[4]
Kubicek, C.P. The role of sugar uptake and channeling for citric acid accumulation by Aspergillus niger. Food Technol. Biotechnol., 1998, 36, 173-176.
[7]
Grimoux, E.; Adams, P. Synthesis of citric acid. C. R. Hebd. Seances Acad. Sci., 1980, 90, 1252.
[8]
Haller, A.; Held, A. Synthesis of citric acid. C R Acad Sci., 1890, 111, 682-685.
[12]
Wehmer, C. Note sur la fermentation citrique. Bull. Soc. Chim. Fr., 1893, 9, 728.
[15]
Vasanthabharathi, V.; Sajitha, N.; Jayalakshmi, S. Citric acid production from U-V mutated estuarine Aspergillus niger. Adv. Biol. Res., 2013, 7, 89-94.
[27]
Cahyana, A.H.; Pratiwi, D.; Ardiansah, B. Synthesis and biological investigation of 3,3,6,6-tetramethyl-9-styryl-1,8-dioxooctahydro-xanthene promoted by Fe3O4-supported citric acid as a magnetically recoverable catalyst. Rasayan J. Chem., 2016, 9, 896-902.
[28]
Ahmed, M.Z.; Patel, N.T.; Shaikh, K.A.; Baseer, M.A.; Shaikh, S.; Patti, V.A. Atom efficient grinding technique for the synthesis of hydrazones catalyzed by citric acid. Elixier Org. Chem, 2010, 43, 6583-6585.
[33]
Wagh, Y.B.; Tayade, Y.A.; Dalal, D.S. Sulfonic acid functionalized magnetic nanocatalysts in organic synthesis; Synthetic Applications, 2022, p. 333.
[35]
Guy, R.G. The Chemistry of the Cyanates and Their Thio Derivatives; Patai, S., Ed.; Wiley Interscience: New York, 1977, p. 819.
[38]
Labade, V.B.; Shinde, P.V.; Pawar, S.S.; Shingare, M.S. Citric acid: an efficient and biodegradable catalyst for the convenient synthesis of 1,5-benzodiazepines in water. J. Chem. Biol., 2011, 1, 349-354.
[58]
Dahab, M.A.; Derasp, J.S.; Beauchemin, A.M. Thieme chemistry journals awardees-where are they now? a cascade synthesis of 1, 2, 4-Triazin-3 (2H)-ones using nitrogen-substituted isocyanates. Synlett, 2017, 28, 456-460.
[64]
Feurer, A.; Luithle, J.; Wirtz, S.; Koenig, G.; Stasch, J.; Stahl, E.; Schreiber, R.; Wunder, F; Lang, D. Novel 2,5-disubstituted pyrimidine derivatives. Wo 2004009589, 2004.
[66]
Ahluwalia, V.K.; Dahiya, A.; Garg, V. Reaction of 5-amino-4-formyl-3-methyl(or phenyl)-1-phenyl-1H-pyrazoles with active methylene compounds: Synthesis of fused heterocyclic rings. Indian J. Chem., 1997, 36B, 88-91.
[67]
Mohamed, N.R.; Khaireldin, N.Y.; Fahmyb, A.F.; El-Sayeda, A.A.F. Facile synthesis of fused nitrogen containing heterocycles as anticancer agents. Pharma Chem., 2010, 2, 400-417.
[68]
Pawar, P.B.; Jadhav, S.D.; Patil, B.M.; Shejwal, R.V.; Patil, S. Rapid one-pot four component synthesis of bioactive pyranopyrazoles using citric acid as a mild organocatalyst. Arch. Appl. Sci. Res., 2014, 6, 150-158.
[69]
Karimi-Jaberi, Z.; Fereydoonnezhad, A. One-pot, organocatalytic synthesis of spirooxindoles using citric acid in aqueous media. Iran. Chem. Commun, 2017, 5, 1-10.
[71]
Ramu, E.; Kotra, V.; Bansal, N.; Varala, R.; Adapa, S.R. Green approach for the efficient synthesis of Biginelli compounds promoted by citric acid under solvent-free conditions. Rasayan J. Chem., 2008, 1, 188-194.
[74]
Chouha, N.; Boumoud, T.; Tebabel, I.; Boumoud, B.; Debache, A. An efficient one-pot synthesis of 2, 4, 5-trisubstituted imidazole catalysed by citric acid. Der. Pharma Chem., 2016, 8, 202-206.
[77]
Pawar, P.B.; Jadahv, S.D.; Deshmukh, M.B.; Patil, S. Citric acid as a mild and inexpensive organocatalyst for synthesis of tetrahydrobenzo[z] xanthen-11-ones and dibenzo [a, j] xanthenes under solvent-free condition. Indian J. Chem., 2014, 53B(9), 1185-1193.
[87]
Bharti, R.; Sharma, R. Natural acid catalyzed aqua mediated multicomponent synthesis of tetrahydropyridines and its antioxidant activities. Mater. Today, 2021, 45, 3186-3194.