Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Guggulsterone Promotes Nasopharyngeal Carcinoma Cells Exosomal Circfip1L1 to Mediate miR-125a-5p/VEGFA Affecting Tumor Angiogenesis

Author(s): Ting Zhou, Shunli Zhao, Sanyuan Tang, Yongli Wang, Ruoxia Wu, Xiaoyan Zeng, Ping Yang, Xi Zhang* and Xuefei Tian*

Volume 16, Issue 8, 2023

Published on: 13 March, 2023

Article ID: e110123212578 Pages: 11

DOI: 10.2174/1874467216666230111112116

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Nasopharyngeal carcinoma (NPC) is a usual head and neck malignancy. Guggulsterone (GS) has potential in cancer chemoprophylaxis and treatment, but its therapeutic effect on NPC is unknown. We aimed to explore whether GS could promote the secretion of exosomal circFIP1L1 from NPC cells and its regulatory mechanism.

Methods: NPC tissues and adjacent tissues were collected from NPC patients. Human nasopharyngeal epithelial cell lines (NP69) and NPC lines (5-8F, CNE1, and HNE1) were used for in vitro experiments. HNE1 cells were treated with GS (20, 40, 60 μmol/L). The expressions of miR-125a-5p and circFIP1L1 were evaluated by qRT-PCR. Cell proliferation and apoptosis abilities were measured by CCK-8 and flow cytometry. HNE1 cell exosomes were extracted and identified, and the levels of VEGFA and VEGFR2 were detected by ELISA. Then miR-125a-5p was knocked down and overexpressed. HUVECs angiogenesis was determined by the tube formation assay. qRT-PCR and Western blot were utilized to evaluate the expressions of VEGFA, MMP-2, MMP-9, and ICAM-1 in HUVECs.

Results: miR-125a-5p was highly expressed in NPC tissues and cells. GS promoted the secretion of exosomal circFIP1L1 from HNE1 cells to affect HUVECs proliferation and angiogenesis. Overexpression of miR-125a-5p accelerated HUVECs proliferation and angiogenesis. Knocking down miR-125a- 5p inhibited VEGFA expression. In addition, exosomal circFIP1L1 sponged miR-125a-5p, inhibiting the VEGFA pathway to repress HUVECs angiogenesis.

Conclusions: GS promoted exosomal circFIP1L1 in NPC cells to mediate miR-125a-5p/VEGFA axis affecting tumor angiogenesis.

Keywords: Guggulsterone, nasopharyngeal carcinoma, exosomal circFIP1L1, miR-125a-5p, VEGFA, angiogenesis.

Graphical Abstract
[1]
Guo, R.; Mao, Y.P.; Tang, L.L.; Chen, L.; Sun, Y.; Ma, J. The evolution of nasopharyngeal carcinoma staging. Br. J. Radiol., 2019, 92(1102)20190244
[http://dx.doi.org/10.1259/bjr.20190244] [PMID: 31298937]
[2]
Liu, A.; Huang, W.; Zeng, G.; Ma, X.; Zhou, X.; Wang, Y.; Ouyang, C.; Cheng, A. Expression of the Annexin A1 gene is associated with suppression of growth, invasion and metastasis of nasopharyngeal carcinoma. Mol. Med. Rep., 2014, 10(6), 3059-3067.
[http://dx.doi.org/10.3892/mmr.2014.2656] [PMID: 25322804]
[3]
Chen, Y.P.; Chan, A.T.C.; Le, Q.T.; Blanchard, P.; Sun, Y.; Ma, J. Nasopharyngeal carcinoma. Lancet, 2019, 394(10192), 64-80.
[http://dx.doi.org/10.1016/S0140-6736(19)30956-0] [PMID: 31178151]
[4]
Lee, H.M.; Okuda, K.S.; González, F.E.; Patel, V. Current perspectives on nasopharyngeal carcinoma. Adv. Exp. Med. Biol., 2019, 1164, 11-34.
[http://dx.doi.org/10.1007/978-3-030-22254-3_2] [PMID: 31576537]
[5]
Bao, L.; You, B.; Shi, S.; Shan, Y.; Zhang, Q.; Yue, H.; Zhang, J.; Zhang, W.; Shi, Y.; Liu, Y.; Wang, X.; Liu, D.; You, Y. Metastasis-associated miR-23a from nasopharyngeal carcinoma-derived exosomes mediates angiogenesis by repressing a novel target gene TSGA10. Oncogene, 2018, 37(21), 2873-2889.
[http://dx.doi.org/10.1038/s41388-018-0183-6] [PMID: 29520105]
[6]
Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature, 2000, 407(6801), 249-257.
[http://dx.doi.org/10.1038/35025220] [PMID: 11001068]
[7]
Evaluation of the anticancer potential of the traditional medicinal herb Isodon coetsa. South Ind. J. Biol. Sci, 2016, (2), 41-45.
[8]
Weitzen, R.; Epstein, N.; Oberman, B.; Shevetz, R.; Hidvegi, M.; Berger, R. Fermented Wheat Germ Extract (FWGE) as a treatment additive for castration-resistant prostate cancer: A pilot clinical trial. Nutr. Cancer, 2022, 74(4), 1338-1346.
[http://dx.doi.org/10.1080/01635581.2021.1952457] [PMID: 34286638]
[9]
Ostermann, T.; Appelbaum, S.; Poier, D.; Boehm, K.; Raak, C.; Büssing, A. A systematic review and meta-analysis on the survival of can-cer patients treated with a fermented Viscum album L. Extract (iscador): An update of findings. Complement. Med. Res., 2020, 27(4), 260-271.
[http://dx.doi.org/10.1159/000505202] [PMID: 31927541]
[10]
Ilhan, S. Essential oils from Vitex agnus castus L. leaves induces caspase-dependent apoptosis of human multidrug-resistant lung carci-noma cells through intrinsic and extrinsic pathways. Nutr. Cancer, 2021, 73(4), 694-702.
[http://dx.doi.org/10.1080/01635581.2020.1823439] [PMID: 32972249]
[11]
Shishodia, S.; Azu, N.; Rosenzweig, J.A.; Jackson, D.A. Guggulsterone for chemoprevention of cancer. Curr. Pharm. Des., 2016, 22(3), 294-306.
[http://dx.doi.org/10.2174/1381612822666151112153117] [PMID: 26561056]
[12]
Lv, N.; Song, M.Y.; Kim, E.K.; Park, J.W.; Kwon, K.B.; Park, B.H. Guggulsterone, a plant sterol, inhibits NF-κB activation and protects pancreatic β cells from cytokine toxicity. Mol. Cell. Endocrinol., 2008, 289(1-2), 49-59.
[http://dx.doi.org/10.1016/j.mce.2008.02.001] [PMID: 18343024]
[13]
Almazari, I.; Surh, Y.J. Cancer chemopreventive and therapeutic potential of guggulsterone. Top. Curr. Chem., 2012, 329, 35-60.
[http://dx.doi.org/10.1007/128_2012_344] [PMID: 22851157]
[14]
Zhou, Y.; Xia, L.; Lin, J.; Wang, H.; Oyang, L.; Tan, S.; Tian, Y.; Su, M.; Wang, H.; Cao, D.; Liao, Q. Exosomes in nasopharyngeal carci-noma. J. Cancer, 2018, 9(5), 767-777.
[http://dx.doi.org/10.7150/jca.22505] [PMID: 29581754]
[15]
Luo, H.; Yi, B. The role of exosomes in the pathogenesis of nasopharyngeal carcinoma and the involved clinical application. Int. J. Biol. Sci., 2021, 17(9), 2147-2156.
[http://dx.doi.org/10.7150/ijbs.59688] [PMID: 34239345]
[16]
Luo, Y.; Ma, J.; Liu, F.; Guo, J.; Gui, R. Diagnostic value of exosomal CIRCMYC in radioresistant nasopharyngeal carcinoma. Head Neck, 2020, 42(12), 3702-3711.
[http://dx.doi.org/10.1002/hed.26441] [PMID: 32945062]
[17]
Jiang, T. circFIP1L1 sponges miR-1253 to regulate SFN and affects radiosensitivity of nasopharyngeal carcinoma; Nanhua University, 2019.
[18]
Zhang, T.; Lei, F.; Jiang, T.; Xie, L.; Huang, P.; Li, P.; Huang, Y.; Tang, X.; Gong, J.; Lin, Y.; Cheng, A.; Huang, W. H19/miR-675-5p tar-geting sfn enhances the invasion and metastasis of nasalpharyngeal cancer cells. Curr. Mol. Pharmacol., 2019, 12(4), 324-333.
[http://dx.doi.org/10.2174/1874467212666190719120446] [PMID: 31677258]
[19]
Shi, J.J.; Jia, X.L.; Li, M.; Yang, N.; Li, Y.P.; Zhang, X.; Gao, N.; Dang, S.S. Guggulsterone induces apoptosis of human hepatocellular carcinoma cells through intrinsic mitochondrial pathway. World J. Gastroenterol., 2015, 21(47), 13277-13287.
[http://dx.doi.org/10.3748/wjg.v21.i47.13277] [PMID: 26715810]
[20]
Tian, X.; Liu, Y.; Wang, Z.; Wu, S. miR-144 delivered by nasopharyngeal carcinoma-derived EVs stimulates angiogenesis through the FBXW7/HIF-1α/VEGF-A axis. Mol. Ther. Nucleic Acids, 2021, 24, 1000-1011.
[http://dx.doi.org/10.1016/j.omtn.2021.03.016] [PMID: 34094717]
[21]
Shang, A.; Gu, C.; Wang, W.; Wang, X.; Sun, J.; Zeng, B.; Chen, C.; Chang, W.; Ping, Y.; Ji, P.; Wu, J.; Quan, W.; Yao, Y.; Zhou, Y.; Sun, Z.; Li, D. Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p- TGF-β1 axis. Mol. Cancer, 2020, 19(1), 117.
[http://dx.doi.org/10.1186/s12943-020-01235-0] [PMID: 32713345]
[22]
Bhat, A.; Yadav, J.; Thakur, K.; Aggarwal, N.; Tripathi, T.; Chhokar, A.; Singh, T.; Jadli, M.; Bharti, A.C. Exosomes from cervical cancer cells facilitate pro-angiogenic endothelial reconditioning through transfer of Hedgehog–GLI signaling components. Cancer Cell Int., 2021, 21(1), 319.
[http://dx.doi.org/10.1186/s12935-021-02026-3] [PMID: 34167524]
[23]
Zhao, Z.; Wen, J.; Peng, L.; Liu, H. Upregulation of insulin-like growth factor-1 receptor (IGF-1R) reverses the inhibitory effect of let-7g-5p on migration and invasion of nasopharyngeal carcinoma. Med. Sci. Monit., 2019, 25, 5747-5756.
[http://dx.doi.org/10.12659/MSM.914555] [PMID: 31374070]
[24]
Li, T.; Tian, Y.; Wang, Y.; Cui, Z.; He, Z.; Wu, X.; Zhang, Y.; Jiang, H. Kiss1 inhibits the proliferation of nasopharyngeal carcinoma cells via activation of the LKB1/AMPK pathway. Front. Oncol., 2022, 11724251
[http://dx.doi.org/10.3389/fonc.2021.724251] [PMID: 35117986]
[25]
Zhang, Y.; Gong, G.; Qiu, Q.; Han, Y.; Lu, H.; Yin, Y. Radiomics for diagnosis and radiotherapy of nasopharyngeal carcinoma. Front. Oncol., 2022, 11767134
[http://dx.doi.org/10.3389/fonc.2021.767134] [PMID: 35070971]
[26]
Yamada, T.; Sugimoto, K. Guggulsterone and its role in chronic diseases. Adv. Exp. Med. Biol., 2016, 929, 329-361.
[http://dx.doi.org/10.1007/978-3-319-41342-6_15] [PMID: 27771932]
[27]
Zhong, F.; Tong, Z.T.; Fan, L.L.; Zha, L.X.; Wang, F.; Yao, M.Q.; Gu, K.S.; Cao, Y.X. Guggulsterone-induced apoptosis in cholangiocarci-noma cells through ROS/JNK signaling pathway. Am. J. Cancer Res., 2016, 6(2), 226-237.
[PMID: 27186398]
[28]
Yang, M.H.; Lee, K.T.; Yang, S.; Lee, J.K.; Lee, K.H.; Moon, I.H.; Rhee, J.C. Guggulsterone enhances antitumor activity of gemcitabine in gallbladder cancer cells through suppression of NF-κB. J. Cancer Res. Clin. Oncol., 2012, 138(10), 1743-1751.
[http://dx.doi.org/10.1007/s00432-012-1254-7] [PMID: 22699931]
[29]
Liu, Y.; Wen, J.; Huang, W. Exosomes in nasopharyngeal carcinoma. Clin. Chim. Acta, 2021, 523, 355-364.
[http://dx.doi.org/10.1016/j.cca.2021.10.013] [PMID: 34666030]
[30]
Zhao, Y.; Li, C.; Zhang, Y.; Li, Z. CircTMTC1 contributes to nasopharyngeal carcinoma progression through targeting miR-495-MET-eIF4G1 translational regulation axis. Cell Death Dis., 2022, 13(3), 250.
[http://dx.doi.org/10.1038/s41419-022-04686-z] [PMID: 35301291]
[31]
Cai, B.; Qu, X.; Kan, D.; Luo, Y. miR-26a-5p suppresses nasopharyngeal carcinoma progression by inhibiting PTGS2 expression. Cell Cycle, 2022, 21(6), 618-629.
[http://dx.doi.org/10.1080/15384101.2022.2030168] [PMID: 35073820]
[32]
Liu, F.; Gao, C.; Wang, W.; Hu, J.; Huang, Z.; Liang, M.; Li, S. miR-137/ERRα axis mediates chemoresistance of nasopharyngeal carcino-ma cells. J. Cell Commun. Signal., 2022, 16(1), 103-113.
[http://dx.doi.org/10.1007/s12079-021-00634-2] [PMID: 34196940]
[33]
Liu, Y.; Li, Z.; Wu, L.; Wang, Z.; Wang, X.; Yu, Y.; Zhao, Q.; Luo, F. MiRNA-125a-5p: a regulator and predictor of Gefitinib’s effect on nasopharyngeal carcinoma. Cancer Cell Int., 2014, 14(1), 24.
[http://dx.doi.org/10.1186/1475-2867-14-24] [PMID: 24602316]
[34]
Gao, W.; Chan, J.Y.W.; Wong, T.S. Curcumin exerts inhibitory effects on undifferentiated nasopharyngeal carcinoma by inhibiting the expression of miR-125a-5p. Clin. Sci. , 2014, 127(9), 571-579.
[http://dx.doi.org/10.1042/CS20140010] [PMID: 24896104]
[35]
Yang, X.; Qiu, J.; Kang, H.; Wang, Y.; Qian, J. miR-125a-5p suppresses colorectal cancer progression by targeting VEGFA. Cancer Manag. Res., 2018, 10, 5839-5853.
[http://dx.doi.org/10.2147/CMAR.S161990] [PMID: 30510452]
[36]
Xueya, Z.; Yamei, L.; Sha, C.; Dan, C.; Hong, S.; Xingyu, Y.; Wei, Wei. C. Exosomal encapsulation of miR-125a-5p inhibited trophoblast cell migration and proliferation by regulating the expression of VEGFA in preeclampsia. Biochem. Biophys. Res. Commun., 2020, 525(3), 646-653.
[http://dx.doi.org/10.1016/j.bbrc.2020.02.137] [PMID: 32122654]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy