Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Clinical Trial

The Antibacterial Effect of Tetracycline-loaded Mesoporous Silica Nanoparticles in the Gingival Fluid at Implant-abutment Junction: A Randomized Clinical Trial Study

Author(s): Fahimeh Mirzaali, Solmaz Maleki Dizaj, Shahriar Shahi, Mohammad Yousef Memar and Feridoun Parnia*

Volume 11, Issue 2, 2023

Published on: 14 February, 2023

Page: [208 - 216] Pages: 9

DOI: 10.2174/2211738511666230106151403

Price: $65

Open Access Journals Promotions 2
Abstract

Introduction: Dental implant failure due to periodontal disease caused by anaerobic pathogens occurs, especially in the first year of implant placement. The aim of this clinical trial study was to compare the antibacterial effect of tetracycline gel and gel containing tetracyclineloaded mesoporous silica nanoparticles (MSNs) in the gingival crevice fluid of the implantabutment junction as a randomized clinical trial study.

Materials and Methods: Fourteen patients applying for implants in the posterior mandibular region were included in the study. During the uncovering session, tetracycline gel and gel containing tetracycline-loaded MSNs were placed in two implants and no substance was placed in the control group. Then, in three sessions, including molding, prosthesis delivery, and one month after delivery, the patient's gingival fluid was sampled and the number of bacteria in the gingival fluid was measured by colony-forming units (CFU/mL).

Results: The results of this study showed that in all three stages of sampling, the use of tetracycline gel and gel containing MSNs loaded with tetracycline significantly reduced the CFU/mL of gingival crevice fluid compared to the control group. Tetracycline-loaded MSNs gel showed significantly lower CFU/mL than tetracycline gel. The release of tetracycline from nanoparticles keep continue for a longer time compared to tetracycline gel.

Conclusion: The use of nano-based delivery systems containing antibiotics inside the implant fixture can reduce the bacterial count of the implant-abutment junction and then improve implant stability.

Keywords: Antibacterial effect, tetracycline, mesoporous silica nanoparticles, gingival fluid, implant-abutment junction, pri-implantitis.

« Previous
Graphical Abstract
[1]
Mombelli A. Microbiology and antimicrobial therapy of peri-implantitis. Periodontol 2000 2002; 28(1): 177-89.
[http://dx.doi.org/10.1034/j.1600-0757.2002.280107.x] [PMID: 12013341]
[2]
Berglundh T, Persson L, Klinge B. A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. J Clin Periodontol 2002; 29 (Suppl. 3): 197-212.
[http://dx.doi.org/10.1034/j.1600-051X.29.s3.12.x] [PMID: 12787220]
[3]
Snauwaert K, Duyck J, van Steenberghe D, Quirynen M, Naert I. Time dependent failure rate and marginal bone loss of implant supported prostheses: a 15-year follow-up study. Clin Oral Investig 2000; 4(1): 0013-20.
[http://dx.doi.org/10.1007/s007840050107] [PMID: 11218510]
[4]
Berglundh T, Lindhe J, Marinell C, Ericsson I, Liljenberg B. Soft tissue reaction to de novo plaque formation on implants and teeth. An experimental study in the dog. Clin Oral Implants Res 1992; 3(1): 1-8.
[http://dx.doi.org/10.1034/j.1600-0501.1992.030101.x] [PMID: 1420721]
[5]
Becker W, Becker BE, Newman MG, Nyman S. Clinical and microbiologic findings that may contribute to dental implant failure. Int J Oral Maxillofac Implants 1990; 5(1): 31-8.
[PMID: 2391137]
[6]
Lang NP, Brägger U, Walther D, Bearner B, Kornman KS. Ligature-induced peri-implant infection in cynomolgus monkeys.Clinical and radiographic findings. Clin Oral Implants Res 1993; 4(1): 2-11.
[http://dx.doi.org/10.1034/j.1600-0501.1993.040101.x] [PMID: 8329533]
[7]
Ericsson I, Persson LG, Berglundh T, Edlund T, Lindhe J. The effect of antimicrobial theram on peri-implantitis lesions. An experimental study in the dog. Clin Oral Implants Res 1996; 7(4): 320-8.
[http://dx.doi.org/10.1034/j.1600-0501.1996.070404.x] [PMID: 9151598]
[8]
Lindquist LW, Rockler B, Carlsson GE. Bone resorption around fixtures in edentulous patients treated with mandibular fixed tissue-integrated prostheses. J Prosthet Dent 1988; 59(1): 59-63.
[http://dx.doi.org/10.1016/0022-3913(88)90109-6] [PMID: 3422305]
[9]
Mombelli A, Lang NP. The diagnosis and treatment of peri-implantitis. Periodontol 2000 1998; 17(1): 63-76.
[http://dx.doi.org/10.1111/j.1600-0757.1998.tb00124.x] [PMID: 10337314]
[10]
Mishra SK, Chowdhary R, Kumari S. Microleakage at the different implant abutment interface: A systematic review. J Clin Diagn Res 2017; 11(6): ZE10-5.
[http://dx.doi.org/10.7860/JCDR/2017/28951.10054] [PMID: 28764310]
[11]
Gross M, Abramovich I, Weiss EI. Microleakage at the abutment-implant interface of osseointegrated implants: a comparative study. Int J Oral Maxillofac Implants 1999; 14(1): 94-100.
[PMID: 10074758]
[12]
Aliramezani A, Salari MH, Pourmand MR, et al. Prevalence of periodontopathogenic bacteria in patients suffering from periodontitis using culture and PCR methods. J Dent Med 2012; 25: 159-65.
[13]
Mombelli A, Feloutzis A, Brägger U, Lang NP. Treatment of peri-implantitis by local delivery of tetracycline. Clin Oral Implants Res 2001; 12(4): 287-94.
[http://dx.doi.org/10.1034/j.1600-0501.2001.012004287.x] [PMID: 11488856]
[14]
Wittrig EE, Zablotsky MH, Layman DL, Meffert RM. Fibroblastic growth and attachment on hydroxyapatite-coated titanium surfaces following the use of various detoxification modalities. Part I: Noncontaminated hydroxyapatite. Implant Dent 1992; 1(3): 189-94.
[http://dx.doi.org/10.1097/00008505-199200130-00005] [PMID: 1288813]
[15]
Tavakoli M. Evaluation the effect of different concentrations of tetracycline and different washing times on bacterial growth. Res Dent Sci 2012; 9: 8-14.
[16]
Zheng X, Yan B, Wu F, et al. Supercooling self-assembly of magnetic shelled core/shell supraparticles. ACS. ACS Appl Mater Interfaces 2016; 8(36): 23969-77.
[http://dx.doi.org/10.1021/acsami.6b07963] [PMID: 27537195]
[17]
Yang H, Zheng X, Zheng Z, et al. Precise control of shape-variable nanomicelles in nanofibers reveals the enhancement mechanism of passive delivery. ACS Appl Mater Interfaces 2021; 13(46): 54715-26.
[http://dx.doi.org/10.1021/acsami.1c15858] [PMID: 34757716]
[18]
Mohanraj V, Chen Y. Nanoparticles-a review. Trop J Pharm Res 2006; 5: 561-73.
[19]
Narayan R, Nayak U, Raichur A, Garg S. Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances. Pharmaceutics 2018; 10(3): 118-24.
[http://dx.doi.org/10.3390/pharmaceutics10030118] [PMID: 30082647]
[20]
Watermann A, Brieger J. Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials (Basel) 2017; 7(7): 189-96.
[http://dx.doi.org/10.3390/nano7070189] [PMID: 28737672]
[21]
Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 2009; 8(4): 331-6.
[http://dx.doi.org/10.1038/nmat2398] [PMID: 19234444]
[22]
Cheng W, Nie J, Xu L, et al. pH-sensitive delivery vehicle based on folic acid-conjugated polydopamine-modified mesoporous silica nanoparticles for targeted cancer therapy. ACS Appl Mater Interfaces 2017; 9(22): 18462-73.
[http://dx.doi.org/10.1021/acsami.7b02457] [PMID: 28497681]
[23]
Durfee PN, Lin YS, Dunphy DR, et al. Mesoporous silica nanoparticle-supported lipid bilayers (protocells) for active targeting and delivery to individual leukemia cells. ACS Nano 2016; 10(9): 8325-45.
[http://dx.doi.org/10.1021/acsnano.6b02819] [PMID: 27419663]
[24]
Zhou S, Wu D, Yin X, et al. Intracellular pH-responsive and rituximab-conjugated mesoporous silica nanoparticles for targeted drug delivery to lymphoma B cells. J Exp Clin Cancer Res 2017; 36(1): 24.
[http://dx.doi.org/10.1186/s13046-017-0492-6] [PMID: 28166836]
[25]
Subramaniam S, Thomas N, Gustafsson H, Jambhrunkar M, Kidd SP, Prestidge CA. Rifampicin-loaded mesoporous silica nanoparticles for the treatment of intracellular infections. Antibiotics (Basel) 2019; 8(2): 39-46.
[http://dx.doi.org/10.3390/antibiotics8020039] [PMID: 30979069]
[26]
Rana D, Bag K, Bhattacharyya SN, Mandal BM. Miscibility of poly(styrene-co-butyl acrylate) with poly(ethyl methacrylate): Existence of both UCST and LCST. J Polym Sci, B, Polym Phys 2000; 38(3): 369-75.
[http://dx.doi.org/10.1002/(SICI)1099-0488(20000201)38:3<369:AID-POLB3>3.0.CO;2-W]
[27]
Rana D, Mandal BM, Bhattacharyya SN. Analogue calorimetric studies of blends of poly (vinyl ester) s and polyacrylates. Macromolecules 1996; 29(5): 1579-83.
[http://dx.doi.org/10.1021/ma950954n]
[28]
Rana D, Mandal BM, Bhattacharyya SN. Analogue calorimetry of polymer blends: poly(styrene-co-acrylonitrile) and poly(phenyl acrylate) or poly(vinyl benzoate). Polymer (Guildf) 1996; 37(12): 2439-43.
[http://dx.doi.org/10.1016/0032-3861(96)85356-0]
[29]
Rana D, Mandal BM, Bhattacharyya SN. Miscibility and phase diagrams of poly(phenyl acrylate) and poly(styrene-co-acrylonitrile) blends. Polymer (Guildf) 1993; 34(7): 1454-9.
[http://dx.doi.org/10.1016/0032-3861(93)90861-4]
[30]
Zeinali R, del Valle LJ, Torras J, Puiggalí J. Recent progress on biodegradable tissue engineering scaffolds prepared by thermally-induced phase separation (Tips). Int J Mol Sci 2021; 22(7): 3504-12.
[http://dx.doi.org/10.3390/ijms22073504] [PMID: 33800709]
[31]
Qian W, Qiu J, Liu X. Minocycline hydrochloride-loaded graphene oxide films on implant abutments for peri-implantitis treatment in beagle dogs. J Periodontol 2020; 91(6): 792-9.
[http://dx.doi.org/10.1002/JPER.19-0285] [PMID: 31782532]
[32]
Ding L, Zhang P, Wang X, Kasugai S. A doxycycline-treated hydroxyapatite implant surface attenuates the progression of peri-implantitis: A radiographic and histological study in mice. Clin Implant Dent Relat Res 2019; 21(1): 154-9.
[http://dx.doi.org/10.1111/cid.12695] [PMID: 30444054]
[33]
Zhang JF, Wu R, Fan Y, et al. Antibacterial dental composites with chlorhexidine and mesoporous silica. J Dent Res 2014; 93(12): 1283-9.
[http://dx.doi.org/10.1177/0022034514555143] [PMID: 25319365]
[34]
Shahi RG, Albuquerque MTP, Münchow EA, Blanchard SB, Gregory RL, Bottino MC. Novel bioactive tetracycline-containing electrospun polymer fibers as a potential antibacterial dental implant coating. Odontology 2017; 105(3): 354-63.
[http://dx.doi.org/10.1007/s10266-016-0268-z] [PMID: 27585669]
[35]
Assenza B, Tripodi D, Scarano A, et al. Bacterial leakage in implants with different implant-abutment connections: an in vitro study. J Periodontol 2012; 83(4): 491-7.
[http://dx.doi.org/10.1902/jop.2011.110320] [PMID: 21780904]
[36]
Alcoforado GA, Rams TE, Feik D, Slots J. Microbial aspects of failing osseointegrated dental implants in humans. J Parodontol 1991; 10(1): 11-8.
[PMID: 1906537]
[37]
Mombelli A, Oosten MAC, Schürch E Jr, Lang NP. The microbiota associated with successful or failing osseointegrated titanium implants. Oral Microbiol Immunol 1987; 2(4): 145-51.
[http://dx.doi.org/10.1111/j.1399-302X.1987.tb00298.x] [PMID: 3507627]
[38]
Thomas JG, Metheny RJ, Karakiozis JM, Wetzel JM, Crout RJ. Long-term sub-antimicrobial doxycycline (Periostat) as adjunctive management in adult periodontitis: effects on subgingival bacterial population dynamics. Adv Dent Res 1998; 12(1): 32-9.
[http://dx.doi.org/10.1177/08959374980120011601] [PMID: 9972119]
[39]
Koneru B, Shi Y, Wang YC, et al. Tetracycline-containing MCM-41 mesoporous silica nanoparticles for the treatment of Escherichia coli. Molecules 2015; 20(11): 19690-8.
[http://dx.doi.org/10.3390/molecules201119650] [PMID: 26528964]
[40]
Cheng Y, Gao B, Liu X, et al. in vivo evaluation of an antibacterial coating containing halogenated furanone compound-loaded poly(l-lactic acid) nanoparticles on microarc-oxidized titanium implants. Int J Nanomedicine 2016; 11: 1337-47.
[PMID: 27099494]
[41]
Ghosh S. Mesoporous silica-based nano drug-delivery system synthesis, characterization, and applications. In: Nanocarriers for Drug Delivery. Elsevier Amsterdam 2019; pp. 285-317.
[http://dx.doi.org/10.1016/B978-0-12-814033-8.00009-6]
[42]
Zeng L, An L, Wu X. Modeling drug-carrier interaction in the drug release from nanocarriers. J Drug Deliv 2011; 2011: 1-15.
[http://dx.doi.org/10.1155/2011/370308] [PMID: 21845225]
[43]
Mitran RA, Matei C, Berger D. Correlation of mesoporous silica structural and morphological features with theoretical three-parameter model for drug release kinetics. J Phys Chem C 2016; 120(51): 29202-9.
[http://dx.doi.org/10.1021/acs.jpcc.6b09759]
[44]
Memar MY, Yekani M, Ghanbari H, Shahi S, Sharifi S, Maleki Dizaj S. Biocompatibility, cytotoxicity and antibacterial effects of meropenem-loaded mesoporous silica nanoparticles against carbapenem-resistant Enterobacteriaceae. Artif Cells Nanomed Biotechnol 2020; 48(1): 1354-61.
[http://dx.doi.org/10.1080/21691401.2020.1850466] [PMID: 33236938]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy