Generic placeholder image

Current Biotechnology

Editor-in-Chief

ISSN (Print): 2211-5501
ISSN (Online): 2211-551X

Review Article

Lipases and their Applications in Biomedical Field

Author(s): Apoorva Sood, Manpreet Kaur and Reena Gupta*

Volume 12, Issue 1, 2023

Published on: 10 February, 2023

Page: [25 - 36] Pages: 12

DOI: 10.2174/2211550112666230109165101

Price: $65

Abstract

Lipases are carboxylic ester hydrolase enzymes, constituting the class of serine hydrolases, requiring no cofactor for their action. They have various substrates and produce glycerol and free fatty acids through the hydrolysis of fats and oils. Owing to their wide applications and the simplicity with which they can be mass-produced, these are a significant group of biotechnologically important enzymes. In addition, lipases have the special characteristic of operating at a lipid/ water interface. Present review focuses on the medical and therapeutic use of lipases. These enzymes and their inhibitors have applications with remarkable success for managing or even treating diseases such as cancer, obesity, atherosclerosis, and Alzheimer’s. Lipases have also been used to produce healthier fatty acids and low-fat cheese. The characteristic physicochemical and catalytic properties of enzymes make them ideal for biosensors and digestive aids in individuals with exocrine pancreatic inefficiency. Newer avenues open as deeper and more relevant studies are being conducted on newer lipases.

Keywords: Lipases, triglycerides, biocatalysis, enzymes, fats, lipids.

Graphical Abstract
[1]
Gopinath SCB, Anbu P, Lakshmipriya T, Hilda A. Strategies to characterize fungal lipases for applications in medicine and dairy industry. BioMed Res Int 2013; 2013: 1-10.
[http://dx.doi.org/10.1155/2013/154549] [PMID: 23865040]
[2]
Adetunji AI, Olaniran AO. Production strategies and biotechnological relevance of microbial lipases: a review. Braz J Microbiol 2021; 52(3): 1257-69.
[http://dx.doi.org/10.1007/s42770-021-00503-5] [PMID: 33904151]
[3]
Tipton KF. Enzyme nomenclature. Recommendations 1992. Supplement: corrections and additions. Eur J Biochem 1994; 223(1): 1-5.
[http://dx.doi.org/10.1111/j.1432-1033.1994.tb18960.x] [PMID: 7957164]
[4]
Challa S, Dutta T, Neelapu NRR. Fungal white biotechnology applications for food security: Opportunities and Challenges. 2019; pp. 119-48.
[http://dx.doi.org/10.1007/978-3-030-14846-1_4]
[5]
Chandra P. Enespa, Singh R, Arora PK. Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Fact 2020; 19(1): 169.
[http://dx.doi.org/10.1186/s12934-020-01428-8] [PMID: 32847584]
[6]
Hasan F, Shah AA, Hameed A. Industrial applications of microbial lipases. Enzyme Microb Technol 2006; 39(2): 235-51.
[http://dx.doi.org/10.1016/j.enzmictec.2005.10.016]
[7]
Tong X, Busk PK, Lange L. Characterization of a new sn -1,3-regioselective triacylglycerol lipase from Malbranchea cinnamomea. Biotechnol Appl Biochem 2016; 63(4): 471-8.
[http://dx.doi.org/10.1002/bab.1394] [PMID: 25959497]
[8]
Carpen A, Bonomi F, Iametti S, Marengo M. Effects of starch addition on the activity and specificity of food-grade lipases. Biotechnol Appl Biochem 2019; 66(4): 607-16.
[http://dx.doi.org/10.1002/bab.1761] [PMID: 31056790]
[9]
Abreu Silveira E, Moreno-Perez S, Basso A, et al. Modulation of the regioselectivity of Thermomyces lanuginosus lipase via biocatalyst engineering for the Ethanolysis of oil in fully anhydrous medium. BMC Biotechnol 2017; 17(1): 88.
[http://dx.doi.org/10.1186/s12896-017-0407-9] [PMID: 29246143]
[10]
Ekinci AP, Dinçer B. Baltaş N, Adıgüzel A. Partial purification and characterization of lipase from Geobacillus stearothermophilus AH22. J Enzyme Inhib Med Chem 2016; 31(2): 325-31.
[http://dx.doi.org/10.3109/14756366.2015.1024677] [PMID: 25798692]
[11]
Rmili F, Achouri N, Smichi N, et al. Purification and biochemical characterization of an organic solvent-tolerant and detergent-stable lipase from Staphylococcus capitis. Biotechnol Prog 2019; 35(4)e2833
[http://dx.doi.org/10.1002/btpr.2833] [PMID: 31050178]
[12]
Priyanka P, Tan Y, Kinsella GK, Henehan GT, Ryan BJ. Solvent stable microbial lipases: current understanding and biotechnological applications. Biotechnol Lett 2019; 41(2): 203-20.
[http://dx.doi.org/10.1007/s10529-018-02633-7] [PMID: 30535639]
[13]
Melani NB, Tambourgi EB, Silveira E. Lipases: From production to applications. Separ Purif Rev 2020; 49(2): 143-58.
[http://dx.doi.org/10.1080/15422119.2018.1564328]
[14]
Nurhasanah S, Munarso SJ. Physical characteristics of structured lipids synthesized by lipase catalyzed interesterifcation of coconut and palm oils. Pertanika J Sci Technol 2020; 26: 19-31.
[15]
Brault G, Shareck F, Hurtubise Y, Lépine F, Doucet N. Short-chain flavor ester synthesis in organic media by an E. coli whole-cell biocatalyst expressing a newly characterized heterologous lipase. PLoS One 2014; 9(3)e91872
[http://dx.doi.org/10.1371/journal.pone.0091872] [PMID: 24670408]
[16]
Maldonado MR, Alnoch RC, de Almeida JM, et al. Key mutation sites for improvement of the enantioselectivity of lipases through protein engineering. Biochem Eng J 2021; 172108047
[http://dx.doi.org/10.1016/j.bej.2021.108047]
[17]
Girod A, Wobus CE, Zádori Z, et al. The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity. J Gen Virol 2002; 83(5): 973-8.
[http://dx.doi.org/10.1099/0022-1317-83-5-973] [PMID: 11961250]
[18]
Qiu J, Han R, Wang C. Microbial halophilic lipases: A review. J Basic Microbiol 2021; 61(7): 594-602.
[http://dx.doi.org/10.1002/jobm.202100107] [PMID: 34096085]
[19]
Todea A. Dreavă DM, Benea IC, Bîtcan I, Peter F, Boeriu CG. Achievements and trends in biocatalytic synthesis of specialty polymers from biomass-derived monomers using lipases. Processes 2021; 9(4): 646.
[http://dx.doi.org/10.3390/pr9040646]
[20]
Choudhury P. Industrial application of lipase: A review. BioPharm 2015; 1: 41-7.
[21]
Phukon LC, Chourasia R, Kumari M, et al. Production and characterisation of lipase for application in detergent industry from a novel Pseudomonas helmanticensis HS6. Bioresour Technol 2020; 309123352
[http://dx.doi.org/10.1016/j.biortech.2020.123352] [PMID: 32299046]
[22]
Daya M, Pujianto DA, Witjaksono F, et al. Obesity risk and preference for high dietary fat intake are determined by FTO rs9939609 gene polymorphism in selected Indonesian adults. Asia Pac J Clin Nutr 2019; 28(1): 183-91.
[http://dx.doi.org/10.6133/apjcn.201903_28(1).0024] [PMID: 30896430]
[23]
Ayyash M, Abu-Jdayil B, Hamed F, Shaker R. Rheological, textural, microstructural and sensory impact of exopolysaccharide-producing Lactobacillus plantarum isolated from camel milk on low-fat akawi cheese. Leb Technol 2018; 87(1): 423-31.
[24]
Guan T, Liu B, Wang R, Huang Y, Luo J, Li Y. The enhanced fatty acids flavor release for low-fat cheeses by carrier immobilized lipases on O/W pickering emulsions. Food Hydrocoll 2021; 116106651
[http://dx.doi.org/10.1016/j.foodhyd.2021.106651]
[25]
Bornscheuer UT. Enzymes in lipid modification: From classical biocatalysis with commercial enzymes to advanced protein engineering tools. Ol Corps Gras Lipides 2013; 20(1): 45-9.
[http://dx.doi.org/10.1051/ocl.2012.0487]
[26]
Matuoog N, Li K, Yan Y. Thermomyces lanuginosus lipase immobilized on magnetic nanoparticles and its application in the hydrolysis of fish oil. J Food Biochem 2018; 42(5)e12549
[http://dx.doi.org/10.1111/jfbc.12549]
[27]
Elagizi A, Lavie CJ, Marshall K, DiNicolantonio JJ, O’Keefe JH, Milani RV. Omega-3 polyunsaturated fatty acids and cardiovascular health: a comprehensive review. Prog Cardiovasc Dis 2018; 61(1): 76-85.
[http://dx.doi.org/10.1016/j.pcad.2018.03.006] [PMID: 29571892]
[28]
Osborn HT, Akoh CC. Structured lipids-novel fats with medical, nutraceutical, and food applications. Compr Rev Food Sci Food Saf 2002; 1(3): 110-20.
[http://dx.doi.org/10.1111/j.1541-4337.2002.tb00010.x] [PMID: 33451231]
[29]
Karupaiah T, Sundram K. Effects of stereospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: a review of their nutritional implications. Nutr Metab (Lond) 2007; 4(1): 16.
[http://dx.doi.org/10.1186/1743-7075-4-16] [PMID: 17625019]
[30]
Pérez M, Gonçalves E, Salgado J, et al. Production of Omegas-6 and 9 from the hydrolysis of açaí and buriti oils by lipase immobilized on a hydrophobic support. Molecules 2018; 23(11): 3015.
[http://dx.doi.org/10.3390/molecules23113015] [PMID: 30453683]
[31]
Walker R, Decker EA, McClements DJ. Development of food-grade nanoemulsions and emulsions for delivery of omega-3 fatty acids: opportunities and obstacles in the food industry. Food Funct 2015; 6(1): 41-54.
[http://dx.doi.org/10.1039/C4FO00723A] [PMID: 25384961]
[32]
Rasti B, Erfanian A, Selamat J. Novel nanoliposomal encapsulated omega-3 fatty acids and their applications in food. Food Chem 2017; 230: 690-6.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.089] [PMID: 28407968]
[33]
Li ZY, Ward OP. Lipase-catalyzed esterification of glycerol and n-3 polyunsaturated fatty acid concentrate in organic solvent. J Am Oil Chem Soc 1993; 70(8): 745-8.
[http://dx.doi.org/10.1007/BF02542594]
[34]
Cerdán LE, Medina AR, Giménez AG, González MJI, Grima EM. Synthesis of polyunsaturated fatty acid-enriched triglycerides by lipase-catalyzed esterification. J Am Oil Chem Soc 1998; 75(10): 1329-37.
[http://dx.doi.org/10.1007/s11746-998-0180-y]
[35]
Chilton F, Dutta R, Reynolds L, Sergeant S, Mathias R, Seeds M. Precision nutrition and Omega-3 polyunsaturated fatty acids: A case for personalized supplementation approaches for the prevention and management of human diseases. Nutrients 2017; 9(11): 1165.
[http://dx.doi.org/10.3390/nu9111165] [PMID: 29068398]
[36]
Elagizi A, Köhler TS, Lavie CJ. Testosterone and cardiovascular health. Mayo Clin Proc 2018; 93(1): 83-100.
[http://dx.doi.org/10.1016/j.mayocp.2017.11.006] [PMID: 29275030]
[37]
Dixon ED, Nardo AD, Claudel T, Trauner M. The role of lipid sensing nuclear receptors (PPARs and LXR) and metabolic lipases in obesity, diabetes and NAFLD. Genes 2021; 12(5): 645.
[http://dx.doi.org/10.3390/genes12050645] [PMID: 33926085]
[38]
Liao TH, Hamosh P, Hamosh M. Fat digestion by lingual lipase: mechanism of lipolysis in the stomach and upper small intestine. Pediatr Res 1984; 18(5): 402-9.
[http://dx.doi.org/10.1203/00006450-198405000-00002] [PMID: 6728567]
[39]
Hara K, Onizawa K, Honda H, Otsuji K, Ide T, Murata M. Dietary diacylglycerol-dependent reduction in serum triacylglycerol concentration in rats. Ann Nutr Metab 1993; 37(4): 185-91.
[http://dx.doi.org/10.1159/000177767] [PMID: 8215235]
[40]
Murata M, Ide T, Hara K. Reciprocal responses to dietary diacylglycerol of hepatic enzymes of fatty acid synthesis and oxidation in the rat. Br J Nutr 1997; 77(1): 107-21.
[http://dx.doi.org/10.1079/BJN19970013] [PMID: 9059234]
[41]
Flickinger BD, Matsuo N. Nutritional characteristics of DAG oil. Lipids 2003; 38(2): 129-32.
[http://dx.doi.org/10.1007/s11745-003-1042-8] [PMID: 12733744]
[42]
Vázquez L, González N, Reglero G, Torres C. Solvent-free lipase-catalyzed synthesis of diacylgycerols as low-calorie food ingredients. Front Bioeng Biotechnol 2016; 4: 6.
[http://dx.doi.org/10.3389/fbioe.2016.00006] [PMID: 26904539]
[43]
Sonntag NOV. New developments in the fatty acid industry in America. J Am Oil Chem Soc 1984; 61(2): 229-32.
[http://dx.doi.org/10.1007/BF02678774]
[44]
Coelho ALS, Orlandelli RC. Immobilized microbial lipases in the food industry: a systematic literature review. Crit Rev Food Sci Nutr 2021; 61(10): 1689-703.
[http://dx.doi.org/10.1080/10408398.2020.1764489] [PMID: 32423294]
[45]
Brena B, González-Pombo P, Batista-Viera F. Immobilization of Enzymes: A literature survey 2013; pp. 15-31.
[http://dx.doi.org/10.1007/978-1-62703-550-7_2]
[46]
Filipe HAL, Almeida MCF, Teixeira RR, Esteves MIM, Henriques CA, Antunes FE. Dancing with oil-the interaction of lipases with different oil/water interfaces. Soft Matter 2021; 17(30): 7086-98.
[http://dx.doi.org/10.1039/D1SM00590A] [PMID: 34155497]
[47]
Röhrl C, Stübl F, Maier M, et al. Increased cellular uptake of polyunsaturated fatty acids and phytosterols from natural micellar oil. Nutrients 2020; 12(1): 150.
[http://dx.doi.org/10.3390/nu12010150] [PMID: 31948089]
[48]
Castejón N, Moreno-Pérez S, Abreu Silveira E, Fernández Lorente G, Guisán JM, Señoráns FJ. Synthesis of omega-3 ethyl esters from chia oil catalyzed by polyethylene glycol-modified lipases with improved stability. Food Chem 2019; 271: 433-9.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.215] [PMID: 30236698]
[49]
Karbowska J, Kochan Z. Salvia hispanica (chia) as a promising source of n-3 polyunsaturated fatty acids with antiatherogenic and cardioprotective properties. Postepy Hig Med Dosw 2018; 72: 307-17.
[http://dx.doi.org/10.5604/01.3001.0011.7987]
[50]
Pohanka M. Cholinesterases in biorecognition and biosensors construction: A review. Anal Lett 2013; 46(12): 1849-68.
[http://dx.doi.org/10.1080/00032719.2013.780240]
[51]
Iyer M, Shreshtha I, Baradia H, Chattopadhyay S. Challenges and opportunities of using immobilized lipase as biosensor. Biotechnol Genet Eng Rev 2022; 38(1): 87-110.
[http://dx.doi.org/10.1080/02648725.2022.2050499] [PMID: 35285414]
[52]
Kartal F, Kilin ÇA, Timur S. Lipase biosensor for tributyrin and pesticide detection. Int J Environ Anal Chem 2007; 87(10-11): 715-22.
[http://dx.doi.org/10.1080/03067310701327741]
[53]
Wenk MR. The emerging field of lipidomics. Nat Rev Drug Discov 2005; 4(7): 594-610.
[http://dx.doi.org/10.1038/nrd1776] [PMID: 16052242]
[54]
Situmorang M, Alexander PW, Hibbert DB. Flow injection potentiometry for enzymatic assay of cholesterol with a tungsten electrode sensor. Talanta 1999; 49(3): 639-49.
[http://dx.doi.org/10.1016/S0039-9140(99)00057-0] [PMID: 18967640]
[55]
Zhou S, Li X, Zhang J, Yuan H, Hong X, Chen Y. Dual-fiber optic bioprobe system for triglyceride detection using surface plasmon resonance sensing and lipase-immobilized magnetic bead hydrolysis. Biosens Bioelectron 2022; 196113723
[http://dx.doi.org/10.1016/j.bios.2021.113723] [PMID: 34688110]
[56]
Degrelle SA, Delile S, Moog S, et al. DietSee: An on-hand, portable, strip-type biosensor for lipolysis monitoring via real-time amperometric determination of glycerol in blood. Anal Chim Acta 2021; 1155338358
[http://dx.doi.org/10.1016/j.aca.2021.338358] [PMID: 33766325]
[57]
Pohanka M. Biosensors and bioassays based on lipases, principles and applications, a review. Molecules 2019; 24(3): 616.
[http://dx.doi.org/10.3390/molecules24030616] [PMID: 30744203]
[58]
Foster R, Cassidy J, O’Donoghue E. Electrochemical diagnostic strip device for total cholesterol and its subfractions. Electroanalysis 2000; 12(9): 716-21.
[http://dx.doi.org/10.1002/1521-4109(200005)12:9<716:AID-ELAN716>3.0.CO;2-S]
[59]
Suman, Pundir CS. Co-immobilization of cholesterol esterase, cholesterol oxidase and peroxidase onto alkylamine glass beads for measurement of total cholesterol in serum. Curr Appl Phys 2003; 3(2-3): 129-33.
[http://dx.doi.org/10.1016/S1567-1739(02)00178-5]
[60]
Sandoval G, Herrera-López EJ. Lipase, phospholipase, and esterase biosensors. RE:view 2018; pp. 391-425.
[http://dx.doi.org/10.1007/978-1-4939-8672-9_22]
[61]
Loli H, Narwal S, Saun N, Gupta R. Lipases in medicine: an overview. Mini Rev Med Chem 2015; 15(14): 1209-16.
[http://dx.doi.org/10.2174/1389557515666150709122722] [PMID: 26156413]
[62]
Tegeder I. Endocannabinoids as guardians of metastasis. Int J Mol Sci 2016; 17(2): 230.
[http://dx.doi.org/10.3390/ijms17020230] [PMID: 26875980]
[63]
Granchi C, Caligiuri I, Minutolo F, Rizzolio F, Tuccinardi T. A patent review of monoacylglycerol lipase (MAGL) inhibitors (2013-2017). Expert Opin Ther Pat 2017; 27(12): 1341-51.
[http://dx.doi.org/10.1080/13543776.2018.1389899]
[64]
Benchama O, Tyukhtenko S, Malamas MS, Williams MK, Makriyannis A, Avraham HK. Inhibition of triple negative breast cancer-associated inflammation, tumor growth and brain colonization by targeting monoacylglycerol lipase. Sci Rep 2022; 12(1): 5328.
[http://dx.doi.org/10.1038/s41598-022-09358-8] [PMID: 35351947]
[65]
Prüser JL, Ramer R, Wittig F, Ivanov I, Merkord J, Hinz B. The monoacylglycerol lipase inhibitor JZL184 inhibits lung cancer cell invasion and metastasis via the CB1 cannabinoid receptor. Mol Cancer Ther 2021; 20(5): 787-802.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0589] [PMID: 33632876]
[66]
Tomin T, Fritz K, Gindlhuber J, et al. Deletion of adipose triglyceride lipase links triacylglycerol accumulation to a more-aggressive phenotype in A549 lung carcinoma cells. J Proteome Res 2018; 17(4): 1415-25.
[http://dx.doi.org/10.1021/acs.jproteome.7b00782] [PMID: 29457907]
[67]
Maan M, Peters JM, Dutta M, Patterson AD. Lipid metabolism and lipophagy in cancer. Biochem Biophys Res Commun 2018; 504(3): 582-9.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.097] [PMID: 29438712]
[68]
Lass A, Zimmermann R, Oberer M, Zechner R. Lipolysis – A highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog Lipid Res 2011; 50(1): 14-27.
[http://dx.doi.org/10.1016/j.plipres.2010.10.004] [PMID: 21087632]
[69]
Stolz A, Ernst A, Dikic I. Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 2014; 16(6): 495-501.
[http://dx.doi.org/10.1038/ncb2979] [PMID: 24875736]
[70]
Joshi M, Patel BM. The burning furnace: Alteration in lipid metabolism in cancer-associated cachexia. Mol Cell Biochem 2022; 477(6): 1709-23.
[http://dx.doi.org/10.1007/s11010-022-04398-0] [PMID: 35254613]
[71]
Cruz ALS, Barreto EA, Fazolini NPB, Viola JPB, Bozza PT. Lipid droplets: platforms with multiple functions in cancer hallmarks. Cell Death Dis 2020; 11(2): 105.
[http://dx.doi.org/10.1038/s41419-020-2297-3] [PMID: 32029741]
[72]
Xu M, Chang HH, Jung X, et al. Deficiency in hormone-sensitive lipase accelerates the development of pancreatic cancer in conditional KrasG12D mice. BMC Cancer 2018; 18(1): 797.
[http://dx.doi.org/10.1186/s12885-018-4713-y] [PMID: 30086728]
[73]
Albert JS, Yerges-Armstrong LM, Horenstein RB, et al. Null mutation in hormone-sensitive lipase gene and risk of type 2 diabetes. N Engl J Med 2014; 370(24): 2307-15.
[http://dx.doi.org/10.1056/NEJMoa1315496] [PMID: 24848981]
[74]
Du H, Grabowski GA. Lysosomal acid lipase and atherosclerosis. Curr Opin Lipidol 2004; 15(5): 539-44.
[http://dx.doi.org/10.1097/00041433-200410000-00007] [PMID: 15361789]
[75]
Sutton PA, Humes DJ, Purcell G, et al. The role of routine assays of serum amylase and lipase for the diagnosis of acute abdominal pain. Ann R Coll Surg Engl 2009; 91(5): 381-4.
[http://dx.doi.org/10.1308/003588409X392135] [PMID: 19409152]
[76]
Lippi G, Valentino M, Cervellin G. Laboratory diagnosis of acute pancreatitis: in search of the Holy Grail. Crit Rev Clin Lab Sci 2012; 49(1): 18-31.
[http://dx.doi.org/10.3109/10408363.2012.658354] [PMID: 22339380]
[77]
Ismail OZ, Bhayana V. Lipase or amylase for the diagnosis of acute pancreatitis? Clin Biochem 2017; 50(18): 1275-80.
[http://dx.doi.org/10.1016/j.clinbiochem.2017.07.003] [PMID: 28720341]
[78]
Zechner R, Kienesberger PC, Haemmerle G, Zimmermann R, Lass A. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J Lipid Res 2009; 50(1): 3-21.
[http://dx.doi.org/10.1194/jlr.R800031-JLR200] [PMID: 18952573]
[79]
Labar G, Wouters J, Lambert DM. A review on the monoacylglycerol lipase: at the interface between fat and endocannabinoid signalling. Curr Med Chem 2010; 17(24): 2588-607.
[http://dx.doi.org/10.2174/092986710791859414] [PMID: 20491633]
[80]
Chen X, Zhang J, Chen C. Endocannabinoid 2-arachidonoylgly-cerol protects neurons against β-amyloid insults. Neuroscience 2011; 178: 159-68.
[http://dx.doi.org/10.1016/j.neuroscience.2011.01.024] [PMID: 21256197]
[81]
Chen R, Zhang J, Wu Y, et al. Monoacylglycerol lipase is a therapeutic target for Alzheimer’s disease. Cell Rep 2012; 2(5): 1329-39.
[http://dx.doi.org/10.1016/j.celrep.2012.09.030] [PMID: 23122958]
[82]
Stevens J, Wyatt C, Brown P, Patel D, Grujic D, Freedman SD. Absorption and Safety With Sustained Use of RELiZORB Evaluation (ASSURE) Study in Patients With Cystic Fibrosis Receiving Enteral Feeding. J Pediatr Gastroenterol Nutr 2018; 67(4): 527-32.
[http://dx.doi.org/10.1097/MPG.0000000000002110] [PMID: 30074573]
[83]
Nakajima K, Oshida H, Muneyuki T, Kakei M. Pancrelipase: an evidence-based review of its use for treating pancreatic exocrine insufficiency. Core Evid 2012; 7: 77-91.
[http://dx.doi.org/10.2147/CE.S26705] [PMID: 22936895]
[84]
Shahidi F. Nutraceuticals, functional foods and dietary supplements in health and disease. Yao Wu Shi Pin Fen Xi 2020; 20(1)
[http://dx.doi.org/10.38212/2224-6614.2144]
[85]
Valero F, Ferreira-Dias S, Sandoval G, Plou F. The potential use of lipases in the production of fatty acid derivatives for the food and nutraceutical industries. Electron J Biotechnol 2013; 16(3)
[http://dx.doi.org/10.2225/vol16-issue3-fulltext-5]
[86]
Noguchi N, Watanabe A, Shi H. Diverse functions of antioxidants. Free Radic Res 2000; 33(6): 809-17.
[http://dx.doi.org/10.1080/10715760000301331] [PMID: 11237103]
[87]
LoNostro P, Capuzzi G, Pinelli P, Mulinacci N, Romani A, Vincieri FF. Self-assembling and antioxidant activity of some vitamin C derivatives. Colloids Surf A Physicochem Eng Asp 2000; 167(1-2): 83-93.
[http://dx.doi.org/10.1016/S0927-7757(99)00465-3]
[88]
Song QX, Wei DZ, Zhou WY, Xu WQ, Yang SL. Enzymatic synthesis and antioxidant properties of L-ascorbyl oleate and L-ascorbyl linoleate. Biotechnol Lett 2004; 26(23): 1777-80.
[http://dx.doi.org/10.1007/s10529-004-4607-8] [PMID: 15672213]
[89]
Yan Y, Bornscheuer UT, Schmid RD. Lipase-Catalyzed Synthesis of Vitamin C Fatty Acid Esters. Biotechnol Lett 1999; 21(12): 1051-4.
[http://dx.doi.org/10.1023/A:1005620125533]
[90]
Park S, Viklund F, Hult K, Kazlauskas RJ. Vacuum-driven lipase-catalysed direct condensation of l-ascorbic acid and fatty acids in ionic liquids: synthesis of a natural surface active antioxidant. Green Chem 2003; 5(6): 715.
[http://dx.doi.org/10.1039/b307715b]
[91]
Medina I, Alcántara D, González MJ, et al. Antioxidant activity of resveratrol in several fish lipid matrices: effect of acylation and glucosylation. J Agric Food Chem 2010; 58(17): 9778-86.
[http://dx.doi.org/10.1021/jf101472n] [PMID: 20687612]
[92]
Biasutto L, Marotta E, Bradaschia A, et al. Soluble polyphenols: Synthesis and bioavailability of 3,4′,5-tri(α-d-glucose-3-O-succinyl) resveratrol. Bioorg Med Chem Lett 2009; 19(23): 6721-4.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.114] [PMID: 19846300]
[93]
Ratnam DV, Ankola DD, Bhardwaj V, Sahana DK, Kumar MNVR. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. J Control Release 2006; 113(3): 189-207.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.015] [PMID: 16790290]
[94]
Arts ICW, Sesink ALA, Faassen-Peters M, Hollman PCH. The type of sugar moiety is a major determinant of the small intestinal uptake and subsequent biliary excretion of dietary quercetin glycosides. Br J Nutr 2004; 91(6): 841-7.
[http://dx.doi.org/10.1079/BJN20041123] [PMID: 15182387]
[95]
Torres P, Poveda A, Jimenez-Barbero J, Ballesteros A, Plou FJ. Regioselective lipase-catalyzed synthesis of 3-o-acyl derivatives of resveratrol and study of their antioxidant properties. J Agric Food Chem 2010; 58(2): 807-13.
[http://dx.doi.org/10.1021/jf903210q] [PMID: 20017485]
[96]
Azaizeh H, Halahlih F, Najami N, Brunner D, Faulstich M, Tafesh A. Antioxidant activity of phenolic fractions in olive mill wastewater. Food Chem 2012; 134(4): 2226-34.
[http://dx.doi.org/10.1016/j.foodchem.2012.04.035] [PMID: 23442678]
[97]
Baldioli M, Servili M, Perretti G, Montedoro GF. Antioxidant activity of tocopherols and phenolic compounds of virgin olive oil. J Am Oil Chem Soc 1996; 73(11): 1589-93.
[http://dx.doi.org/10.1007/BF02523530]
[98]
Torres de Pinedo A, Peñalver P, Rondón D, Morales JC. Efficient lipase-catalyzed synthesis of new lipid antioxidants based on a catechol structure. Tetrahedron 2005; 61(32): 7654-60.
[http://dx.doi.org/10.1016/j.tet.2005.05.100]
[99]
Miyazawa T, Hamada M, Morimoto R, Murashima T, Yamada T. Highly regioselective propanoylation of dihydroxybenzenes mediated by Candida antarctica lipase B in organic solvents. Tetrahedron Lett 2008; 49(1): 175-8.
[http://dx.doi.org/10.1016/j.tetlet.2007.10.124]
[100]
Fernández Ó, Tenllado D, Martín D, et al. Immobilized lipases from Candida antarctica for producing tyrosyl oleate in solvent-free medium. Biocatal Biotransform 2012; 30(2): 245-54.
[http://dx.doi.org/10.3109/10242422.2012.664817]
[101]
Safari M, Safari M, Karboune S, St-Louis R, Kermasha S. Enzymatic synthesis of structured phenolic lipids by incorporation of selected phenolic acids into triolein. Biocatal Biotransform 2006; 24(4): 272-9.
[http://dx.doi.org/10.1080/10242420600658410]
[102]
Sabally K, Karboune S, St-Louis R, Kermasha S. Lipase-catalyzed synthesis of phenolic lipids from fish liver oil and dihydrocaffeic acid. Biocatal Biotransform 2007; 25(2-4): 211-8.
[http://dx.doi.org/10.1080/10242420701379916]
[103]
Wang Z, Wang R, Tian J, et al. The effect of ultrasound on lipase-catalyzed regioselective acylation of mangiferin in non-aqueous solvents. J Asian Nat Prod Res 2010; 12(1): 56-63.
[http://dx.doi.org/10.1080/10286020903431080] [PMID: 20390744]
[104]
Kontogianni A, Skouridou V, Sereti V, Stamatis H, Kolisis FN. Regioselective acylation of flavonoids catalyzed by lipase in low toxicity media. Eur J Lipid Sci Technol 2001; 103(10): 655-60.
[http://dx.doi.org/10.1002/1438-9312(200110)103:10<655:AID-EJLT655>3.0.CO;2-X]
[105]
Ardhaoui M, Falcimaigne A, Engasser JM, Moussou P, Pauly G, Ghoul M. Enzymatic synthesis of new aromatic and aliphatic esters of flavonoids using Candida antarctica lipase as biocatalyst. Biocatal Biotransform 2004; 22(4): 253-9.
[http://dx.doi.org/10.1080/10242420400005796]
[106]
Chebil L, Anthoni J, Humeau C, Gerardin C, Engasser JM, Ghoul M. Enzymatic acylation of flavonoids: effect of the nature of the substrate, origin of lipase, and operating conditions on conversion yield and regioselectivity. J Agric Food Chem 2007; 55(23): 9496-502.
[http://dx.doi.org/10.1021/jf071943j] [PMID: 17937478]
[107]
Christelle B, Eduardo BDO, Latifa C, et al. Combined docking and molecular dynamics simulations to enlighten the capacity of Pseudomonas cepacia and Candida antarctica lipases to catalyze quercetin acetylation. J Biotechnol 2011; 156(3): 203-10.
[http://dx.doi.org/10.1016/j.jbiotec.2011.09.007] [PMID: 21933689]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy