Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

1,3,4-Thiadiazole: A Versatile Pharmacophore of Medicinal Significance

Author(s): Madhu Bala*, Poonam Piplani*, Amardeep Ankalgi, Ankit Jain and Lalit Chandel

Volume 19, Issue 8, 2023

Published on: 10 February, 2023

Page: [730 - 756] Pages: 27

DOI: 10.2174/1573406419666230102104648

Price: $65

Open Access Journals Promotions 2
Abstract

The 1,3,4-thiadiazole nucleus has attracted the attention of medicinal chemists during the last decades due to its multiple pharmacological activities, such as antiviral, anticancer, antibacterial, and anticonvulsant activity. This scaffold's structural alteration could aid in developing novel therapeutically effective drugs. Incorporating this adaptable pharmacophore into a well-established medicinally active molecule results in hybrid molecules with diverse pharmacological effects. These encouraging reports suggested that this privileged skeleton should be thoroughly researched for medicinal purposes. Hence, an attempt has been made in this compilation to review the structure-activity relationships of numerous thiadiazole derivatives reported in the literature with varied pharmacological properties. This review provides an up-to-date explanation of the various synthesized 1,3,4- thiadiazole analogs and their pharmacological importance.

Keywords: 1, 3, 4-Thiadiazole, pharmacological activities, anticancer, antiviral, antibacterial, anticholinergic, clinical indications.

Graphical Abstract
[1]
Jain, A.K.; Sharma, S.; Vaidya, A.; Ravichandran, V.; Agrawal, R.K. 1,3,4-thiadiazole and its derivatives: A review on recent progress in biological activities. Chem. Biol. Drug Des., 2013, 81(5), 557-576.
[http://dx.doi.org/10.1111/cbdd.12125] [PMID: 23452185]
[2]
Supuran, C.T.; Scozzafava, A.; Casini, A. Carbonic anhydrase inhibitors. Med. Res. Rev., 2003, 23(2), 146-189.
[http://dx.doi.org/10.1002/med.10025] [PMID: 12500287]
[3]
Iizawa, Y.; Okonogi, K.; Hayashi, R.; Iwahi, T.; Yamazaki, T.; Imada, A. Therapeutic effect of cefozopran (SCE-2787), a new parenteral cephalosporin, against experimental infections in mice. Antimicrob. Agents Chemother., 1993, 37(1), 100-105.
[http://dx.doi.org/10.1128/AAC.37.1.100] [PMID: 8431004]
[4]
Siddiqui, N.; Ahuja, P.; Ahsan, W.; Pandeya, S.N.; Alam, M.S. Thiadiazoles: Progress report on biological activities. J. Chem. Pharm. Res., 2009, 1(1), 19-30.
[5]
Sandström, J. Recent advances in the chemistry of 1,3,4-thiadiazoles. Adv. Heterocycl. Chem., 1968, 9, 165-209.
[http://dx.doi.org/10.1016/S0065-2725(08)60373-6] [PMID: 4872977]
[6]
Masereel, B.; Rolin, S.; Abbate, F.; Scozzafava, A.; Supuran, C.T. Carbonic anhydrase inhibitors: Anticonvulsant sulfonamides incorporating valproyl and other lipophilic moieties. J. Med. Chem., 2002, 45(2), 312-320.
[http://dx.doi.org/10.1021/jm0109199] [PMID: 11784136]
[7]
Goerdeler, J.; Ohm, J.; Tegtmeyer, O. Darstellung und eigenschaften des 1,2,4‐unddes 1,3,4‐thiadiazols. Chem. Ber., 1956, 89(6), 1534-1543.
[http://dx.doi.org/10.1002/cber.19560890624]
[8]
Wolf, P. Acute drug administration in epilepsy: A review. CNS Neurosci. Ther., 2011, 17(5), 442-448.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00167.x] [PMID: 21951369]
[9]
Polshettiwar, V.; Varma, R.S. Greener and rapid access to bio-active heterocycles: One-pot solvent-free synthesis of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles. Tetrahedron Lett., 2008, 49(5), 879-883.
[http://dx.doi.org/10.1016/j.tetlet.2007.11.165]
[10]
Rai, G.; Kenyon, V.; Jadhav, A.; Schultz, L.; Armstrong, M.; Jameson, J.B., II; Hoobler, E.; Leister, W.; Simeonov, A.; Holman, T.R.; Maloney, D.J. Discovery of potent and selective inhibitors of human reticulocyte 15-lipoxygenase-1. J. Med. Chem., 2010, 53(20), 7392-7404.
[http://dx.doi.org/10.1021/jm1008852] [PMID: 20866075]
[11]
Shahcheragh, S.M.; Habibi, A.; Khosravi, S. Straightforward synthesis of novel substituted 1,3,4-thiadiazole derivatives in choline chloride-based deep eutectic solvent. Tetrahedron Lett., 2017, 58(9), 855-859.
[http://dx.doi.org/10.1016/j.tetlet.2017.01.057]
[12]
Siwek, A.; Plech, T.; Stefańska, J.; Stączek, P.; Strzelczyk, A. Molecular properties prediction, docking studies, and antimicrobial screening of 1,3,4-thiadiazole and s-triazole derivatives. Curr. Computeraided Drug Des., 2014, 10(1), 3-14.
[http://dx.doi.org/10.2174/15734099113096660033] [PMID: 24138398]
[13]
Alegaon, S.G.; Alagawadi, K.R.; Sonkusare, P.V.; Chaudhary, S.M.; Dadwe, D.H.; Shah, A.S. Novel imidazo[2,1-b][1,3,4]thiadiazole carrying rhodanine-3-acetic acid as potential antitubercular agents. Bioorg. Med. Chem. Lett., 2012, 22(5), 1917-1921.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.052] [PMID: 22325950]
[14]
Sayed, A.R. Synthesis of novel thiadiazoles and bis-thiadiazoles from carbonothioic dihydrazide. Tetrahedron Lett., 2010, 51(34), 4490-4493.
[http://dx.doi.org/10.1016/j.tetlet.2010.06.060]
[15]
Shawali, A.S.; Sayed, A.R. Tandem regioselective 1,5-electrocyclizations of bis -nitrilimines—a new convenient synthesis of 1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles. J. Sulfur Chem., 2006, 27(3), 233-244.
[http://dx.doi.org/10.1080/17415990600649193]
[16]
Farrar, J.M.; Patel, M.K.; Kaszynski, P.; Young, V.G. Jr A new thiatriazine isomer: Synthesis, tautomerism, and molecular structure of 3,6-diphenyl-4H-1,2,4,5-thiatriazine as a precursor to the 1,2,4,5-thiatriazinyl radical. J. Org. Chem., 2000, 65(4), 931-940.
[http://dx.doi.org/10.1021/jo991126l] [PMID: 10814035]
[17]
Hall, M.D.; Salam, N.K.; Hellawell, J.L.; Fales, H.M.; Kensler, C.B.; Ludwig, J.A.; Szakács, G.; Hibbs, D.E.; Gottesman, M.M. Synthesis, activity, and pharmacophore development for isatin-β-thiosemicarbazones with selective activity toward multidrug-resistant cells. J. Med. Chem., 2009, 52(10), 3191-3204.
[http://dx.doi.org/10.1021/jm800861c] [PMID: 19397322]
[18]
Hu, Y.; Li, C.Y.; Wang, X.M.; Yang, Y.H.; Zhu, H.L. 1,3,4-Thiadiazole: Synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry. Chem. Rev., 2014, 114(10), 5572-5610.
[http://dx.doi.org/10.1021/cr400131u] [PMID: 24716666]
[19]
Siddiiqui, MN Chemical and spectral investigation in synthetic steroids., 2004, 1-281.
[20]
Gomtsyan, A. Heterocycles in drugs and drug discovery. Chem. Heterocycl. Compd., 2013, 4(1), 12-15.
[21]
Kvasnica, M.; Urban, M.; Dickinson, N.J.; Sarek, J. Pentacyclic triterpenoids with nitrogen- and sulfur-containing heterocycles: Synthesis and medicinal significance. Nat. Prod. Rep., 2015, 32(9), 1303-1330.
[http://dx.doi.org/10.1039/C5NP00015G] [PMID: 26030604]
[22]
Schaumann, E. Comprehensive Heterocyclic Chemistry. The structure,reactions, synthesis and uses of heterocyclic compounds. Herausgegeben von AR Katrizky und CW Rees. Pergamon Press, Oxford 1984, geb. $2200.00.–ISBN (Gesamtwerk) 0-08-026200-7. Angewandte Chemie, 1984, 97(11), 1003-1004.
[23]
Hamama, W.S.; Gouda, M.A.; Abd El-Wahab, M.H.; Zoorob, H.H. Recent advances in the chemistry and synthetic uses of amino-1,3,4-thiadiazoles. J. Heterocycl. Chem., 2014, 51(6), 1558-1581.
[http://dx.doi.org/10.1002/jhet.1872]
[24]
Kidwai, M. Dry media reactions. Pure Appl. Chem., 2001, 73(1), 147-151.
[http://dx.doi.org/10.1351/pac200173010147]
[25]
Sharma, B.; Verma, A.; Prajapati, S.; Sharma, U.K. Synthetic methods, chemistry, and the anticonvulsant activity of thiadiazoles. Int. J. Med. Chem., 2013, 2013, 1-16.
[http://dx.doi.org/10.1155/2013/348948] [PMID: 25405032]
[26]
Bhargava, K.K.; Lee, M.H.; Huang, Y.M.; Cunningham, L.S.; Agrawal, K.C.; Sartorelli, A.C. Tetramisole analogs as inhibitors of alkaline phosphatase, an enzyme involved in the resistance of neoplastic cells to 6-thiopurines. J. Med. Chem., 1977, 20(4), 563-566.
[http://dx.doi.org/10.1021/jm00214a021] [PMID: 557560]
[27]
Goerdeler, J.; Haubrich, H. Über die kupplungsaktivität einiger heterocyclischer diazoverbindungen. Chem. Ber., 1960, 93(2), 397-405.
[http://dx.doi.org/10.1002/cber.19600930220]
[28]
Taha, M.; Barak Almandil, N.; Rashid, U.; Ali, M.; Ibrahim, M.; Gollapalli, M.; Mosaddik, A.; Mohammed Khan, K. 2,5-Disubstituted thiadiazoles as potent β-glucuronidase inhibitors; Synthesis, in vitro and in silico studies. Bioorg. Chem., 2019, 91, 103126.
[http://dx.doi.org/10.1016/j.bioorg.2019.103126] [PMID: 31349116]
[29]
Hamad, N.S.; Al-Haidery, N.H.; Al-Masoudi, I.A.; Sabri, M.; Sabri, L.; Al-Masoudi, N.A. Amino acid derivatives, part 4: synthesis and anti-HIV activity of new naphthalene derivatives. Arch. Pharm., 2010, 343(7), 397-403.
[http://dx.doi.org/10.1002/ardp.200900293] [PMID: 20379971]
[30]
Akhtar, T.; Hameed, S.; Al-Masoudi, N.A.; Khan, K.M. Synthesis and anti-HIV activity of new chiral 1,2,4-triazoles and 1,3,4-thiadiazoles. Heteroatom Chem., 2007, 18(3), 316-322.
[http://dx.doi.org/10.1002/hc.20282]
[31]
Chen, Z.; Xu, W.; Liu, K.; Yang, S.; Fan, H.; Bhadury, P.S.; Huang, D-Y.; Zhang, Y. Synthesis and antiviral activity of 5 (4 chlorophenyl)-1,3,4-thiadiazole sulfonamides. Molecules, 2010, 15(12), 9046-9056.
[http://dx.doi.org/10.3390/molecules15129046] [PMID: 21150824]
[32]
Nazari Montazer, M.; Asadi, M.; Bahadorikhalili, S.; Hosseini, F.S.; Amanlou, A.; Biglar, M.; Amanlou, M. Design, synthesis, docking study and urease inhibitory activity evaluation of novel 2-((5-amino-1,3,4-thiadiazol-2-yl)thio)-N-arylacetamide derivatives. Med. Chem. Res., 2021, 30(3), 729-742.
[http://dx.doi.org/10.1007/s00044-020-02683-5]
[33]
Szulczyk, D.; Tomaszewski, P.; Jóźwiak, M.; Kozioł, A.; Lis, T.; Collu, D.; Iuliano, F.; Struga, M. Synthesis and biological activities of ethyl 2-(2-pyridylacetate) derivatives containing thiourea, 1, 2, 4-triazole, thiadiazole and oxadiazole moieties. Molecules, 2017, 22(3), 409.
[http://dx.doi.org/10.3390/molecules22030409] [PMID: 28272311]
[34]
Yeye, E.O. Kanwal; Mohammed Khan, K.; Chigurupati, S.; Wadood, A.; Ur Rehman, A.; Perveen, S.; Kannan Maharajan, M.; Shamim, S.; Hameed, S.; Aboaba, S.A.; Taha, M. Syntheses, in vitro α-amylase and α-glucosidase dual inhibitory activities of 4-amino-1,2,4-triazole derivatives their molecular docking and kinetic studies. Bioorg. Med. Chem., 2020, 28(11), 115467.
[http://dx.doi.org/10.1016/j.bmc.2020.115467] [PMID: 32327353]
[35]
Wang, Z.; Wu, B.; Kuhen, K.L.; Bursulaya, B.; Nguyen, T.N.; Nguyen, D.G.; He, Y. Synthesis and biological evaluations of sulfanyltriazoles as novel HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(16), 4174-4177.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.096] [PMID: 16781149]
[36]
Zhang, Z.; Xu, W.; Koh, Y.H.; Shim, J.H.; Girardet, J.L.; Yeh, L.T.; Hamatake, R.K.; Hong, Z. A novel nonnucleoside analogue that inhibits human immunodeficiency virus type 1 isolates resistant to current nonnucleoside reverse transcriptase inhibitors. Antimicrob. Agents Chemother., 2007, 51(2), 429-437.
[http://dx.doi.org/10.1128/AAC.01032-06] [PMID: 17116677]
[37]
Muraglia, E.; Kinzel, O.D.; Laufer, R.; Miller, M.D.; Moyer, G.; Munshi, V.; Orvieto, F.; Palumbi, M.C.; Pescatore, G.; Rowley, M.; Williams, P.D.; Summa, V. Tetrazole thioacetanilides: Potent non-nucleoside inhibitors of WT HIV reverse transcriptase and its K103N mutant. Bioorg. Med. Chem. Lett., 2006, 16(10), 2748-2752.
[http://dx.doi.org/10.1016/j.bmcl.2006.02.024] [PMID: 16503141]
[38]
Zhan, P.; Liu, X.; Cao, Y.; Wang, Y.; Pannecouque, C.; De Clercq, E. 1,2,3-Thiadiazole thioacetanilides as a novel class of potent HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(20), 5368-5371.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.055] [PMID: 18824350]
[39]
Liu, X.H.; Shi, Y.X.; Ma, Y.; Zhang, C.Y.; Dong, W.L.; Pan, L.; Wang, B.L.; Li, B.J.; Li, Z.M. Synthesis, antifungal activities and 3D-QSAR study of N-(5-substituted-1,3,4-thiadiazol-2-yl)cyclopropanecarboxamides. Eur. J. Med. Chem., 2009, 44(7), 2782-2786.
[http://dx.doi.org/10.1016/j.ejmech.2009.01.012] [PMID: 19246128]
[40]
Zheng, K.B.; He, J.; Zhang, J. Synthesis and antitumor activity of N1-acetylamino-(5-alkyl/aryl-1,3,4-thiadiazole-2-yl)-5-fluorouracil derivatives. Chin. Chem. Lett., 2008, 19(11), 1281-1284.
[http://dx.doi.org/10.1016/j.cclet.2008.09.021]
[41]
Zhao, J.; Lopez, A.L.; Erichsen, D.; Herek, S.; Cotter, R.L.; Curthoys, N.P.; Zheng, J. Mitochondrial glutaminase enhances extracellular glutamate production in HIV-1-infected macrophages: Linkage to HIV-1 associated dementia. J. Neurochem., 2004, 88(1), 169-180.
[http://dx.doi.org/10.1046/j.1471-4159.2003.02146.x] [PMID: 14675161]
[42]
Erdmann, N.; Zhao, J.; Lopez, A.L.; Herek, S.; Curthoys, N.; Hexum, T.D.; Tsukamoto, T.; Ferraris, D.; Zheng, J. Glutamate production by HIV-1 infected human macrophage is blocked by the inhibition of glutaminase. J. Neurochem., 2007, 102(2), 539-549.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04594.x] [PMID: 17596215]
[43]
Wassel, M.M.S.; Ammar, Y.A.; Elhag Ali, G.A.M.; Belal, A.; Mehany, A.B.M.; Ragab, A. Development of adamantane scaffold containing 1,3,4-thiadiazole derivatives: Design, synthesis, anti-proliferative activity and molecular docking study targeting EGFR. Bioorg. Chem., 2021, 110, 104794.
[http://dx.doi.org/10.1016/j.bioorg.2021.104794] [PMID: 33735711]
[44]
Serban, G. Synthetic compounds with 2-amino-1, 3, 4-thiadiazole moiety against viral infections. Molecules, 2020, 25(4), 942.
[http://dx.doi.org/10.3390/molecules25040942] [PMID: 32093125]
[45]
Jin, C.; Liang, Y.J.; He, H.; Fu, L. Synthesis and antitumor activity of ureas containing pyrimidinyl group. Eur. J. Med. Chem., 2011, 46(1), 429-432.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.026] [PMID: 21144621]
[46]
Zhu, S.L.; Wu, Y.; Liu, C.J.; Wei, C.Y.; Tao, J.C.; Liu, H.M. Design and stereoselective synthesis of novel isosteviol-fused pyrazolines and pyrazoles as potential anticancer agents. Eur. J. Med. Chem., 2013, 65, 70-82.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.044] [PMID: 23693151]
[47]
Abdellatif, K.R.A.; Bakr, R.B. New advances in synthesis and clinical aspects of pyrazolo[3,4-d]pyrimidine scaffolds. Bioorg. Chem., 2018, 78, 341-357.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.032] [PMID: 29627655]
[48]
Bonina, L.; Orzalesi, G.; Merendino, R.; Arena, A.; Mastroeni, P. Structure-activity relationships of new antiviral compounds. Antimicrob. Agents Chemother., 1982, 22(6), 1067-1069.
[http://dx.doi.org/10.1128/AAC.22.6.1067] [PMID: 6297385]
[49]
Kumar, D.; Vaddula, B.R.; Chang, K.H.; Shah, K. One-pot synthesis and anticancer studies of 2-arylamino-5-aryl-1,3,4-thiadiazoles. Bioorg. Med. Chem. Lett., 2011, 21(8), 2320-2323.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.083] [PMID: 21429743]
[50]
Marganakop, S.B.; Kamble, R.R.; Taj, T.; Kariduraganvar, M.Y. An efficient one-pot cyclization of quinoline thiosemicarbazones to quinolines derivatized with 1,3,4-thiadiazole as anticancer and anti-tubercular agents. Med. Chem. Res., 2012, 21(2), 185-191.
[http://dx.doi.org/10.1007/s00044-010-9522-z]
[51]
Zhao, Y.; Ouyang, G.; Xu, W.; Jin, L.; Yuan, K. Synthesis, X-ray structure and antitumor activity of 4-(1, 3, 4-thiadiazole-2-ylthio) benzo [4,5] furo [3,2-d] pyrimidine derivatives. Youji Huaxue, 2010, 30, 1093-1097.
[52]
Song, X.J.; Shao, Y.; Dong, X.G. Microwave-assisted synthesis of some novel fluorinated pyrazolo[3,4-d]pyrimidine derivatives containing 1,3,4-thiadiazole as potential antitumor agents. Chin. Chem. Lett., 2011, 22(9), 1036-1038.
[http://dx.doi.org/10.1016/j.cclet.2011.05.012]
[53]
Sah, P.; Bidawat, P.; Seth, M.; Gharu, C.P. Synthesis of formazans from Mannich base of 5-(4-chlorophenyl amino)-2-mercapto-1,3,4-thiadiazole as antimicrobial agents. Arab. J. Chem., 2014, 7(2), 181-187.
[http://dx.doi.org/10.1016/j.arabjc.2010.10.023]
[54]
Aliabadi, A.; Mohammadi-Farani, A.; Mousavi, H.S.Z.; Hosseini, A. Synthesis and cytotoxicity evaluation of N-(5-Mercapto-4H-1,2,4-triazol-3-yl)-2-phenylacetamide derivatives as apoptosis inducers with potential anticancer effects. Journal of Reports in Pharmaceutical Sciences, 2020, 9(1), 128.
[http://dx.doi.org/10.4103/jrptps.JRPTPS_57_18]
[55]
Gomha, S.M.; Abdel-aziz, H.M.; Khalil, K.D. Synthesis and SAR study of the novel thiadiazole–imidazole derivatives as a new anticancer agent. Chem. Pharm. Bull. (Tokyo), 2016, 64(9), 1356-1363.
[http://dx.doi.org/10.1248/cpb.c16-00344] [PMID: 27581640]
[56]
Polkam, N.; Malthum, S.; Anireddy, J.S.; Brahma, U.; Naidu Vegi, G.M. Design, synthesis, and anticancer evaluation of new 1,3,4-oxadiazole thioether derivatives. Russ. Chem. Bull., 2021, 70(3), 580-584.
[http://dx.doi.org/10.1007/s11172-021-3128-0]
[57]
Yadagiri, B.; Gurrala, S.; Bantu, R.; Nagarapu, L.; Polepalli, S.; Srujana, G.; Jain, N. Synthesis and evaluation of benzosuberone embedded with 1,3,4-oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole moieties as new potential anti proliferative agents. Bioorg. Med. Chem. Lett., 2015, 25(10), 2220-2224.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.032] [PMID: 25827522]
[58]
Plech, T. Kaproń, B.; Paneth, A.; Wujec, M.; Czarnomysy, R.; Bielawska, A.; Bielawski, K.; Trotsko, N.; Kuśmierz, E; Paneth, P. Search for human DNA topoisomerase II poisons in the group of 2,5-disubstituted-1,3,4-thiadiazoles. J. Enzyme Inhib. Med. Chem., 2015, 30(6), 1021-1026.
[http://dx.doi.org/10.3109/14756366.2014.995179] [PMID: 25792499]
[59]
Li, J.; Cesari, M.; Liu, F.; Dong, B.; Vellas, B. Effects of diabetes mellitus on cognitive decline in patients with Alzheimer disease: a systematic review. Can. J. Diabetes, 2017, 41(1), 114-119.
[http://dx.doi.org/10.1016/j.jcjd.2016.07.003] [PMID: 27614804]
[60]
Almasirad, A.; Firoozpour, L.; Nejati, M.; Edraki, N.; Firuzi, O.; Khoshneviszadeh, M.; Mahdavi, M.; Moghimi, S.; Safavi, M.; Shafiee, A.; Foroumadi, A. Design, synthesis, and biological evaluation of new series of 2-amido-1,3,4-thiadiazole derivatives as cytotoxic agents. Z. Naturforsch. B. J. Chem. Sci., 2016, 71(3), 205-210.
[http://dx.doi.org/10.1515/znb-2015-0138]
[61]
Abdelhamid, A.O.; Gomha, S.M.; Abdelrehem, N.A.; Shalaby, A.M.; Kandeel, S.M. Synthesis and biological evaluation of some novel thiadiazole-benzofuran hybrids as potential antitumor agents. Synth. Commun., 2018, 48(6), 677-684.
[http://dx.doi.org/10.1080/00397911.2017.1416637]
[62]
Vudhgiri, S.; Koude, D.; Veeragoni, D.K.; Misra, S.; Prasad, R.B.N.; Jala, R.C.R. Synthesis and biological evaluation of 5-fatty-acylamido-1, 3, 4-thiadiazole-2-thioglycosides. Bioorg. Med. Chem. Lett., 2017, 27(15), 3370-3373.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.004] [PMID: 28615134]
[63]
Raj, V.; Rai, A.; Singh, A.K.; Keshari, A.K.; Trivedi, P.; Ghosh, B.; Kumar, U.; Kumar, D. Saha, S Discovery of novel 2-amino-5-(substituted)-1, 3, 4-thiadiazole derivatives: new utilities for colon cancer treatment. Anticancer. Agents Med. Chem., 2018, 18(5), 719-738.
[64]
Janowska, S.; Paneth, A.; Wujec, M. Cytotoxic properties of 1, 3, 4-thiadiazole derivatives—A review. Molecules, 2020, 25(18), 4309.
[http://dx.doi.org/10.3390/molecules25184309] [PMID: 32962192]
[65]
Chen, C.J.; Song, B.A.; Yang, S.; Xu, G.F.; Bhadury, P.S.; Jin, L.H.; Hu, D.Y.; Li, Q.Z.; Liu, F.; Xue, W.; Lu, P.; Chen, Z. Synthesis and antifungal activities of 5-(3,4,5-trimethoxyphenyl)-2-sulfonyl-1,3,4-thiadiazole and 5-(3,4,5-trimethoxyphenyl)-2-sulfonyl-1,3,4-oxadiazole derivatives. Bioorg. Med. Chem., 2007, 15(12), 3981-3989.
[http://dx.doi.org/10.1016/j.bmc.2007.04.014] [PMID: 17452108]
[66]
Azaam, M.M.; Kenawy, E.R.; El-din, A.S.B.; Khamis, A.A.; El-Magd, M.A. Antioxidant and anticancer activities of α-aminophosphonates containing thiadiazole moiety. J. Saudi Chem. Soc., 2018, 22(1), 34-41.
[http://dx.doi.org/10.1016/j.jscs.2017.06.002]
[67]
Farooqi, S.I.; Arshad, N.; Channar, P.A.; Perveen, F.; Saeed, A.; Larik, F.A.; Javeed, A. Synthesis, theoretical, spectroscopic and electrochemical DNA binding investigations of 1, 3, 4-thiadiazole derivatives of ibuprofen and ciprofloxacin: Cancer cell line studies. J. Photochem. Photobiol. B, 2018, 189, 104-118.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.10.006] [PMID: 30339990]
[68]
Fathy, U.; Awad, H.M. Synthesis and anti-cancer activity of certain novel pyrazoline-based 1, 3-oxathioles and 1, 3, 4-thiadiazoles. Res. J. Pharm. Biol. Chem. Sci., 2018, 9(2), 843-855.
[69]
Yu, L.; Gan, X.; Zhou, D.; He, F.; Zeng, S.; Hu, D. Synthesis and antiviral activity of novel 1, 4-pentadien-3-one derivatives containing a 1, 3, 4-thiadiazole moiety. Molecules, 2017, 22(4), 658.
[http://dx.doi.org/10.3390/molecules22040658] [PMID: 28430149]
[70]
Gowramma, B.; Praveen, T.K.; Gomathy, S.; Kalirajan, R.; Babu, B.; Krishnavenic, N. Synthesis of 2-(bis (2-chloroethyl)amino)-N-(5-Substitutedphenyl)- 1,3,4- Thiadiazol-2-Yl)acetohydrazide and evaluation of anticancer activity. Curr. Bioact. Compd., 2018, 14(3), 309-316.
[http://dx.doi.org/10.2174/1573407213666170428110528]
[71]
Abdel-Aziz, M.; Gamal-Eldeen, A.M. Synthesis and screening of anti-cancer, antioxidant, and anti-inflammatory activities of novel galloyl pyrazoline derivatives. Pharm. Biol., 2009, 47(9), 854-863.
[http://dx.doi.org/10.1080/13880200902946452]
[72]
Nassar, I.F.; Att-Allah, S.R.; Hemdan, M.M. Utility of thiophene-2-carbonyl isothiocyanate as a precursor for the synthesis of 1,2,4-triazole, 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives with evaluation of their antitumor and antimicrobial activities. Phosphorus Sulfur Silicon Relat. Elem., 2018, 193(10), 630-636.
[http://dx.doi.org/10.1080/10426507.2018.1487435]
[73]
Mahapatra, D.K.; Dadure, K.M.; Haldar, A.G. Exploring the anti-breast cancer (against MCF-7 Cell Line) potentials of uracil substituted hippuric acid based 1, 3, 4-thiadiazole compound. Int. J. Pharm. Life Sci., 2019, 10(1), 6013-6015.
[74]
Hashem, H.E.; Amr, A.E.G.E.; Nossier, E.S.; Elsayed, E.A.; Azmy, E.M. Synthesis, antimicrobial activity and molecular docking of novel thiourea derivatives tagged with thiadiazole, imidazole and triazine moieties as potential DNA gyrase and topoisomerase IV inhibitors. Molecules, 2020, 25(12), 2766.
[http://dx.doi.org/10.3390/molecules25122766] [PMID: 32549386]
[75]
Rashdan, H.R.M.; Farag, M.M.; El-Gendey, M.S.; Mounier, M.M. Toward rational design of novel anti-cancer drugs based on targeting, solubility, and bioavailability exemplified by 1, 3, 4-thiadiazole derivatives synthesized under solvent-free conditions. Molecules, 2019, 24(13), 2371.
[http://dx.doi.org/10.3390/molecules24132371] [PMID: 31252614]
[76]
Chandra Sekhar, D.; Venkata Rao, D.V.; Tejeswara Rao, A.; Lav Kumar, U.; Jha, A. Design and synthesis of 1,3,4-thiadiazole derivatives as novel anticancer and antitubercular agents. Russ. J. Gen. Chem., 2019, 89(4), 770-779.
[http://dx.doi.org/10.1134/S1070363219040224]
[77]
Matysiak, J.; Opolski, A. Synthesis and antiproliferative activity of N-substituted 2-amino-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazoles. Bioorg. Med. Chem., 2006, 14(13), 4483-4489.
[http://dx.doi.org/10.1016/j.bmc.2006.02.027] [PMID: 16517170]
[78]
Yadav, L.D.; Singh, S. Synthesis of antiviral acyclic C-nucleosides incorporating thiazolo-1, 3, 4-oxa thiadiazole or thiazolo-1, 2, 4-triazole structure as a nucleobase. Indian J. Chem., 2001, 40, 440-442.
[79]
Bhuva, H.; Sahu, D.; Shah, B.N.; Modi, D.C.; Patel, M.B. Biological profile of thiadiazole. Pharmacologyonline, 2011, 1, 528-543.
[80]
Upadhyay, P.K.; Mishra, P. Synthesis, antimicrobial and anticancer activities of 5-(4-substituted phenyl)-1, 3, 4-thiadiazole-2-amines. Rasayan J. Chem., 2017, 10(1), 254-262.
[81]
Wang, Y.; Xu, F.; Yu, G.; Shi, J.; Li, C.; Dai, A.; Liu, Z.; Xu, J.; Wang, F.; Wu, J. Synthesis and insecticidal activity of diacylhydrazine derivatives containing a 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole scaffold. Chem. Cent. J., 2017, 11(1), 50.
[http://dx.doi.org/10.1186/s13065-017-0279-z]
[82]
Jakovljević, K.; Joksović, M.D.; Matić, I.Z.; Petrović, N.; Stanojković, T.; Sladić, D.; Vujčić, M.; Janović, B.; Joksović, L.; Trifunović, S.; Marković, V. Novel 1,3,4-thiadiazole–chalcone hybrids containing catechol moiety: synthesis, antioxidant activity,cytotoxicity and DNA interaction studies. MedChemComm, 2018, 9(10), 1679-1697.
[http://dx.doi.org/10.1039/C8MD00316E] [PMID: 30429973]
[83]
Makhaeva, G.F.; Grigoriev, V.V.; Proshin, A.N.; Kovaleva, N.V.; Rudakova, E.V.; Boltneva, N.P.; Serkov, I.V.; Bachurin, S.O. Novel conjugates of tacrine with 1,2,4,-thiadiazole as highly effective cholinesterase inhibitors, blockers of NMDA receptors, and antioxidants. Dokl. Biochem. Biophys., 2017, 477(1), 405-409.
[http://dx.doi.org/10.1134/S1607672917060163] [PMID: 29297118]
[84]
Askin, S.; Tahtaci, H.; Türkeş, C.; Demir, Y.; Ece, A.; Akalın Çiftçi, G.; Beydemir, Ş. Design, synthesis, characterization, in vitro and in silico evaluation of novel imidazo[2,1-b][1,3,4]thiadiazoles as highly potent acetylcholinesterase and non-classical carbonic anhydrase inhibitors. Bioorg. Chem., 2021, 113, 105009.
[http://dx.doi.org/10.1016/j.bioorg.2021.105009] [PMID: 34052739]
[85]
Uraz, M.; Karakuş, S.; Mohhsen, U.A.; Kaplancıklı, Z.A.; Rollas, S The synthesis and evaluation of anti-acetylcholinesterase activity of some 4 (3H)-quinazolinone derivatives bearing substituted 1, 3, 4-thiadiazole. Marmara Pharm. J., 2017, 21(1), 96-101.
[86]
Shi, D.H.; Zhu, H.L.; Liu, Y.W.; Tang, Z.M.; Lu, C.; Ma, X.D.; Song, X.K.; Liu, W.W.; Dong, T.; Song, M.Q. Synthesis and evaluation of 5-benzyl-1, 3, 4-thiadiazole derivatives as acetylcholinesterase inhibitors. J. Chem. Res., 2017, 41(11), 664-667.
[http://dx.doi.org/10.3184/174751917X15094552081242]
[87]
Padmavathi, V.; Dinneswara Reddy, G.; Nagi Reddy, S.; Mahesh, K. Synthesis and biological activity of 2-(bis((1,3,4-oxadiazolyl/1,3,4-thiadiazolyl)methylthio)methylene)malononitriles. Eur. J. Med. Chem., 2011, 46(4), 1367-1373.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.063] [PMID: 21342736]
[88]
Amir, M.; Kumar, H.; Javed, S.A. Condensed bridgehead nitrogen heterocyclic system: Synthesis and pharmacological activities of 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole derivatives of ibuprofen and biphenyl-4-yloxy acetic acid. Eur. J. Med. Chem., 2008, 43(10), 2056-2066.
[http://dx.doi.org/10.1016/j.ejmech.2007.09.025] [PMID: 18023930]
[89]
Dogan, H.N.; Duran, A.; Rollas, S.; Sener, G.; Uysal, M.K.; Gülen, D. Synthesis of new 2,5-Disubstituted-1,3,4-thiadiazoles and preliminary evaluation of anticonvulsant and antimicrobial activities. Bioorg. Med. Chem., 2002, 10(9), 2893-2898.
[http://dx.doi.org/10.1016/S0968-0896(02)00143-8] [PMID: 12110309]
[90]
Kaushal, M.; Kaur, A. A review on some 2, 5-disubstituted [1, 3, 4] thiadiazole substituted thiazolidinone derivatives as a potent antimicrobial agent. World J. Pharm. Res., 2016, 5(6), 1966-1977.
[91]
Sherman, W.R. 5-Nitro-2-furyl-substituted 1,3,4-oxadiazoles, 1,3,4-thiadiazoles, and 1,3,5-triazines. J. Org. Chem., 1961, 26(1), 88-95.
[http://dx.doi.org/10.1021/jo01060a021]
[92]
Demirbas, A.; Sahin, D.; Demirbas, N.; Karaoglu, S.A. Synthesis of some new 1,3,4-thiadiazol-2-ylmethyl-1,2,4-triazole derivatives and investigation of their antimicrobial activities. Eur. J. Med. Chem., 2009, 44(7), 2896-2903.
[http://dx.doi.org/10.1016/j.ejmech.2008.12.005] [PMID: 19167136]
[93]
Rostom, S.A.F.; El-Ashmawy, I.M.; Abd El Razik, H.A.; Badr, M.H.; Ashour, H.M.A. Design and synthesis of some thiazolyl and thiadiazolyl derivatives of antipyrine as potential non-acidic anti-inflammatory, analgesic and antimicrobial agents. Bioorg. Med. Chem., 2009, 17(2), 882-895.
[http://dx.doi.org/10.1016/j.bmc.2008.11.035] [PMID: 19084415]
[94]
Camoutsis, C.; Geronikaki, A.; Ciric, A.; Soković, M.; Zoumpoulakis, P.; Zervou, M. Sulfonamide-1,2,4-thiadiazole derivatives as antifungal and antibacterial agents: synthesis, biological evaluation, lipophilicity, and conformational studies. Chem. Pharm. Bull. (Tokyo), 2010, 58(2), 160-167.
[http://dx.doi.org/10.1248/cpb.58.160] [PMID: 20118573]
[95]
Poorrajab, F.; Ardestani, S.K.; Foroumadi, A.; Emami, S.; Kariminia, A.; Behrouzi-Fardmoghadam, M.; Shafiee, A. Selective leishmanicidal effect of 1,3,4-thiadiazole derivatives and possible mechanism of action against Leishmania species. Exp. Parasitol., 2009, 121(4), 323-330.
[http://dx.doi.org/10.1016/j.exppara.2008.12.004] [PMID: 19124020]
[96]
Pattanayak, P.; Sharma, R.; Sahoo, P.K. Synthesis and evaluation of 2-amino-5-sulfanyl-1,3,4-thiadiazoles as antidepressant, anxiolytic, and anticonvulsant agents. Med. Chem. Res., 2009, 18(5), 351-361.
[http://dx.doi.org/10.1007/s00044-008-9132-1]
[97]
Serban, G.; Stanasel, O.; Serban, E.; Bota, S. 2-Amino-1,3,4-thiadiazole as a potential scaffold for promising antimicrobial agents. Drug Des. Devel. Ther., 2018, 12, 1545-1566.
[http://dx.doi.org/10.2147/DDDT.S155958] [PMID: 29910602]
[98]
Mermer, A.; Keles, T.; Sirin, Y. Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents: A review. Bioorg. Chem., 2021, 114, 105076.
[http://dx.doi.org/10.1016/j.bioorg.2021.105076] [PMID: 34157555]
[99]
Sharma, R.; Sainy, J.; Chaturvedi, S. 2-Amino-5-sulfanyl-1,3,4-thiadiazoles: A new series of selective cyclooxygenase-2 inhibitors. Acta Pharm., 2008, 58(3), 317-326.
[http://dx.doi.org/10.2478/v10007-008-0011-6] [PMID: 19103568]
[100]
Kamboj, A.; Saluja, A. Bryophyllum pinnatum (Lam.) Kurz.: Phytochemical and pharmacological profile: A review. Pharmacogn. Rev., 2009, 3(6), 364.
[101]
Du, Q.; Zhu, W.; Zhao, Z.; Qian, X.; Xu, Y. Novel benzo-1,2,3-thiadiazole-7-carboxylate derivatives as plant activators and the development of their agricultural applications. J. Agric. Food Chem., 2012, 60(1), 346-353.
[http://dx.doi.org/10.1021/jf203974p] [PMID: 22142181]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy