth. Commun., 2015, 45(2), 173-201.
[http://dx.doi.org/10.1080/00397911.2013.816734];
(e) Kaur, N.; Ahlawat, N.; Bhardwaj, P.; Verma, Y.; Grewal, P.; Jangid, N.K. Synthesis of five-membered N -heterocycles using Rh based metal catalysts. Synth. Commun., 2020, 50(2), 137-160.
[http://dx.doi.org/10.1080/00397911.2019.1689271]
[26]
(a) Chaudhari, K.; Surana, S.; Jain, P.; Patel, H.M. Mycobacterium tuberculosis (MTB) GyrB inhibitors: An attractive approach for developing novel drugs against TB. Eur. J. Med. Chem., 2016, 124, 160-185.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.034] [PMID: 27569197];
(b) Kaur, N. Gold catalysts in the synthesis of five-membered N-heterocycles. Curr. Organocatal., 2017, 4(2), 122-154.
[http://dx.doi.org/10.2174/2213337204666171103142349];
(c) Kaur, N. Applications of palladium dibenzylideneacetone as catalyst in the synthesis of five-membered N -heterocycles. Synth. Commun., 2019, 49(10), 1205-1230.
[http://dx.doi.org/10.1080/00397911.2018.1540048];
(d) Kaur, N. Copper catalyzed synthesis of seven and higher membered heterocycles. Synth. Commun., 2019, 49(7), 879-916.
[http://dx.doi.org/10.1080/00397911.2018.1543780];
(e) Kaur, N. Nickel catalysis: six membered heterocycle syntheses. Synth. Commun., 2019, 49(9), 1103-1133.
[http://dx.doi.org/10.1080/00397911.2019.1568499];
(f) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P. A review of ruthenium catalyzed C-N bond formation reactions for the synthesis of five-membered N-heterocycles. Curr. Org. Chem., 2019, 23(18), 1901-1944.
[http://dx.doi.org/10.2174/1385272823666191021104118]
[27]
(a) Sameem, B.; Saeedi, M.; Mahdavi, M.; Shafiee, A. A review on tacrine-based scaffolds as multi-target drugs (MTDLs) for Alzheimer’s disease. Eur. J. Med. Chem., 2017, 128, 332-345.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.060] [PMID: 27876467];
(b) Kaur, N. Synthesis of six-membered N-heterocycles using ruthenium catalysts. Catal. Lett., 2019, 149(6), 1513-1559.
[http://dx.doi.org/10.1007/s10562-019-02746-2];
(c) Kaur, N. Microwave-assisted synthesis of fused polycyclic six membered N-heterocycles. Synth. Commun., 2015, 45(3), 273-299.
[http://dx.doi.org/10.1080/00397911.2013.816735];
(d) Kaur, N. Review of microwave-assisted synthesis of benzo fused six-membered N,N-heterocycles. Synth. Commun., 2015, 45(3), 300-330.
[http://dx.doi.org/10.1080/00397911.2013.816736];
(e) Kaur, N. Applications of microwaves in the synthesis of polycyclic six membered N,N-heterocycles. Synth. Commun., 2015, 45(14), 1599-1631.
[http://dx.doi.org/10.1080/00397911.2013.828755]
[28]
(a) Akhtar, J.; Khan, A.A.; Ali, Z.; Haider, R.; Shahar Yar, M. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem., 2017, 125, 143-189.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.023] [PMID: 27662031];
(b) Kaur, N. Synthesis of five-membered heterocycles containing nitrogen heteroatom under ultrasonic irradiation. Mini Rev. Org. Chem., 2019, 16(5), 481-503.
[http://dx.doi.org/10.2174/1570193X15666180709144028];
(c) Kaur, N. Ionic liquid promoted eco-friendly and efficient synthesis of six-membered N-polyheterocycles. Curr. Org. Synth., 2018, 15(8), 1124-1146.
[http://dx.doi.org/10.2174/1570179415666180903102542];
(d) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Ahlawat, N.; Grewal, P. Ionic liquids in the synthesis of five-membered N,N-, N,N,N- and N,N,N,N-heterocycles. Curr. Org. Chem., 2019, 23(11), 1214-1238.
[http://dx.doi.org/10.2174/1385272823666190717101741];
(e) Kaur, N. Palladium acetate and phosphine assisted synthesis of five-membered N -heterocycles. Synth. Commun., 2019, 49(4), 483-514.
[http://dx.doi.org/10.1080/00397911.2018.1536213]
[29]
(a) Ma, X.; Lv, X.; Zhang, J. Exploiting polypharmacology for improving therapeutic outcome of kinase inhibitors (KIs): An update of recent medicinal chemistry efforts. Eur. J. Med. Chem., 2018, 143, 449-463.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.049] [PMID: 29202407];
(b) Kaur, N. Environmentally benign synthesis of five membered 1,3-N,N-heterocycles by microwave irradiation. Synth. Commun., 2015, 45(8), 909-943.
[http://dx.doi.org/10.1080/00397911.2013.825808];
(c) Kaur, N. Advances in microwave-assisted synthesis for five membered N-heterocycles synthesis. Synth. Commun., 2015, 45(4), 432-457.
[http://dx.doi.org/10.1080/00397911.2013.824982];
(d) Kaur, N. Review on the synthesis of six membered N,N-heterocycles by microwave irradiation. Synth. Commun., 2015, 45(10), 1145-1182.
[http://dx.doi.org/10.1080/00397911.2013.827208];
(e) Kaur, N. Greener and expeditious synthesis of fused six-membered N,N-heterocycles using microwave irradiation. Synth. Commun., 2015, 45(13), 1493-1519.
[http://dx.doi.org/10.1080/00397911.2013.828236];
(f) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Synthesis of five-membered O, N -heterocycles using metal and nonmetal. Synth. Commun., 2019, 49(11), 1345-1384.
[http://dx.doi.org/10.1080/00397911.2019.1594308]
[30]
(a) Patel, R.V.; Keum, Y.S.; Park, S.W. Sketching the historical development of pyrimidones as the inhibitors of the HIV integrase. Eur. J. Med. Chem., 2015, 97, 649-663.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.005] [PMID: 25084622];
(b) Devi, M.; Jaiswal, S.; Dwivedi, J.; Kaur, N. Synthetic aspects of condensed pyrimidine derivatives. Curr. Org. Chem., 2021, 25(21), 2625-2649.
[http://dx.doi.org/10.2174/1385272825666210706123734];
(c) Kaur, N. Microwave-assisted synthesis: fused five membered N-heterocycles. Synth. Commun., 2015, 45(7), 789-823.
[http://dx.doi.org/10.1080/00397911.2013.824984];
(d) Kaur, N. Six membered heterocycles with three and four N-heteroatoms: microwave-assisted synthesis. Synth. Commun., 2015, 45(2), 151-172.
[http://dx.doi.org/10.1080/00397911.2013.813550];
(e) Kaur, N. Palladium catalysts: synthesis of five-membered N-heterocycles fused with other heterocycles. Catal. Rev., Sci. Eng., 2015, 57(1), 1-78.
[http://dx.doi.org/10.1080/01614940.2014.976118];
(f) Kaur, N. Ultrasound assisted synthesis of six-membered N-heterocycles. Mini Rev. Org. Chem., 2018, 15(6), 520-536.
[http://dx.doi.org/10.2174/1570193x15666180221152535]
[31]
(a) Martins, P.; Jesus, J.; Santos, S.; Raposo, L.; Roma-Rodrigues, C.; Baptista, P.; Fernandes, A. Heterocyclic anticancer compounds: recent advances and the paradigm shift towards the use of nanomedicine’s toolbox. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876];
(b) Kaur, N.; Verma, Y.; Grewal, P.; Ahlawat, N.; Bhardwaj, P.; Jangid, N.K. Photochemical C–N bond forming reactions for the synthesis of five-membered fused N- heterocycles. Synth. Commun., 2020, 50(9), 1286-1334.
[http://dx.doi.org/10.1080/00397911.2020.1713378];
(c) Kaur, N.; Kishore, D. Nitrogen-containing six-membered heterocycles: solid-phase synthesis. Synth. Commun., 2014, 44(9), 1173-1211.
[http://dx.doi.org/10.1080/00397911.2012.760129];
(d) Kaur, N.; Ahlawat, N.; Verma, Y.; Bhardwaj, P.; Grewal, P.; Jangid, N.K. Rhodium catalysis in the synthesis of fused five-membered N- heterocycles. Inorg. Nano-Metal Chem., 2020, 50(12), 1260-1289.
[http://dx.doi.org/10.1080/24701556.2020.1745838];
(e) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Jangid, N.K. Crown ethers for the synthesis of heterocycles. Curr. Org. Chem., 2021, 25(11), 1270-1297.
[http://dx.doi.org/10.2174/1385272825666210521121820]
[32]
(a) Majumder, A.; Gupta, R.; Jain, A. Microwave-assisted synthesis of nitrogen-containing heterocycles. Green Chem. Lett. Rev., 2013, 6(2), 151-182.
[http://dx.doi.org/10.1080/17518253.2012.733032];
(b) Kaur, N. Photochemical reactions as key steps in five-membered N- heterocycle synthesis. Synth. Commun., 2018, 48(11), 1259-1284.
[http://dx.doi.org/10.1080/00397911.2018.1443218];
(c) Kaur, N. Solid-phase synthesis of sulfur containing heterocycles. J. Sulfur Chem., 2018, 39(5), 544-577.
[http://dx.doi.org/10.1080/17415993.2018.1457673];
(d) Kaur, N. Synthesis of five-membered N,N,N- and N,N,N,N-heterocyclic compounds: applications of microwaves. Synth. Commun., 2015, 45(15), 1711-1742.
[http://dx.doi.org/10.1080/00397911.2013.828756];
(e) Kaur, N. Role of microwaves in the synthesis of fused five membered heterocycles with three N-heteroatoms. Synth. Commun., 2015, 45(4), 403-431.
[http://dx.doi.org/10.1080/00397911.2013.824981];
(f) Kaur, N. Recent impact of microwave-assisted synthesis on benzo derivatives of five membered N-heterocycles. Synth. Commun., 2015, 45(5), 539-568.
[http://dx.doi.org/10.1080/00397911.2013.824983]
[33]
Mantaj, J.; Jackson, P.J.M.; Rahman, K.M.; Thurston, D.E. Development of pyrrolobenzodiazepine (PBD)-containing antibody-drug conjugates (ADCs) starting from anthramycin. Angew. Chem. 2017, 129, 474-502; From anthramycin to pyrrolobenzodiazepine (PBD)-containing antibody-drug conjugates (ADCs). Angew. Chem. Int. Ed., 2017, 56, 462-488.
[http://dx.doi.org/10.1002/anie.201510610]
[34]
Sólyom, S.; Tarnawa, I. Non-competitive AMPA antagonists of 2,3-benzodiazepine type. Curr. Pharm. Des., 2002, 8(10), 913-939.
[http://dx.doi.org/10.2174/1381612024607081] [PMID: 11945139]
[35]
Melancon, B.J.; Hopkins, C.R.; Wood, M.R.; Emmitte, K.A.; Niswender, C.M.; Christopoulos, A.; Conn, P.J.; Lindsley, C.W. Allosteric modulation of seven transmembrane spanning receptors: theory, practice, and opportunities for central nervous system drug discovery. J. Med. Chem., 2012, 55(4), 1445-1464.
[http://dx.doi.org/10.1021/jm201139r] [PMID: 22148748]
[36]
Lemoine, D.; Jiang, R.; Taly, A.; Chataigneau, T.; Specht, A.; Grutter, T. Ligand-gated ion channels: new insights into neurological disorders and ligand recognition. Chem. Rev., 2012, 112(12), 6285-6318.
[http://dx.doi.org/10.1021/cr3000829] [PMID: 22988962]
[37]
Clayton, T.; Poe, M.M.; Rallapalli, S.; Biawat, P. Savić M.M.; Rowlett, J.K.; Gallos, G.; Emala, C.W.; Kaczorowski, C.C.; Stafford, D.C.; Arnold, L.A.; Cook, J.M. A review of the updated pharmacophore for the alpha 5 GABA(A) benzodiazepine receptor model. Int. J. Med. Chem., 2015, 2015, 1-54.
[http://dx.doi.org/10.1155/2015/430248] [PMID: 26682068]
[38]
Sigel, E.; Ernst, M. The benzodiazepine binding sites of GABAA receptors. Trends Pharmacol. Sci., 2018, 39(7), 659-671.
[http://dx.doi.org/10.1016/j.tips.2018.03.006] [PMID: 29716746]
[39]
Hewings, D.S.; Rooney, T.P.C.; Jennings, L.E.; Hay, D.A.; Schofield, C.J.; Brennan, P.E.; Knapp, S.; Conway, S.J. Progress in the development and application of small molecule inhibitors of bromodomain-acetyl-lysine interactions. J. Med. Chem., 2012, 55(22), 9393-9413.
[http://dx.doi.org/10.1021/jm300915b] [PMID: 22924434]
[40]
Zhang, G.; Smith, S.G.; Zhou, M.M. Discovery of chemical inhibitors of human bromodomains. Chem. Rev., 2015, 115(21), 11625-11668.
[http://dx.doi.org/10.1021/acs.chemrev.5b00205] [PMID: 26492937]
[41]
Assimon, V.A.; Tang, Y.; Vargas, J.D.; Lee, G.J.; Wu, Z.Y.; Lou, K.; Yao, B.; Menon, M.K.; Pios, A.; Perez, K.C.; Madriaga, A.; Buchowiecki, P.K.; Rolfe, M.; Shawver, L.; Jiao, X.; Le Moigne, R.; Zhou, H.J.; Anderson, D.J. CB-6644 is a selective inhibitor of the RUVBL1/2 complex with anticancer activity. ACS Chem. Biol., 2019, 14(2), 236-244.
[http://dx.doi.org/10.1021/acschembio.8b00904] [PMID: 30640450]
[42]
Velasco-Rubio, Á.; Varela, J.A.; Saá, C. Recent advances in transition-metal-catalyzed oxidative annulations to benzazepines and benzodiazepines. Adv. Synth. Catal., 2020, 362(22), 4861-4875.
[http://dx.doi.org/10.1002/adsc.202000808]
[43]
Molina, P.; Tárraga, A.; Curiel, D.; de Arellano, C.R. Synthesis of imidazo[1,5-c][1,3]benzodiazepines via an aza-Wittig/carbodiimide-mediated annulation process. Tetrahedron, 1997, 53(46), 15895-15902.
[http://dx.doi.org/10.1016/S0040-4020(97)10050-3]
[44]
Taylor, J.B.; Tully, W.R. Synthesis of some 1H-1,3-benzodiazepines. J. Chem. Soc., Perkin Trans. 1, 1976, 1(12), 1331-1338.
[http://dx.doi.org/10.1039/p19760001331] [PMID: 985819]
[45]
Horikawa, H.; Hayashi, M.; Sai, H. A novel synthesis of 1,3-benzodiazepin-2-ones using intramolecular Heck reaction. Heterocycles, 1998, 48(7), 1331-1335.
[http://dx.doi.org/10.3987/COM-98-8163]
[46]
Balci, M. Dengiz, C.; Özcan, S.; Şahin, E. New synthetic methodology for construction of the 1,3,4,5-tetrahydro-2H-1,3-benzodiazepin-2-one skeleton. Synthesis, 2010, 2010(8), 1365-1370.
[http://dx.doi.org/10.1055/s-0029-1218673]
[47]
Spiccia, N.; Basutto, J.; Jokisz, P.; Wong, L.S-M.; Meyer, A.G.; Holmes, A.B.; White, J.M.; Ryan, J.H.; Ryan, J.H. 1,3-Dipolar cycloaddition-decarboxylation reactions of an azomethine ylide with isatoic anhydrides: formation of novel benzodiazepinones. Org. Lett., 2011, 13(3), 486-489.
[http://dx.doi.org/10.1021/ol102824k] [PMID: 21175141]
[48]
Geyer, H.M., III; Martin, L.L.; Crichlow, C.A.; Dekow, F.W.; Ellis, D.B.; Kruse, H.; Setescak, L.L.; Worm, M. (.+-.)-4-Aryl-4,5-dihydro-3H-1,3-benzodiazepines. 1. Synthesis and evaluation of (.+-.)-4,5-dihydro-2,3-dimethyl-4-phenyl-3H-1,3-benzodiazepine and analogs as potential antidepressant agents. J. Med. Chem., 1982, 25(4), 340-346.
[http://dx.doi.org/10.1021/jm00346a003] [PMID: 7200144]
[49]
Martin, L.L.; Setescak, L.L.; Worm, M.; Crichlow, C.A.; Geyer, H.M., III; Wilker, J.C. (.+-.)-4-Aryl-4,5-dihydro-3H-1,3-benzodiazepines. 2. Nuclear substituted analogs of (.+-.)-4,5-dihydro-2,3-dimethyl-4-phenyl-3H-1,3-benzodiazepine and (.+-.)-4,5-dihydro-2-ethyl-3-methyl-4-phenyl-3H-1,3-benzodiazepine as potential antidepressant agents. J. Med. Chem., 1982, 25(4), 346-351.
[http://dx.doi.org/10.1021/jm00346a004] [PMID: 7069712]
[50]
(a) Wang, G.; Liu, C.; Li, B.; Wang, Y.; Van Hecke, K.; Van der Eycken, E.V.; Pereshivko, O.P.; Peshkov, V.A. Diversity-oriented synthesis of 1,3-benzodiazepines. Tetrahedron, 2017, 73(44), 6372-6380.
[http://dx.doi.org/10.1016/j.tet.2017.09.034];
(b) Kaur, N. Synthetic routes to seven and higher membered S -heterocycles by use of metal and nonmetal catalyzed reactions. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(3), 186-209.
[http://dx.doi.org/10.1080/10426507.2018.1539493];
(c) Kaur, N. Synthesis of six- and seven-membered heterocycles under ultrasound irradiation. Synth. Commun., 2018, 48(11), 1235-1258.
[http://dx.doi.org/10.1080/00397911.2018.1434894];
(d) Kaur, N. Metal catalysts: applications in higher-membered N-heterocycles synthesis. J. Indian Chem. Soc., 2015, 12(1), 9-45.
[http://dx.doi.org/10.1007/s13738-014-0451-5];
(e) Kaur, N. Synthesis of six- and seven-membered and larger heterocylces using Au and Ag catalysts. Inorg. Nano-Metal Chem., 2018, 48(11), 541-568.
[http://dx.doi.org/10.1080/24701556.2019.1567544];
(f) Kaur, N. Photochemical irradiation: Seven and higher membered O -heterocycles. Synth. Commun., 2018, 48(23), 2935-2964.
[http://dx.doi.org/10.1080/00397911.2018.1514051];
(g) Kaur, N.; Kishore, D. Synthetic strategies applicable in the synthesis of privileged scaffold: 1,4-benzodiazepine. Synth. Commun., 2014, 44(10), 1375-1413.
[http://dx.doi.org/10.1080/00397911.2013.772202];
(h) Kaur, N. Seven-membered N -heterocycles: metal and nonmetal assisted synthesis. Synth. Commun., 2019, 49(8), 987-1030.
[http://dx.doi.org/10.1080/00397911.2019.1574351];
i) Kaur, N.; Kishore, D. Microwave-assisted synthesis of seven and higher membered N-heterocycles. Synth. Commun., 2014, 44(18), 2577-2614.
[http://dx.doi.org/10.1080/00397911.2013.783922];
j) Kaur, N. Synthesis of seven and higher-membered heterocycles using ruthenium catalysts. Synth. Commun., 2019, 49(5), 617-661.
[http://dx.doi.org/10.1080/00397911.2018.1555711]
[51]
Chappell, A.S.; Sander, J.W.; Brodie, M.J.; Chadwick, D.; Lledo, A.; Zhang, D.; Bjerke, J.; Kiesler, G.M.; Arroyo, S. A crossover, add-on trial of talampanel in patients with refractory partial seizures. Neurology, 2002, 58(11), 1680-1682.
[http://dx.doi.org/10.1212/WNL.58.11.1680] [PMID: 12058100]
[52]
Siegel, S.; Cleve, A.; Haendler, B.; Eis, K. 1-Phenyl-4,5-dihydro-3H-2,3- benzodiazepine derivatives. Patent no. WO2016062688 A1, 2016.
[53]
Siegel, S.; Baeurle, S.; Cleve, A.; Haendler, B.; Fernandez-Montalvan, A.E. Preparation of 9-substituted 2,3-benzodiazepines as bromodomain inhibitors. Patent no. O 2015121230 A1, 2015.
[54]
Ding, Y.L.; Zhao, Y.L.; Niu, S.S.; Wu, P.; Cheng, Y. Asymmetric synthesis of multifunctionalized 2,3-benzodiazepines by a one-pot N-heterocyclic carbene/chiral palladium sequential catalysis. J. Org. Chem., 2020, 85(2), 612-621.
[http://dx.doi.org/10.1021/acs.joc.9b02693] [PMID: 31804078]
[55]
Kosugi, M.; Kameyama, M.; Migita, T. Palladium-catalyzed aromatic amination of aryl bromides with N,N-di-ethylamino-tributyltin. Chem. Lett., 1983, 12(6), 927-928.
[http://dx.doi.org/10.1246/cl.1983.927]
[56]
Kosugi, M.; Kameyama, M.; Sano, H.; Migita, T. Palladium-catalyzed aromatic amination of aryl halides by means of aminotin compounds. Nippon Kagaku Kaishi, 1985, 3(3), 547-551.
[http://dx.doi.org/10.1246/nikkashi.1985.547]
[57]
Hartwig, J.F. Transition metal catalyzed synthesis of arylamines and aryl ethers from aryl halides and triflates: scope and mechanism. Angew. Chem. Int. Ed., 1998, 37(15), 2046-2067.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980817)37:15<2046:AID-ANIE2046>3.0.CO;2-L] [PMID: 29711045]
[58]
Yang, B.H.; Buchwald, S.L. Palladium-catalyzed amination of aryl halides and sulfonates. J. Organomet. Chem., 1999, 576(1-2), 125-146.
[http://dx.doi.org/10.1016/S0022-328X(98)01054-7]
[59]
Lundgren, R.J.; Stradiotto, M. Addressing challenges in palladium-catalyzed cross-coupling reactions through ligand design. Chemistry, 2012, 18(32), 9758-9769.
[http://dx.doi.org/10.1002/chem.201201195] [PMID: 22786694]
[60]
Surry, D.S.; Buchwald, S.L. Dialkylbiaryl phosphines in Pd-catalyzed amination: a user’s guide. Chem. Sci. (Camb.), 2011, 2(1), 27-50.
[http://dx.doi.org/10.1039/C0SC00331J] [PMID: 22432049]
[61]
Wolfe, J.P.; Wagaw, S.; Marcoux, J.F.; Buchwald, S.L. Rational development of practical catalysts for aromatic carbon-nitrogen bond formation. Acc. Chem. Res., 1998, 31(12), 805-818.
[http://dx.doi.org/10.1021/ar9600650]
[62]
Hartwig, J.F. Palladium-catalyzed amination of aryl halides and related reactions. In: Handbook of Organopalladium Chemistry for Organic Synthesis; Wiley-Interscience: New York, 2003.
[63]
Heravi, M.M.; Kheilkordi, Z.; Zadsirjan, V.; Heydari, M.; Malmir, M. Buchwald-Hartwig reaction: An overview. J. Organomet. Chem., 2018, 861, 17-104.
[http://dx.doi.org/10.1016/j.jorganchem.2018.02.023]
[64]
Ruiz-Castillo, P.; Buchwald, S.L. Applications of palladium-catalyzed C-N cross-coupling reactions. Chem. Rev., 2016, 116(19), 12564-12649.
[http://dx.doi.org/10.1021/acs.chemrev.6b00512] [PMID: 27689804]
[65]
Buchwald, S.L.; Mauger, C.; Mignani, G.; Scholz, U. Industrial-scale palladium-catalyzed coupling of aryl halides and amines - a personal account. Adv. Synth. Catal., 2006, 348(1-2), 23-39.
[http://dx.doi.org/10.1002/adsc.200505158]
[66]
Torborg, C.; Beller, M. Recent applications of palladium-catalyzed coupling reactions in the pharmaceutical, agrochemical, and fine chemical industries. Adv. Synth. Catal., 2009, 351(18), 3027-3043.
[http://dx.doi.org/10.1002/adsc.200900587]
[67]
Schlummer, B.; Scholz, U. Palladium-catalyzed C-N and C-O coupling - a practical guide from an industrial vantage point. Adv. Synth. Catal., 2004, 346(13-15), 1599-1626.
[http://dx.doi.org/10.1002/adsc.200404216]
[68]
Corbet, J.P.; Mignani, G. Selected patented cross-coupling reaction technologies. Chem. Rev., 2006, 106(7), 2651-2710.
[http://dx.doi.org/10.1021/cr0505268] [PMID: 16836296]
[69]
Dorel, R.; Grugel, C.P.; Haydl, A.M. The Buchwald-Hartwig amination after 25 years. Angew. Chem. Int. Ed., 2019, 58(48), 17118-17129.
[http://dx.doi.org/10.1002/anie.201904795] [PMID: 31166642]
[70]
Westmoreland, I.; Munslow, I.J.; O’Shaughness, P.N.; Scott, P. Chiral titanium bis(aminopyridinates) based on a biaryl backbone. Organometallics, 2003, 22(14), 2972-2976.
[http://dx.doi.org/10.1021/om030055k]
[71]
Greco, G.E.; Popa, A.I.; Schrock, R.R. Synthesis of aryl-substituted triamidoamine ligands and molybdenum(IV) complexes that contain them. Organometallics, 1998, 17(26), 5591-5593.
[http://dx.doi.org/10.1021/om980764b]
[72]
Kwong, F.Y.; Buchwald, S.L. Mild and efficient copper-catalyzed amination of aryl bromides with primary alkylamines. Org. Lett., 2003, 5(6), 793-796.
[http://dx.doi.org/10.1021/ol0273396] [PMID: 12633073]
[73]
Kwong, F.Y.; Klapars, A.; Buchwald, S.L. Copper-catalyzed coupling of alkylamines and aryl iodides: an efficient system even in an air atmosphere. Org. Lett., 2002, 4(4), 581-584.
[http://dx.doi.org/10.1021/ol0171867] [PMID: 11843596]
[74]
Gujadhur, R.; Venkataraman, D.; Kintigh, J.T. Formation of arylnitrogen bonds using a soluble copper(I) catalyst. Tetrahedron Lett., 2001, 42(29), 4791-4793.
[http://dx.doi.org/10.1016/S0040-4039(01)00888-7]
[75]
Wolfe, J.P.; Buchwald, S.L. Palladium-catalyzed amination of aryl iodides. J. Org. Chem., 1996, 61(3), 1133-1135.
[http://dx.doi.org/10.1021/jo951844h]
[76]
Guram, A.S.; Rennels, R.A.; Buchwald, S.L. A simple catalytic method for the conversion of aryl bromides to arylamines. Angew. Chem. Int. Ed. Engl., 1995, 34(12), 1348-1350.
[http://dx.doi.org/10.1002/anie.199513481]
[77]
Driver, M.S.; Hartwig, J.F. A second-generation catalyst for aryl halide amination: mixed secondary amines from aryl halides and primary amines catalyzed by (DPPF)PdCl2. J. Am. Chem. Soc., 1996, 118(30), 7217-7218.
[http://dx.doi.org/10.1021/ja960937t]
[78]
Wolfe, J.P.; Buchwald, S.L. Scope and limitations of the Pd/BINAP-catalyzed amination of aryl bromides. J. Org. Chem., 2000, 65(4), 1144-1157.
[http://dx.doi.org/10.1021/jo9916986] [PMID: 10814066]
[79]
Wolfe, J.P.; Buchwald, S.L. Improved functional group compatibility in the palladium-catalyzed amination of aryl bromides. Tetrahedron Lett., 1997, 38(36), 6359-6362.
[http://dx.doi.org/10.1016/S0040-4039(97)01463-9]
[80]
Wolfe, J.P.; Wagaw, S.; Buchwald, S.L. An improved catalyst system for aromatic carbon-nitrogen bond formation: the possible involvement of bis(phosphine) palladium complexes as key intermediates. J. Am. Chem. Soc., 1996, 118(30), 7215-7216.
[http://dx.doi.org/10.1021/ja9608306]
[81]
Urgaonkar, S.; Xu, J.H.; Verkade, J.G. Application of a new bicyclic triaminophosphine ligand in Pd-catalyzed Buchwald-Hartwig amination reactions of aryl chlorides, bromides, and iodides. J. Org. Chem., 2003, 68(22), 8416-8423.
[http://dx.doi.org/10.1021/jo034994y] [PMID: 14575466]
[82]
Kang, Z.; Zhang, D.; Hu, W. Regio- and diastereoselective three-component reactions via trapping of ammonium ylides with N-alkylquinolinium salts: synthesis of multisubstituted tetra- and dihydroquinoline derivatives. Org. Lett., 2017, 19(14), 3783-3786.
[http://dx.doi.org/10.1021/acs.orglett.7b01664] [PMID: 28696700]
[83]
Christodoulou, M.S.; Beccalli, E.M.; Giofrè, S. Palladium-catalyzed benzodiazepines synthesis. Catalysts, 2020, 10(6), 634-669.
[http://dx.doi.org/10.3390/catal10060634]
[84]
Tao, L.; Pan, X.; Ji, M.; Chen, X.; Liu, Z. Efficient synthesis and cytotoxicity of novel microtubule-stabilizing agent ceratamine A analogues. Tetrahedron, 2017, 73(15), 2159-2171.
[http://dx.doi.org/10.1016/j.tet.2017.03.008]
[85]
Ghosh, T. Regioselective access of alkylidendibenzo[c,f]oxocine framework via cyclocarbopalladation/cross-coupling cascade reactions and reductive Heck strategy. New J. Chem., 2017, 41(8), 2927-2933.
[http://dx.doi.org/10.1039/C6NJ03825E]
[86]
Peshkov, A.A.; Peshkov, V.A.; Pereshivko, O.P.; Van Hecke, K.; Kumar, R.; Van der Eycken, E.V. Heck-Suzuki tandem reaction for the synthesis of 3-benzazepines. J. Org. Chem., 2015, 80(13), 6598-6608.
[http://dx.doi.org/10.1021/acs.joc.5b00670] [PMID: 25996648]
[87]
Peshkov, A.A.; Peshkov, V.A.; Pereshivko, O.P.; Van der Eycken, E.V. Diversification of the 3-benzazepine scaffold applying Ugi/reductive Heck sequence. Tetrahedron, 2015, 71(23), 3863-3871.
[http://dx.doi.org/10.1016/j.tet.2015.04.022]
[88]
Mondal, S.; Debnath, S.; Das, B. Synthesis of seven-membered fused sultones by reductive Heck cyclization: an investigation for stereochemistry through DFT study. Tetrahedron, 2015, 71(3), 476-486.
[http://dx.doi.org/10.1016/j.tet.2014.11.068]
[89]
Bariwal, J.B.; Ermolat’ev, D.S.; Van der Eycken, E.V. Efficient microwave-assisted synthesis of secondary alkylpropargylamines by using A3-coupling with primary aliphatic amines. Chemistry, 2010, 16(11), 3281-3284.
[http://dx.doi.org/10.1002/chem.200903143] [PMID: 20162654]
[90]
Lu, Y.; Johnstone, T.C.; Arndtsen, B.A. Hydrogen-bonding asymmetric metal catalysis with α-amino acids: a simple and tunable approach to high enantioinduction. J. Am. Chem. Soc., 2009, 131(32), 11284-11285.
[http://dx.doi.org/10.1021/ja904185b] [PMID: 19630398]
[91]
Hu, J.; Ma, J.; Zhang, Z.; Zhu, Q.; Zhou, H.; Lu, W.; Han, B. A route to convert CO2: synthesis of 3,4,5-trisubstituted oxazolones. Green Chem., 2015, 17(2), 1219-1225.
[http://dx.doi.org/10.1039/C4GC02033B]
[92]
Robbins, D.W.; Hartwig, J.F. A simple, multidimensional approach to high-throughput discovery of catalytic reactions. Science, 2011, 333(6048), 1423-1427.
[http://dx.doi.org/10.1126/science.1207922] [PMID: 21903809]
[93]
Dorn, S.C.M.; Olsen, A.K.; Kelemen, R.E.; Shrestha, R.; Weix, D.J. Nickel-catalyzed reductive arylation of activated alkynes with aryl iodides. Tetrahedron Lett., 2015, 56(23), 3365-3367.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.120] [PMID: 26028781]
[94]
Lehmann, F.; Pettersen, A.; Currier, E.A.; Sherbukhin, V.; Olsson, R.; Hacksell, U.; Luthman, K. Novel potent and efficacious nonpeptidic urotensin II receptor agonists. J. Med. Chem., 2006, 49(7), 2232-2240.
[http://dx.doi.org/10.1021/jm051121i] [PMID: 16570919]
[95]
Zhang, M.; Yang, X.Y.; Tang, W.; Groeneveld, T.W.L.; He, P.L.; Zhu, F.H.; Li, J.; Lu, W.; Blom, A.M.; Zuo, J.P.; Nan, F.J. Discovery and structural modification of 1-phenyl-3-(1-phenylethyl)urea derivatives as inhibitors of complement. ACS Med. Chem. Lett., 2012, 3(4), 317-321.
[http://dx.doi.org/10.1021/ml300005w] [PMID: 24900471]
[96]
Sanphanya, K.; Wattanapitayakul, S.K.; Prangsaengtong, O.; Jo, M.; Koizumi, K.; Shibahara, N.; Priprem, A.; Fokin, V.V.; Vajragupta, O. Synthesis and evaluation of 1-(substituted)-3-prop-2-ynylureas as antiangiogenic agents. Bioorg. Med. Chem. Lett., 2012, 22(8), 3001-3005.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.029] [PMID: 22414612]
[97]
Chan, C.K.; Tsai, Y.L.; Chan, Y.L.; Chang, M.Y. Synthesis of substituted 2,3-benzodiazepines. J. Org. Chem., 2016, 81(20), 9836-9847.
[http://dx.doi.org/10.1021/acs.joc.6b01935] [PMID: 27715040]
[98]
Asamdi, M.; Shaikh, M.M.; Chauhan, P.M.; Chikhalia, K.H. Palladium-catalyzed [5+2] oxidative annulation of N-Arylhydrazones with alkynes through C H activation to synthesize Benzo[d][1,2]diazepines. Tetrahedron, 2018, 74(27), 3719-3727.
[http://dx.doi.org/10.1016/j.tet.2018.05.051]
[99]
Faltracco, M.; Cotogno, S.; Vande Velde, C.M.L.; Ruijter, E. Catalytic asymmetric synthesis of diketopiperazines by intramolecular Tsuji-Trost allylation. J. Org. Chem., 2019, 84(18), 12058-12070.
[http://dx.doi.org/10.1021/acs.joc.9b01994] [PMID: 31446758]
[100]
Felix, A.M.; Fryer, R.I. Oxidation of 2,4-benzodiazepin-3-ones. J. Heterocycl. Chem., 1968, 5(2), 291-293.
[http://dx.doi.org/10.1002/jhet.5570050227]
[101]
Bocelli, G.; Catellani, M.; Cugini, F.; Ferraccioli, R. A new and efficient palladium-catalyzed synthesis of a 2,3,4,5-tetrahydro-1H-2,4-benzodiazepine-1,3-dione derivative. Tetrahedron Lett., 1999, 40(13), 2623-2624.
[http://dx.doi.org/10.1016/S0040-4039(99)00232-4]
[102]
Butula, L.J.; Kolbah, D.; Butula, I. On catalytic hydrogenation of phthalimides. Croat. Chem. Acta, 1972, 44, 481-485.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy