Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Self-micro Emulsifying Drug Delivery via Intestinal Lymphatics: A Lucrative Approach to Drug Targeting

Author(s): Darshan Petkar Ramachandra and Preethi Sudheer*

Volume 11, Issue 3, 2023

Published on: 06 March, 2023

Page: [238 - 264] Pages: 27

DOI: 10.2174/2211738511666230112123235

Price: $65

conference banner
Abstract

The intestinal lymphatics are considered one of the most specialized pathways, which promote the absorption of various agents such as vitamins, lipids, xenobiotics, and lipophilic substances. The intestinal lymphatics have provided various advantages like bypassing first-pass effects, and improved bioavailability. The oral delivery of poor hydrophilic drugs can be improved by employing a lipid-based formulation strategy. Self-micro emulsifying drug delivery systems (SMEDDS) are one of the vivacious strategies based on lipid-based drug delivery that have shown their effects by improving the solubility and bioavailability of the therapeutic agents. This review is an insight into the functions, targets, mechanisms, and carriers involved in intestinal lymphatics. Also, the review illustrates the types, formulation requirements, and mechanism of action of SMEDDS in detail. In addition, it describes the targeting, types, physicochemical properties, biological barriers, and benefits of lymphatic targeting in therapy. Finally, the marketed formulations and future aspects of SMEDDS formulations are addressed.

Keywords: Self-micro emulsifying system, lymphatics, targeted delivery, nano-formulation, immune cells, systemic circulation, new molecular substances.

Graphical Abstract
[1]
Patel MJ, Patel SS, Patel NM, Patel MM. A self-microemulsifying drug delivery system (SMEDDS). Int J Pharm Sci Rev Res 2010; 4(3): 29-35.
[2]
Lee DW, Marasini N, Poudel BK, et al. Application of Box–Behnken design in the preparation and optimization of fenofibrate-loaded self-microemulsifying drug delivery system (SMEDDS). J Microencapsul 2014; 31(1): 31-40.
[http://dx.doi.org/10.3109/02652048.2013.805837] [PMID: 23834315]
[3]
Singh AK, Chaurasiya A, Singh M, Upadhyay SC, Mukherjee R, Khar RK. Exemestane loaded self-microemulsifying drug delivery system (SMEDDS): Development and optimization. AAPS PharmSciTech 2008; 9(2): 628-34.
[http://dx.doi.org/10.1208/s12249-008-9080-6] [PMID: 18473177]
[4]
Ansari KA, Pagar KP, Anwar S, Vavia PR. Design and optimization of self-microemulsifying drug delivery system (SMEDDS) of felodipine for chronotherapeutic application. Braz J Pharm Sci 2014; 50(1): 203-12.
[http://dx.doi.org/10.1590/S1984-82502011000100021]
[5]
Skobe M, Detmar M. Structure, function, and molecular control of the skin lymphatic system. J Investig Dermatol Symp Proc 2000; 5(1): 14-9.
[http://dx.doi.org/10.1046/j.1087-0024.2000.00001.x] [PMID: 11147669]
[6]
Singh I, Swami R, Khan W, Sistla R. Delivery Systems for Lymphatic Targeting. In: Domb A, Khan W, Eds. Focal Controlled Drug Delivery Advances in Delivery Science and Technology. Springer: Boston 2014. 429-458
[http://dx.doi.org/10.1007/978-1-4614-9434-8_20]
[7]
Verghese. Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles. Bone 2011; 23(1): 1-7.
[8]
Baheti A, Srivastava S, Sahoo D, et al. Development and pharmacokinetic evaluation of industrially viable self-microemulsifying drug delivery systems (SMEDDS) for terbinafine. Curr Drug Deliv 2016; 13(1): 65-75.
[http://dx.doi.org/10.2174/1567201812666150120153357] [PMID: 25600982]
[9]
Thomas SN, Schudel A. Overcoming transport barriers for interstitial-, lymphatic-, and lymph node-targeted drug delivery. Curr Opin Chem Eng 2015; 7: 65-74.
[http://dx.doi.org/10.1016/j.coche.2014.11.003] [PMID: 25745594]
[10]
Reddy LHV, Murthy RSR. Lymphatic transport of orally administered drugs. Indian J Exp Biol 2002; 40(10): 1097-109.
[PMID: 12693689]
[11]
Maher S, Mrsny RJ, Brayden DJ. Intestinal permeation enhancers for oral peptide delivery. Adv Drug Deliv Rev 2016; 106(Pt B): 277-319.
[http://dx.doi.org/10.1016/j.addr.2016.06.005] [PMID: 27320643]
[12]
Yáñez JA, Wang SWJ, Knemeyer IW, Wirth MA, Alton KB. Intestinal lymphatic transport for drug delivery. Adv Drug Deliv Rev 2011; 63(10-11): 923-42.
[http://dx.doi.org/10.1016/j.addr.2011.05.019] [PMID: 21689702]
[13]
Erdogan A, Lee YY. Colon and pelvic floor anatomy and physiology. In: Satish SC, Rao YYL, Uday CG, Eds. Clinical and Basic Neurogastroenterology and Motility. Amsterdam: Elsevier 2020; pp. 113-26.
[http://dx.doi.org/10.1016/B978-0-12-813037-7.00008-X]
[14]
Sheue Nee Ling S, Magosso E, Abdul Karim Khan N, Hay Yuen K, Anne Barker S. Enhanced oral bioavailability and intestinal lymphatic transport of a hydrophilic drug using liposomes. Drug Dev Ind Pharm 2006; 32(3): 335-45.
[http://dx.doi.org/10.1080/03639040500519102] [PMID: 16556538]
[15]
Aji Alex MR, Chacko AJ, Jose S, Souto EB. Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur J Pharm Sci 2011; 42(1-2): 11-8.
[http://dx.doi.org/10.1016/j.ejps.2010.10.002] [PMID: 20971188]
[16]
Wilting J, Becker J. The lymphatic vascular system: Much more than just a sewer. Cell Biosci 2022; 12(1): 157.
[http://dx.doi.org/10.1186/s13578-022-00898-0] [PMID: 36109802]
[17]
Solari E, Marcozzi C, Negrini D, Moriondo A. Interplay between gut lymphatic vessels and Microbiota. Cells 2021; 10(10): 2584.
[http://dx.doi.org/10.3390/cells10102584] [PMID: 34685564]
[18]
Hess G. Intestinal immune system. Int J Hyg Environ Health 1991; 191: 216-31.
[19]
Rahman MA, Hussain A, Hussain MS, Mirza MA, Iqbal Z. Role of excipients in successful development of self-emulsifying/microemulsifying drug delivery system (SEDDS/SMEDDS). Drug Dev Ind Pharm 2013; 39(1): 1-19.
[http://dx.doi.org/10.3109/03639045.2012.660949] [PMID: 22372916]
[20]
Takakura Y, Matsumoto S, Hashida M, Sezaki H. Enhanced lymphatic delivery of mitomycin C conjugated with dextran. Cancer Res 1984; 44(6): 2505-10.
[PMID: 6202398]
[21]
Khan W, Sharma SS, Kumar N. Bioanalytical method development, pharmacokinetics, and toxicity studies of paromomycin and paromomycin loaded in albumin microspheres. Drug Test Anal 2013; 5(6): 453-60.
[http://dx.doi.org/10.1002/dta.339] [PMID: 22447374]
[22]
Liggins RT, D’Amours S, Demetrick JS, Machan LS, Burt HM. Paclitaxel loaded poly(l-lactic acid) microspheres for the prevention of intraperitoneal carcinomatosis after a surgical repair and tumor cell spill. Biomaterials 2000; 21(19): 1959-69.
[http://dx.doi.org/10.1016/S0142-9612(00)00080-6] [PMID: 10941917]
[23]
Ziraksaz Z, Nomani A, Soleimani M, et al. Evaluation of cationic dendrimer and lipid as transfection reagents of short RNAs for stem cell modification. Int J Pharm 2013; 448(1): 231-8.
[http://dx.doi.org/10.1016/j.ijpharm.2013.03.035] [PMID: 23535347]
[24]
Boncel S, Zając P, Koziol KKK. Liberation of drugs from multi-wall carbon nanotube carriers. J Control Release 2013; 169(1-2): 126-40.
[http://dx.doi.org/10.1016/j.jconrel.2013.04.009] [PMID: 23624360]
[25]
Park MJ, Balakrishnan P, Yang SG. Polymeric nanocapsules with SEDDS oil-core for the controlled and enhanced oral absorption of cyclosporine. Int J Pharm 2013; 441(1-2): 757-64.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.018] [PMID: 23089581]
[26]
Deljoo S, Rabiee N, Rabiee M. Curcumin-hybrid nanoparticles in drug delivery system. Asian J Nanosci Mater 2018; 2(1): 66-91.
[27]
Van der Lubben IM, Verhoef JC, Borchard G, Junginger HE. Chitosan for mucosal vaccination. Adv Drug Deliv Rev 2001; 52(2): 139-44.
[http://dx.doi.org/10.1016/S0169-409X(01)00197-1] [PMID: 11718937]
[28]
Datta N, Pal M, Roy U, Mitra R, Pradhan A. World Journal of Pharmaceutical Research. Infection 2014; 13(5): 15.
[29]
Abourobe N, Hassan T. Gad, Mostafa Y. A comprehensive overview of lipid-based drug delivery approach. Records Pharm Biomed Sci 2022; 6(3): 59-68.
[http://dx.doi.org/10.21608/rpbs.2022.231970]
[30]
Karande. A Review on Self micro-emulsifying drug delivery system: A tool for solubility enhancement. IJRAR 2020; 7(1): 101-4.
[31]
Čerpnjak K, Zvonar A, Gašperlin M, Vrečer F. Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs. Acta Pharm 2013; 63(4): 427-45.
[http://dx.doi.org/10.2478/acph-2013-0040] [PMID: 24451070]
[32]
Chavda VP, Shah D. Self-emulsifying delivery systems: One step ahead in improving solubility of poorly soluble drugs. In: Ficai A, Grumezescu AM, Eds. Nanostructures for Cancer Therapy. Amsterdam: Elsevier Inc. 2017; pp. 653-718.
[33]
Maurya SD, Arya RKK, Rajpal G, Dhakar RC. Self-micro emulsifying drug delivery systems (SMEDDS): A review on physico-chemical and biopharmaceutical aspects. J Drug Deliv Ther 2017; 7(3): 55-65.
[http://dx.doi.org/10.22270/jddt.v7i3.1453]
[34]
Singh B, Bandopadhyay S, Kapil R, Singh R. katare O. Self-emulsifying drug delivery systems (SEDDS): Formulation development, characterization, and applications. Crit Rev Ther Drug Carrier Syst 2009; 26(5): 427-51.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i5.10] [PMID: 20136631]
[35]
Pouton CW. Formulation of poorly water-soluble drugs for oral administration: Physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci 2006; 29(3-4): 278-87.
[36]
Talele SG, Gudsoorkar VR, Pharmacy MVPC. Novel Approaches for Solidification of SMEDDS. Int J Pharma Bio Sci 2016; (4): 90-101.
[37]
Tarate B, Chavan R, Bansal A. Oral solid self-emulsifying formulations: A patent review. Recent Pat Drug Deliv Formul 2014; 8(2): 126-43.
[http://dx.doi.org/10.2174/1872211308666140313145836] [PMID: 24628371]
[38]
Cao Y, Marra M, Anderson BD. Predictive relationships for the effects of triglyceride ester concentration and water uptake on solubility and partitioning of small molecules into lipid vehicles. J Pharm Sci 2004; 93(11): 2768-79.
[http://dx.doi.org/10.1002/jps.20126] [PMID: 15389678]
[39]
Pandey V, Kohli S. Lipids and surfactants: The inside story of lipid-based drug delivery systems. Crit Rev Ther Drug Carrier Syst 2018; 35(2): 99-155.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2018016710] [PMID: 29717664]
[40]
Reddy S, Katyayani T, Navatha A, Ramya G. Review on self micro emulsifying drug delivery systems. Int J Res Pharm Sci 2011; 2(3): 382-92.
[41]
Panigrahi KC, Patra CN, Jena GK, et al. Gelucire: A versatile polymer for modified release drug delivery system. Fut J Pharm Sci 2018; 4(1): 102-8.
[http://dx.doi.org/10.1016/j.fjps.2017.11.001]
[42]
Divate MP, Bawkar SU, Chakole RD, Charde MS. Self nano-emulsifying drug delivery system: A review. Int J Adv Sci Res 2021; 12: 1-12.
[43]
Patel D, Sawant KK. Oral bioavailability enhancement of acyclovir by self-microemulsifying drug delivery systems (SMEDDS). Drug Dev Ind Pharm 2007; 33(12): 1318-26.
[http://dx.doi.org/10.1080/03639040701385527] [PMID: 18097805]
[44]
Parmar B, Patel U, Bhimani B, Sanghavi K. SMEDDS : A dominant dosage form which improve bioavailability. Am J Pharmtech Res 2012; 2(4): 54-72.
[45]
Lambkin I, Pinilla C. Targeting approaches to oral drug delivery. Expert Opin Biol Ther 2002; 2(1): 67-73.
[http://dx.doi.org/10.1517/14712598.2.1.67] [PMID: 11772341]
[46]
Muzaffar F, Singh UK, Chauhan L. Review on microemulsion as futuristic drug delivery. Int J Pharm Pharm Sci 2013; 5(3): 39-53.
[47]
Mills JK, Needham D. Targeted drug delivery. Expert Opin Ther Pat 1999; 9(11): 1499-513.
[http://dx.doi.org/10.1517/13543776.9.11.1499]
[48]
Patel RP, Shah P, Barve K, Patel N, Gandhi J. Peyer’s patch: Targeted drug delivery for therapeutics benefits. Novel Drug Delivery Technologies. 2019; p. 121-49.
[49]
Psimadas D, Georgoulias P, Valotassiou V, Loudos G. Molecular nanomedicine towards cancer: 111In-labeled nanoparticles. J Pharm Sci 2012; 101(7): 2271-80.
[http://dx.doi.org/10.1002/jps.23146] [PMID: 22488174]
[50]
Chaturvedi S, Verma A, Saharan VA. Lipid drug carriers for cancer therapeutics: An insight into lymphatic targeting, P-gp, CYP3A4 modulation and bioavailability enhancement. Adv Pharm Bull 2020; 10(4): 524-41.
[http://dx.doi.org/10.34172/apb.2020.064] [PMID: 33072532]
[51]
Mirzaeei S, Tahmasebi N, Islambulchilar Z. Optimization of a self- microemulsifying drug delivery system for oral administration of the lipophilic drug, resveratrol: Enhanced intestinal permeability in rat. Adv Pharm Bull 2022; 2022: 1-18.
[http://dx.doi.org/10.34172/apb.2023.054]
[52]
Komesli Y, Burak Ozkaya A, Ugur Ergur B, Kirilmaz L, Karasulu E. Design and development of a self-microemulsifying drug delivery system of olmesartan medoxomil for enhanced bioavailability. Drug Dev Ind Pharm 2019; 45(8): 1292-305.
[http://dx.doi.org/10.1080/03639045.2019.1607868] [PMID: 30986085]
[53]
Song P, Lai C, Xie J, Zhang Y. The preparation and investigation of spinosin–phospholipid complex self-microemulsifying drug delivery system based on the absorption characteristics of spinosin. J Pharm Pharmacol 2019; 71(6): 898-909.
[http://dx.doi.org/10.1111/jphp.13076] [PMID: 30784084]
[54]
Negi LM, Tariq M, Talegaonkar S. Nano scale self-emulsifying oil based carrier system for improved oral bioavailability of camptothecin derivative by P-Glycoprotein modulation. Colloids Surf B Biointerfaces 2013; 111: 346-53.
[http://dx.doi.org/10.1016/j.colsurfb.2013.06.001] [PMID: 23850745]
[55]
Pouton CW, Porter CJH. Formulation of lipid-based delivery systems for oral administration: Materials, methods and strategies. Adv Drug Deliv Rev 2008; 60(6): 625-37.
[http://dx.doi.org/10.1016/j.addr.2007.10.010] [PMID: 18068260]
[56]
Mendez R, Abboud H, Burdick J, et al. Reduced intrapatient variability of cyclosporine pharmacokinetics in renal transplant recipients switched from oral sandimmune to neoral. Clin Ther 1999; 21(1): 160-71.
[http://dx.doi.org/10.1016/S0149-2918(00)88276-4] [PMID: 10090433]
[57]
Backman TWH, Cao Y, Girke T. ChemMine tools: An online service for analyzing and clustering small molecules. Nucleic Acids Res 2011; 39(Web Server issue)(Suppl.): W486-91.
[http://dx.doi.org/10.1093/nar/gkr320] [PMID: 21576229]
[58]
MacGregor KJ, Embleton JK, Lacy JE, et al. Influence of lipolysis on drug absorption from the gastro-intestinal tract. Adv Drug Deliv Rev 1997; 25(1): 33-46.
[http://dx.doi.org/10.1016/S0169-409X(96)00489-9]
[59]
Pouton CW. Lipid formulations for oral administration of drugs: Non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur J Pharm Sci 2000; 11 (Suppl. 2): S93-8.
[http://dx.doi.org/10.1016/S0928-0987(00)00167-6] [PMID: 11033431]
[60]
Strickley RG. Solubilizing excipients in oral and injectable formulations. Pharm Res 2004; 21(2): 201-30.
[http://dx.doi.org/10.1023/B:PHAM.0000016235.32639.23] [PMID: 15032302]
[61]
Aungst BJ. Absorption enhancers: Applications and advances. AAPS J 2012; 14(1): 10-8.
[http://dx.doi.org/10.1208/s12248-011-9307-4] [PMID: 22105442]
[62]
Savla R, Browne J, Plassat V, Wasan KM, Wasan EK. Review and analysis of FDA approved drugs using lipid-based formulations. Drug Dev Ind Pharm 2017; 43(11): 1743-58.
[http://dx.doi.org/10.1080/03639045.2017.1342654] [PMID: 28673096]
[63]
Schmidt S, Vetter K. Stellenwert des oxytocin-belastungstests. Geburtshilfe Frauenheilkd 2001; 61(7): 528-9.
[64]
Flaten GE, Luthman K, Vasskog T, Brandl M. Drug permeability across a phospholipid vesicle-based barrier. Eur J Pharm Sci 2008; 34(2-3): 173-80.
[http://dx.doi.org/10.1016/j.ejps.2008.04.001] [PMID: 18499410]
[65]
Hauss DJ, Ed. Oral lipid-based formulations: Enhancing the bioavailability of poorly water-soluble drugs. (1st ed.), Boca Raton: CRC Press 2007.
[http://dx.doi.org/10.3109/9781420017267]
[66]
Mishra V, Nayak P, Yadav N, Singh M, Tambuwala MM, Aljabali AAA. Orally administered self-emulsifying drug delivery system in disease management: Advancement and patents. Expert Opin Drug Deliv 2021; 18(3): 315-32.
[http://dx.doi.org/10.1080/17425247.2021.1856073] [PMID: 33232184]
[67]
Perloff MD, Von Moltke LL, Marchand JE, Greenblatt DJ. Ritonavir induces P-glycoprotein expression, multidrug resistance-associated protein (MRP1) expression, and drug transporter-mediated activity in a human intestinal cell line. J Pharm Sci 2001; 90(11): 1829-37.
[http://dx.doi.org/10.1002/jps.1133] [PMID: 11745741]
[68]
Akhtar N, Ahad A, Khar RK, Jaggi M, Aqil M, Iqbal Z, et al. The emerging role of P-glycoprotein inhibitors in drug delivery: A patent review. Expert Opin Ther Pat 2011; 21(4): 561-76.
[69]
Gottemukkula LD, Sampathi S. Snedds as lipid-based nanocarrier systems: Concepts and formulation insights. Int J Appl Pharm 2022; 14(2): 1-9.
[70]
Laffleur F, Keckeis V. WITHDRAWN: Advances in drug delivery systems: Work in progress still needed? Int J Pharm X 2020; 2: 100050.
[http://dx.doi.org/10.1016/j.ijpx.2020.100050] [PMID: 32577616]
[71]
Müllertz A, Ogbonna A, Ren S, Rades T. New perspectives on lipid and surfactant based drug delivery systems for oral delivery of poorly soluble drugs. J Pharm Pharmacol 2010; 62(11): 1622-36.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01107.x] [PMID: 21039546]
[72]
Plaza-Oliver M, Santander-Ortega MJ, Lozano MV. Current approaches in lipid-based nanocarriers for oral drug delivery. Drug Deliv Transl Res 2021; 11(2): 471-97.
[http://dx.doi.org/10.1007/s13346-021-00908-7] [PMID: 33528830]
[73]
Sim T, Lim C, Hoang NH, et al. Nanomedicines for oral administration based on diverse nanoplatform. J Pharm Investig 2016; 46(4): 351-62.
[http://dx.doi.org/10.1007/s40005-016-0255-y]
[74]
Nan K, Feig VR, Ying B, et al. Mucosa-interfacing electronics. Nat Rev Mater 2022; 7(11): 908-25.
[http://dx.doi.org/10.1038/s41578-022-00477-2] [PMID: 36124042]
[75]
Allam-Ndoul B, Castonguay-Paradis S, Veilleux A. Gut Microbiota and intestinal trans-epithelial permeability. Int J Mol Sci 2020; 21(17): 6402.
[http://dx.doi.org/10.3390/ijms21176402] [PMID: 32899147]
[76]
Ye J, Gao Y, Ji M, et al. Oral SMEDDS promotes lymphatic transport and mesenteric lymph nodes target of chlorogenic acid for effective T-cell antitumor immunity. J Immunother Cancer 2021; 9(7): e002753.
[http://dx.doi.org/10.1136/jitc-2021-002753] [PMID: 34272308]
[77]
Moss DM, Curley P, Kinvig H, Hoskins C, Owen A. The biological challenges and pharmacological opportunities of orally administered nanomedicine delivery. Expert Rev Gastroenterol Hepatol 2018; 12(3): 223-36.
[http://dx.doi.org/10.1080/17474124.2018.1399794] [PMID: 29088978]
[78]
Yousef M, Silva D, Bou Chacra N, Davies N, Löbenberg R. The lymphatic system: A sometimes-forgotten compartment in pharmaceutical sciences. J Pharm Pharm Sci 2021; 24: 533-47.
[http://dx.doi.org/10.18433/jpps32222] [PMID: 34694988]
[79]
Sun M, Zhai X, Xue K, et al. Intestinal absorption and intestinal lymphatic transport of sirolimus from self-microemulsifying drug delivery systems assessed using the single-pass intestinal perfusion (SPIP) technique and a chylomicron flow blocking approach: Linear correlation with oral bioavailabilities in rats. Eur J Pharm Sci 2011; 43(3): 132-40.
[http://dx.doi.org/10.1016/j.ejps.2011.04.011] [PMID: 21530655]
[80]
Trevaskis NL, Kaminskas LM, Porter CJH. From sewer to saviour — targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov 2015; 14(11): 781-803.
[http://dx.doi.org/10.1038/nrd4608] [PMID: 26471369]
[81]
Sarang MK. Colon targeted drug delivery system - an approach for treating colonic ailments. J Crit Rev 2015; 4(2): 25-36.
[82]
Zong S, Pu Y, Li S, Xu B, Zhang Y, Zhang T, et al. Beneficial anti-inflammatory effect of paeonol self-microemulsion-loaded colon-specific capsules on experimental ulcerative colitis rats. Artif Cells, Nanomedicine Biotechnol 2018; 46(sup1): 324-35.
[http://dx.doi.org/10.1080/21691401.2017.1423497]
[83]
Li Q, Zhai W, Jiang Q, et al. Curcumin–piperine mixtures in self-microemulsifying drug delivery system for ulcerative colitis therapy. Int J Pharm 2015; 490(1-2): 22-31.
[http://dx.doi.org/10.1016/j.ijpharm.2015.05.008] [PMID: 25957703]
[84]
Xie Y, Bagby TR, Cohen MS, Forrest ML. Drug delivery to the lymphatic system: Importance in future cancer diagnosis and therapies. Expert Opin Drug Deliv 2009; 6(8): 785-92.
[http://dx.doi.org/10.1517/17425240903085128] [PMID: 19563270]
[85]
Akartas I, Yesim Karasulu H. Preparation and characterization of self-microemulsifying drug delivery system (SMEDDS) of cisplatin for oral use in ovarian cancer treatment. Acta Pol Pharm -. Drug Res (Stuttg) 2020; 77(1): 183-93.
[86]
Fan Q. Hybrid curcumin-phospholipid complex-near- infrared dye oral drug delivery system to inhibit lung metastasis of breast cancer. Int J Nanomed 2019; 14: 3311-30.
[87]
Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL. Lymphatic vessel network structure and physiology. Compr Physiol 2018; 9(1): 207-99.
[http://dx.doi.org/10.1002/cphy.c180015] [PMID: 30549020]
[88]
Jo K, Kim H, Khadka P, et al. Enhanced intestinal lymphatic absorption of saquinavir through supersaturated self-microemulsifying drug delivery systems. Asian J Pharm Sci 2020; 15(3): 336-46.
[http://dx.doi.org/10.1016/j.ajps.2018.11.009] [PMID: 32636951]
[89]
Pandit A, Kedar A, Koyate K. Hollow pessary loaded with lawsone via self-microemulsifying drug delivery system for vaginal candidiasis. J Drug Deliv Sci Technol 2020; 60: 101955.
[http://dx.doi.org/10.1016/j.jddst.2020.101955]
[90]
Jaiswal P, Aggarwal G. Bioavailability enhancdement of poorly soluble drugs by smedds: A review. J Drug Deliv Ther 2013; 3(1)
[http://dx.doi.org/10.22270/jddt.v3i1.360]
[91]
Kovvasu SP, Kunamaneni P, Joshi R, Betageri GV. Self-emulsifying drug delivery systems and their marketed products: A review. Asian J Pharm 2019; 13(2): 73-84.
[92]
Singh N, Rai S, Bhattacharya S. A conceptual analysis of solid self-emulsifying drug delivery system and its associate patents for the treatment of cancer. Recent Pat Nanotechnol 2021; 15(2): 92-104.
[http://dx.doi.org/10.2174/1872210514666200909155516] [PMID: 32912127]
[93]
Chawla S. Recent developments in Pakistan. 2016; 161(June): 385-99.
[94]
Barakoti H, Choudhury A, Dey BK. An outlook for a novel approach: Self-micro emulsifying drug delivery system (SMEDDS). Res J Pharm Technol 2019; 12(4): 2055-64.
[http://dx.doi.org/10.5958/0974-360X.2019.00340.8]
[95]
Ling TJ, Sun J, He ZG. Self-emulsifying drug delivery systems: Strategy for improving oral delivery of poorly soluble drugs. Curr Drug Ther 2008; 2(1): 85-93.
[96]
Neslihan Gursoy R, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother 2004; 58(3): 173-82.
[http://dx.doi.org/10.1016/j.biopha.2004.02.001] [PMID: 15082340]
[97]
Ruiz PSL, Serafini MR, Alves IA, Novoa DMA. Recent progress in self-emulsifying drug delivery systems: A systematic patent review (2011-2020). Crit Rev Ther Drug Carrier Syst 2022; 39(2): 1-77.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2021038490] [PMID: 35378013]
[98]
Wei L, Li J, Guo L, et al. Investigations of a novel self-emulsifying osmotic pump tablet containing carvedilol. Drug Dev Ind Pharm 2007; 33(9): 990-8.
[http://dx.doi.org/10.1080/03639040601150328] [PMID: 17891586]
[99]
Serratoni M, Newton M, Booth S, Clarke A. Controlled drug release from pellets containing water-insoluble drugs dissolved in a self-emulsifying system. Eur J Pharm Biopharm 2007; 65(1): 94-8.
[http://dx.doi.org/10.1016/j.ejpb.2006.07.011] [PMID: 17056237]
[100]
Gugulothu D, Pathak S, Suryavanshi S, Sharma S, Patravale V. Self-microemulsifiyng suppository formulation of β-artemether. AAPS PharmSciTech 2010; 11(3): 1179-84.
[http://dx.doi.org/10.1208/s12249-010-9478-9] [PMID: 20661674]
[101]
Lorscheider M, Gaudin A, Nakhlé J, Veiman KL, Richard J, Chassaing C. Challenges and opportunities in the delivery of cancer therapeutics: Update on recent progress. Ther Deliv 2021; 12(1): 55-76.
[http://dx.doi.org/10.4155/tde-2020-0079] [PMID: 33307811]
[102]
Chae GS, Lee JS, Kim SH, et al. Enhancement of the stability of BCNU using self-emulsifying drug delivery systems (SEDDS) and in vitro antitumor activity of self-emulsified BCNU-loaded PLGA wafer. Int J Pharm 2005; 301(1-2): 6-14.
[http://dx.doi.org/10.1016/j.ijpharm.2005.03.034] [PMID: 16024190]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy