Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Mini-Review Article

Bioactive Heterocycles: Green Synthesis and its Anti-Alzheimer Activity

Author(s): Mohamed Sulthan Hasan Fathima Afridha, Kathar Aazath, Selvaraj Mohana Roopan* and Sagayaraj Jane Anto Simplica

Volume 10, Issue 1, 2023

Published on: 20 January, 2023

Page: [42 - 56] Pages: 15

DOI: 10.2174/2213346110666221230113833

Price: $65

Open Access Journals Promotions 2
Abstract

The wide pharmaceutical activity of the bioactive heterocycles, which include nitrogen, oxygen, and sulphur and comprise five- and six-membered rings, has drawn the attention of medicinal chemists for several years. The therapeutic potential of bioactive heterocycles for a variety of disorders lies in their medicinal effects. The most prominent of them is Alzheimer's disease (AD), a neurodegenerative disorder that impairs memory and causes other psychiatric problems. Globally, there are around 54 million cases, and by 2050, that number is predicted to rise by 131 million. So far, donepezil, galantamine, and rivastigmine have indeed received FDA approval for use in the treatment of AD. In this regard, the pharmacophoric properties of heterocycle molecules are equivalent to those of galantamine mimics. Therefore, it is beneficial to create novel compounds containing these moieties and test their ability to inhibit acetyl and butyl cholinesterase. Diverse heterocyclic scaffolds may now have therapeutic potential for Alzheimer's disease. Recently, greener and more expeditious synthesis of bioactive heterocycles has drawn much attention because of the utilisation of environmentally benign protocols, thereby diminishing the usage of hazardous chemicals. In this review, we discuss the most pertinent findings about the "green" synthesis of heterocycles and their possible anti-activity against Alzheimer's.

Keywords: Alzheimer’s disease, anti-Alzheimer’s activity, bioactive heterocycles, green synthesis, heterocycles, pharmacological activities.

Graphical Abstract
[1]
Kassiou, M.; Reekie, T.; Kavanagh, M.; Longworth, M. Synthesis of biologically active seven-membered-ring heterocycles. Synthesis, 2013, 45(23), 3211-3227.
[http://dx.doi.org/10.1055/s-0033-1338549]
[2]
Polshettiwar, V.; Varma, R.S. Greener and expeditious synthesis of bioactive heterocycles using microwave irradiation. Pure Appl. Chem., 2008, 80(4), 777-790.
[http://dx.doi.org/10.1351/pac200880040777]
[3]
Andrei, Y. Introduction: small heterocycles in synthesis. Chem. Rev., 2014, 114(16), 7783-7783.
[http://dx.doi.org/10.1021/cr500323m] [PMID: 25161082]
[4]
Katritzky, A.R. Introduction: Heterocycles. Chem. Rev., 2004, 104(5), 2125-2126.
[http://dx.doi.org/10.1021/cr0406413]
[5]
Baraldi, P.G.; Tabrizi, M.A.; Preti, D.; Bovero, A.; Romagnoli, R.; Fruttarolo, F.; Zaid, N.A.; Moorman, A.R.; Varani, K.; Gessi, S.; Merighi, S.; Borea, P.A. Design, synthesis, and biological evaluation of new 8-heterocyclic xanthine derivatives as highly potent and selective human A2B adenosine receptor antagonists. J. Med. Chem., 2004, 47(6), 1434-1447.
[http://dx.doi.org/10.1021/jm0309654] [PMID: 14998332]
[6]
Buffat, M.G.P. Synthesis of piperidines. Tetrahedron, 2004, 60(8), 1701-1729.
[http://dx.doi.org/10.1016/j.tet.2003.11.043]
[7]
Kumar, G.; Saroha, B.; Kumar, R.; Kumari, M.; Kumar, S. Recent advances in synthesis and biological assessment of quinolineoxygen heterocycle hybrids ChemistrySelect, 2021, 6(20), 5148-5165.
[http://dx.doi.org/10.1002/slct.202100906]
[8]
Karmakar, R.; Mukhopadhyay, C. Ultrasonication under catalyst-free condition: an advanced synthetic technique toward the green synthesis of bioactive heterocycles. In: Green Synthetic Approaches for Biologically Relevant Heterocycles; Elsevier: Amsterdam, 2021; pp. 497-562.
[9]
Badshah, S.; Naeem, A. Bioactive thiazine and benzothiazine derivatives: green synthesis methods and their medicinal importance. Molecules, 2016, 21(8), 1054.
[http://dx.doi.org/10.3390/molecules21081054] [PMID: 27537865]
[10]
Shitole, N.V.; Sapkal, S.B.; Shingate, B.B.; Shingare, M.S. A simple and green synthesis of tetrahydrobenzo [α]-xanthen-11-one using peg-400 as efficient and recyclable reaction media. Bull. Korean Chem. Soc., 2011, 32(1), 35-36.
[http://dx.doi.org/10.5012/bkcs.2011.32.1.35]
[11]
Ameta, K.L.; Penoni, A. Heterogeneous catalysis: A versatile tool for the synthesis of bioactive heterocycles; CRC Press, 2014.
[http://dx.doi.org/10.1201/b17418]
[12]
Boukis, A.C.; Reiter, K.; Frölich, M.; Hofheinz, D.; Meier, M.A.R. Multicomponent reactions provide key molecules for secret communication. Nat. Commun., 2018, 9(1), 1439.
[http://dx.doi.org/10.1038/s41467-018-03784-x] [PMID: 29651145]
[13]
Graebin, C.S.; Ribeiro, F.V.; Rogério, K.R.; Kümmerle, A.E. Multicomponent reactions for the synthesis of bioactive compounds: a review. Curr. Org. Synth., 2019, 16(6), 855-899.
[http://dx.doi.org/10.2174/1570179416666190718153703] [PMID: 31984910]
[14]
Sunderhaus, J.D.; Martin, S.F. Applications of multicomponent reactions to the synthesis of diverse heterocyclic scaffolds. Chemistry, 2009, 15(6), 1300-1308.
[http://dx.doi.org/10.1002/chem.200802140] [PMID: 19132705]
[15]
Estévez, V.; Villacampa, M.; Menéndez, J.C. Recent advances in the synthesis of pyrroles by multicomponent reactions. Chem. Soc. Rev., 2014, 43(13), 4633-4657.
[http://dx.doi.org/10.1039/C3CS60015G] [PMID: 24676061]
[16]
Lamberth, C.; Dinges, J., Eds.; Bioactive heterocyclic compound classes: pharmaceuticals; John Wiley & Sons, 2012.
[http://dx.doi.org/10.1002/9783527664412]
[17]
Natori, Y.; Imahori, T.; Yoshimura, Y. Development of stereoselective synthesis of biologically active nitrogen-heterocyclic compounds: Applications for syntheses of natural product and organocatalyst. Yuki Gosei Kagaku Kyokaishi. J. Synth. Org. Chem. Jpn., 2016, 74(4), 335-349.
[http://dx.doi.org/10.5059/yukigoseikyokaishi.74.335]
[18]
Mahmood, R.M.; Aljamali, N.M. Synthesis, spectral investigation and microbial studying of pyridine-heterocyclic compounds. Eur. J. Mol. Clin. Med., 2020, 7(11), 2020.
[19]
Ghasemzadeh, M.A.; Mirhosseini-Eshkevari, B.; Abdollahi-Basir, M.H. Green synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazoles] using Fe3O4@l-arginine as a robust and reusable catalyst. BMC Chem., 2019, 13(1), 119.
[http://dx.doi.org/10.1186/s13065-019-0636-1] [PMID: 31624802]
[20]
Zhang, M.; Fu, Q.Y.; Gao, G.; He, H.Y.; Zhang, Y.; Wu, Y.S.; Zhang, Z.H. Catalyst-free, visible-light promoted one-pot synthesis of spirooxindole-pyran derivatives in aqueous ethyl lactate. ACS Sustain. Chem.& Eng., 2017, 5(7), 6175-6182.
[http://dx.doi.org/10.1021/acssuschemeng.7b01102]
[21]
Thévenin, M.; Thoret, S.; Grellier, P.; Dubois, J. Synthesis of polysubstituted benzofuran derivatives as novel inhibitors of parasitic growth. Bioorg. Med. Chem., 2013, 21(17), 4885-4892.
[http://dx.doi.org/10.1016/j.bmc.2013.07.002] [PMID: 23902828]
[22]
Bertrand, B.; Stefan, L.; Pirrotta, M.; Monchaud, D.; Bodio, E.; Richard, P.; Le Gendre, P.; Warmerdam, E.; de Jager, M.H.; Groothuis, G.M.M.; Picquet, M.; Casini, A. Caffeine-based gold(I) N-heterocyclic carbenes as possible anticancer agents: synthesis and biological properties. Inorg. Chem., 2014, 53(4), 2296-2303.
[http://dx.doi.org/10.1021/ic403011h] [PMID: 24499428]
[23]
Horrocks, P.; Fallon, S.; Denman, L.; Devine, O.; Duffy, L.J.; Harper, A.; Meredith, E.L.; Hasenkamp, S.; Sidaway, A.; Monnery, D.; Phillips, T.R.; Allin, S.M. Synthesis and evaluation of a novel series of indoloisoquinolines as small molecule anti-malarial leads. Bioorg. Med. Chem. Lett., 2012, 22(4), 1770-1773.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.071] [PMID: 22264480]
[24]
Azab, M.; Youssef, M.; El-Bordany, E. Synthesis and antibacterial evaluation of novel heterocyclic compounds containing a sulfonamido moiety. Molecules, 2013, 18(1), 832-844.
[http://dx.doi.org/10.3390/molecules18010832] [PMID: 23344196]
[25]
Zhao, S.; Zhang, X.; Wei, P.; Su, X.; Zhao, L.; Wu, M.; Hao, C.; Liu, C.; Zhao, D.; Cheng, M. Design, synthesis and evaluation of aromatic heterocyclic derivatives as potent antifungal agents. Eur. J. Med. Chem., 2017, 137, 96-107.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.043] [PMID: 28558334]
[26]
Salem, M.S.; Sakr, S.I.; El-Senousy, W.M.; Madkour, H.M.F. Synthesis, antibacterial, and antiviral evaluation of new heterocycles containing the pyridine moiety. Arch. Pharm., 2013, 346(10), 766-773.
[http://dx.doi.org/10.1002/ardp.201300183] [PMID: 24105721]
[27]
Khan, M.A.; El-Khatib, R.; Rainsford, K.D.; Whitehouse, M.W. Synthesis and anti-inflammatory properties of some aromatic and heterocyclic aromatic curcuminoids. Bioorg. Chem., 2012, 40(1), 30-38.
[http://dx.doi.org/10.1016/j.bioorg.2011.11.004] [PMID: 22172598]
[28]
Tian, Y.; Du, D.; Rai, D.; Wang, L.; Liu, H.; Zhan, P.; De Clercq, E.; Pannecouque, C.; Liu, X. Fused heterocyclic compounds bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 1: Design, synthesis and biological evaluation of novel 5,7-disubstituted pyrazolo[1,5-a]pyrimidine derivatives. Bioorg. Med. Chem., 2014, 22(7), 2052-2059.
[http://dx.doi.org/10.1016/j.bmc.2014.02.029] [PMID: 24631361]
[29]
Savateev, K.V.; Fedotov, V.V.; Ulomskiy, E.N.; Rusinov, V.L. 7-Alkylamino-6-nitrotetrazolo[1,5-a]pyrimidines as precursors of anomalous nucleosides and heterocycles with potential antiseptic activity. Chem. Heterocycl. Compd., 2018, 54(2), 197-204.
[http://dx.doi.org/10.1007/s10593-018-2254-6]
[30]
Putta, R.R.; Donthamsetty V, S.; Guda, D.R.; Adivireddy, P.; Venkatapuram, P. Synthesis and anti‐allergic activity of bis‐heteroaryl hydrazines. J. Heterocycl. Chem., 2017, 54(4), 2216-2222.
[http://dx.doi.org/10.1002/jhet.2808]
[31]
Husain, A.; Balushi K, A.; Akhtar, M.J.; Khan, S.A. Coumarin linked heterocyclic hybrids: A promising approach to develop multi target drugs for Alzheimer’s disease. J. Mol. Struct., 2021, 1241, 130618.
[http://dx.doi.org/10.1016/j.molstruc.2021.130618]
[32]
Lathe, R.; Sapronova, A.; Kotelevtsev, Y. Atherosclerosis and Alzheimer - diseases with a common cause? Inflammation, oxysterols, vasculature. BMC Geriatr., 2014, 14(1), 36.
[http://dx.doi.org/10.1186/1471-2318-14-36] [PMID: 24656052]
[33]
Economou, N.T.; Manconi, M.; Ghika, J.; Raimondi, M.; Bassetti, C.L. Development of Parkinson and Alzheimer diseases in two cases of narcolepsy-cataplexy. Eur. Neurol., 2012, 67(1), 48-50.
[http://dx.doi.org/10.1159/000334733] [PMID: 22156336]
[34]
Rusina, R.; Pazdera, L.; Kulišťák, P.; Vyšata, O.; Matěj, R. Pick and Alzheimer diseases: a rare comorbidity presenting as corticobasal syndrome. Cogn. Behav. Neurol., 2013, 26(4), 189-194.
[http://dx.doi.org/10.1097/WNN.0000000000000011] [PMID: 24378604]
[35]
Alzheimer’s Association. 2018 Alzheimer’s disease facts and figures. Alzheimers Dement., 2018, 14(3), 367-429.
[http://dx.doi.org/10.1016/j.jalz.2018.02.001]
[36]
Rehman, T.U.; Khan, I.U.; Ashraf, M.; Tarazi, H.; Riaz, S.; Yar, M. An efficient synthesis of bi -aryl pyrimidine heterocycles: potential new drug candidates to treat alzheimer’s disease. Arch. Pharm., 2017, 350(3-4), 1600304.
[http://dx.doi.org/10.1002/ardp.201600304] [PMID: 28220522]
[37]
Oh, M.H.; Houghton, P.J.; Whang, W.K.; Cho, J.H. Screening of Korean herbal medicines used to improve cognitive function for anti-cholinesterase activity. Phytomedicine, 2004, 11(6), 544-548.
[http://dx.doi.org/10.1016/j.phymed.2004.03.001] [PMID: 15500267]
[38]
Komersová, A.; Komers, K.; Čegan, A. New findings about Ellman’s method to determine cholinesterase activity Z. Naturforsch. C J. Biosci., 2007, 62(1-2), 150-154.
[http://dx.doi.org/10.1515/znc-2007-1-225] [PMID: 17425121]
[39]
Meena, P.; Nemaysh, V.; Khatri, M.; Manral, A.; Luthra, P.M.; Tiwari, M. Synthesis, biological evaluation and molecular docking study of novel piperidine and piperazine derivatives as multi-targeted agents to treat Alzheimer’s disease. Bioorg. Med. Chem., 2015, 23(5), 1135-1148.
[http://dx.doi.org/10.1016/j.bmc.2014.12.057] [PMID: 25624107]
[40]
Iraji, A.; Firuzi, O.; Khoshneviszadeh, M.; Nadri, H.; Edraki, N.; Miri, R. Synthesis and structure-activity relationship study of multi-target triazine derivatives as innovative candidates for treatment of Alzheimer’s disease. Bioorg. Chem., 2018, 77, 223-235.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.017] [PMID: 29367079]
[41]
Yazdani, M.; Edraki, N.; Badri, R.; Khoshneviszadeh, M.; Iraji, A.; Firuzi, O. Multi-target inhibitors against Alzheimer disease derived from 3-hydrazinyl 1,2,4-triazine scaffold containing pendant phenoxy methyl-1,2,3-triazole: Design, synthesis and biological evaluation. Bioorg. Chem., 2019, 84, 363-371.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.038] [PMID: 30530107]
[42]
Martínez-Palou, R. Microwave-assisted synthesis using ionic liquids. Mol. Divers., 2010, 14(1), 3-25.
[http://dx.doi.org/10.1007/s11030-009-9159-3] [PMID: 19507045]
[43]
Plechkova, N.V.; Seddon, K.R. Ionic liquids:“designer” solvents for green chemistry; Methods and Reagents for Green Chemistry, 2007, pp. 105-130.
[44]
Martins, M.A.P.; Frizzo, C.P.; Moreira, D.N.; Zanatta, N.; Bonacorso, H.G. Ionic liquids in heterocyclic synthesis. Chem. Rev., 2008, 108(6), 2015-2050.
[http://dx.doi.org/10.1021/cr078399y] [PMID: 18543878]
[45]
Sahu, P.K.; Sahu, P.K.; Gupta, S.K.; Agarwal, D.D. Chitosan: An efficient, reusable, and biodegradable catalyst for green synthesis of heterocycles. Ind. Eng. Chem. Res., 2014, 53(6), 2085-2091.
[http://dx.doi.org/10.1021/ie402037d]
[46]
Pleshchev, M.I.; Epishina, M.A.; Kachala, V.V.; Kuznetsov, V.V.; Goloveshkin, A.S.; Bushmarinov, I.S.; Makhova, N.N. Ionic liquid-promoted stereoselective [3 + 2] cycloaddition of 1-hetaryl-2-nitroethenes to azomethine imines generated in situ. Mendeleev Commun., 2013, 23(4), 206-208.
[http://dx.doi.org/10.1016/j.mencom.2013.07.009]
[47]
Hu, J.; Ma, J.; Zhu, Q.; Zhang, Z.; Wu, C.; Han, B. Transformation of atmospheric CO2 catalyzed by protic ionic liquids: efficient synthesis of 2-oxazolidinones. Angew. Chem. Int. Ed., 2015, 54(18), 5399-5403.
[http://dx.doi.org/10.1002/anie.201411969] [PMID: 25735887]
[48]
Jiang, L.; Ye, W.; Su, W. One-pot multicomponent synthesis of highly functionalized 1, 4-dihydropyridines using porcine pancreatic lipase. Chem. Res. Chin. Univ., 2019, 35(2), 235-238.
[http://dx.doi.org/10.1007/s40242-019-8277-4]
[49]
Wellington, K.W.; Qwebani-Ogunleye, T.; Kolesnikova, N.I.; Brady, D.; de Koning, C.B. One-pot laccase-catalysed synthesis of 5,6-dihydroxylated benzo[b]furans and catechol derivatives, and their anticancer activity. Arch. Pharm. (Weinheim), 2013, 346(4), 266-277.
[http://dx.doi.org/10.1002/ardp.201200413] [PMID: 23447437]
[50]
Sousa, A.C.; Oliveira, M.C.; Martins, L.O.; Robalo, M.P. Towards the rational biosynthesis of substituted phenazines and phenoxazinones by laccases. Green Chem., 2014, 16(9), 4127-4136.
[http://dx.doi.org/10.1039/C4GC00901K]
[51]
Ramesh, K.; Basuli, S.; Satyanarayana, G. Microwave-assisted domino palladium catalysis in water: A diverse synthesis of 3,3′-disubstituted heterocyclic compounds. Eur. J. Org. Chem., 2018, 2018(19), 2171-2177.
[http://dx.doi.org/10.1002/ejoc.201800155]
[52]
Cruz-Vicente, P.; Passarinha, L.A.; Silvestre, S.; Gallardo, E. Recent developments in new therapeutic agents against Alzheimer and Parkinson diseases: in-silico approaches. Molecules, 2021, 26(8), 2193.
[http://dx.doi.org/10.3390/molecules26082193] [PMID: 33920326]
[53]
Wisniewski, K.; Jervis, G.A.; Moretz, R.C.; Wisniewski, H.M. Alzheimer neurofibrillary tangles in diseases other than senile and presenile dementia. Ann. Neurol., 1979, 5(3), 288-294.
[http://dx.doi.org/10.1002/ana.410050311] [PMID: 156000]
[54]
Tublin, J.M.; Adelstein, J.M.; del Monte, F.; Combs, C.K.; Wold, L.E. Getting to the heart of Alzheimer disease. Circ. Res., 2019, 124(1), 142-149.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313563] [PMID: 30605407]
[55]
McGeer, P.; McGeer, E. The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res. Brain Res. Rev., 1995, 21(2), 195-218.
[http://dx.doi.org/10.1016/0165-0173(95)00011-9] [PMID: 8866675]
[56]
Silva, T.; Reis, J.; Teixeira, J.; Borges, F. Alzheimer’s disease, enzyme targets and drug discovery struggles: From natural products to drug prototypes. Ageing Res. Rev., 2014, 15, 116-145.
[http://dx.doi.org/10.1016/j.arr.2014.03.008] [PMID: 24726823]
[57]
Zhou, S.; Huang, G. The biological activities of butyrylcholinesterase inhibitors. Biomed. Pharmacother., 2022, 146, 112556.
[http://dx.doi.org/10.1016/j.biopha.2021.112556] [PMID: 34953393]
[58]
Schliebs, R.; Arendt, T. The cholinergic system in aging and neuronal degeneration. Behav. Brain Res., 2011, 221(2), 555-563.
[http://dx.doi.org/10.1016/j.bbr.2010.11.058] [PMID: 21145918]
[59]
Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[60]
Dvir, H.; Silman, I.; Harel, M.; Rosenberry, T.L.; Sussman, J.L. Acetylcholinesterase: From 3D structure to function. Chem. Biol. Interact., 2010, 187(1-3), 10-22.
[http://dx.doi.org/10.1016/j.cbi.2010.01.042] [PMID: 20138030]
[61]
Khojaste-Sarakhsi, M.; Haghighi, S.S.; Ghomi, S.M.T.F.; Marchiori, E. Deep learning for Alzheimer’s disease diagnosis: A survey. Artif. Intell. Med., 2022, 130, 102332.
[http://dx.doi.org/10.1016/j.artmed.2022.102332] [PMID: 35809971]
[62]
Villain, N.; Planche, V.; Levy, R. High-clearance anti-amyloid immunotherapies in Alzheimer’s disease. Part 2: putative scenarios and timeline in case of approval, recommendations for use, implementation, and ethical considerations in France. Rev. Neurol. (Paris), 2022, 178(10), 999-1010.
[http://dx.doi.org/10.1016/j.neurol.2022.08.002] [PMID: 36336488]
[63]
Khodabakhsh, P.; Bazrgar, M.; Dargahi, L.; Mohagheghi, F.; Asgari Taei, A.; Parvardeh, S.; Ahmadiani, A. Does Alzheimer’s disease stem in the gastrointestinal system? Life Sci., 2021, 287, 120088.
[http://dx.doi.org/10.1016/j.lfs.2021.120088] [PMID: 34715145]
[64]
Singh, G.; Sharma, M.; Kumar, G.A.; Rao, N.G.; Prasad, K.; Mathur, P.; Pandian, J.D.; Steinmetz, J.D.; Biswas, A.; Pal, P.K.; Prakash, S.; Sylaja, P.N.; Nichols, E.; Dua, T.; Kaur, H.; Alladi, S.; Agarwal, V.; Aggarwal, S.; Ambekar, A.; Bagepally, B.S.; Banerjee, T.K.; Bender, R.G.; Bhagwat, S.; Bhargava, S.; Bhatia, R.; Chakma, J.K.; Chowdhary, N.; Dey, S.; Dirac, M.A.; Feigin, V.L.; Ganguli, A.; Golechha, M.J.; Gourie-Devi, M.; Goyal, V.; Gupta, G.; Gupta, P.C.; Gupta, R.; Gururaj, G.; Hemalatha, R.; Jeemon, P.; Johnson, C.O.; Joshi, P.; Kant, R.; Kataki, A.C.; Khurana, D.; Krishnankutty, R.P.; Kyu, H.H.; Lim, S.S.; Lodha, R.; Ma, R.; Malhotra, R.; Malhotra, R.; Mathai, M.; Mehrotra, R.; Misra, U.K.; Mutreja, P.; Naghavi, M.; Naik, N.; Nguyen, M.; Pandey, A.; Parmar, P.; Perianayagam, A.; Prabhakaran, D.; Rath, G.K.; Reinig, N.; Roth, G.A.; Sagar, R.; Sankar, M.J.; Shaji, K.S.; Sharma, R.S.; Sharma, S.; Singh, R.; Srivastava, M.V.P.; Stark, B.A.; Tandon, N.; Thakur, J.S. ThekkePurakkal, A.S.; Thomas, S.V.; Tripathi, M.; Vongpradith, A.; Wunrow, H.Y.; Xavier, D.; Shukla, D.K.; Reddy, K.S.; Panda, S.; Dandona, R.; Murray, C.J.L.; Vos, T.; Dhaliwal, R.S.; Dandona, L. The burden of neurological disorders across the states of India: the Global Burden of Disease Study 1990–2019. Lancet Glob. Health, 2021, 9(8), e1129-e1144.
[http://dx.doi.org/10.1016/S2214-109X(21)00164-9] [PMID: 34273302]
[65]
Wu, Y.R.; Ren, S.T.; Wang, L.; Liu, X.J.; Wang, Y.X.; Liu, S.H.; Liu, W.W.; Shi, D.H.; Cao, Z.L. Synthesis and AChE inhibitory activity of N-glycosyl benzofuran derivatives. Heterocycl. Commun., 2019, 25(1), 162-166.
[http://dx.doi.org/10.1515/hc-2019-0021]
[66]
Almansour, A.I.; Suresh Kumar, R.; Arumugam, N.; Basiri, A.; Kia, Y.; Ashraf Ali, M. An expedient synthesis, acetylcholinesterase inhibitory activity, and molecular modeling study of highly functionalized hexahydro-1,6-naphthyridines. BioMed Res. Int., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/965987] [PMID: 25710037]
[67]
Dinparast, L.; Zengin, G.; Bahadori, M.B. Cholinesterases inhibitory activity of 1h-benzimidazole derivatives. Biointerface Res. Appl. Chem., 2021, 11, 10739-10745.
[68]
Almansour, A.; Kumar, R.; Arumugam, N.; Basiri, A.; Kia, Y.; Ali, M.; Farooq, M.; Murugaiyah, V. A facile ionic liquid promoted synthesis, cholinesterase inhibitory activity and molecular modeling study of novel highly functionalized spiropyrrolidines. Molecules, 2015, 20(2), 2296-2309.
[http://dx.doi.org/10.3390/molecules20022296] [PMID: 25642838]
[69]
Basiri, A.; Murugaiyah, V.; Osman, H.; Kumar, R.S.; Kia, Y.; Awang, K.B.; Ali, M.A. An expedient, ionic liquid mediated multi-component synthesis of novel piperidone grafted cholinesterase enzymes inhibitors and their molecular modeling study. Eur. J. Med. Chem., 2013, 67, 221-229.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.054] [PMID: 23871902]
[70]
Moghimi, S.; Goli-Garmroodi, F.; Pilali, H.; Mahdavi, M.; Firoozpour, L.; Nadri, H.; Moradi, A.; Asadipour, A.; Shafiee, A.; Foroumadi, A. Synthesis and anti-acetylcholinesterase activity of benzotriazinone-triazole systems. J. Chem. Sci., 2016, 128(9), 1445-1449.
[http://dx.doi.org/10.1007/s12039-016-1154-5]
[71]
Touj, N.; Chakchouk-Mtibaa, A.; Mansour, L.; Harrath, A.H.; Al-Tamimi, J.H.; Özdemir, I.; Mellouli, L.; Yaşar, S.; Hamdi, N. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) under mild condition in water: Synthesis, catalytic application and biological activities. J. Organomet. Chem., 2017, 853, 49-63.
[http://dx.doi.org/10.1016/j.jorganchem.2017.09.024]
[72]
Gálvez, J.; Polo, S.; Insuasty, B.; Gutiérrez, M.; Cáceres, D.; Alzate-Morales, J.H.; De-la-Torre, P.; Quiroga, J. Design, facile synthesis, and evaluation of novel spiro- and pyrazolo[1,5-c]quinazolines as cholinesterase inhibitors: Molecular docking and MM/GBSA studies. Comput. Biol. Chem., 2018, 74, 218-229.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.03.001] [PMID: 29655025]
[73]
Mariki, A.A.; Anaeigoudari, A.; Zahedifar, M.; Pouramiri, B.; Ayati, A.; Lotfi, S. Design, green synthesis, and biological evaluation of new substituted tetrahydropyrimidine derivatives as acetylcholinesterase inhibitors. Polycycl. Aromat. Compd., 2021, 21, 1-11.
[74]
Scheide, M.R.; Schneider, A.R.; Jardim, G.A.M.; Martins, G.M.; Durigon, D.C.; Saba, S.; Rafique, J.; Braga, A.L. Electrochemical synthesis of selenyl-dihydrofurans via anodic selenofunctionalization of allyl-naphthol/phenol derivatives and their anti-Alzheimer activity. Org. Biomol. Chem., 2020, 18(26), 4916-4921.
[http://dx.doi.org/10.1039/D0OB00629G] [PMID: 32353091]
[75]
Meshkatalsadat, M.H.; Mahmoudi, A.; Lotfi, S.; Pouramiri, B.; Foroumadi, A. Green and four-component cyclocondensation synthesis and in silico docking of new polyfunctionalized pyrrole derivatives as the potential anticholinesterase agents. Mol. Divers., 2022, 26(6), 3021-3035.
[http://dx.doi.org/10.1007/s11030-021-10362-9] [PMID: 35034271]
[76]
Maryamabadi, A.; Hasaninejad, A.; Nowrouzi, N.; Mohebbi, G. Green synthesis of novel spiro-indenoquinoxaline derivatives and their cholinesterases inhibition activity. Bioorg. Med. Chem., 2017, 25(7), 2057-2064.
[http://dx.doi.org/10.1016/j.bmc.2017.02.017] [PMID: 28279561]
[77]
Kumar, R.S.; Almansour, A.I.; Arumugam, N.; Basiri, A.; Kia, Y.; Kumar, R.R. Ionic liquid-promoted synthesis and cholinesterase inhibitory activity of highly functionalized spiropyrrolidines. Aust. J. Chem., 2015, 68(6), 863-871.
[http://dx.doi.org/10.1071/CH14370]
[78]
Basiri, A.; Murugaiyah, V.; Osman, H.; Kumar, R.S.; Kia, Y.; Hooda, A.; Parsons, R.B. Cholinesterase inhibitory activity versus aromatic core multiplicity: A facile green synthesis and molecular docking study of novel piperidone embedded thiazolopyrimidines. Bioorg. Med. Chem., 2014, 22(2), 906-916.
[http://dx.doi.org/10.1016/j.bmc.2013.11.020] [PMID: 24369842]
[79]
Polo, E.; Prent-Peñaloza, L.; Núñez, Y.A.R.; Valdés-Salas, L.; Trilleras, J.; Ramos, J.; Henao, J.A.; Galdámez, A.; Morales-Bayuelo, A.; Gutiérrez, M. Microwave-assisted synthesis, biological assessment, and molecular modeling of aza-heterocycles: Potential inhibitory capacity of cholinergic enzymes to Alzheimer’s disease. J. Mol. Struct., 2021, 1224, 129307.
[http://dx.doi.org/10.1016/j.molstruc.2020.129307]
[80]
Bayindir, S.; Caglayan, C.; Karaman, M.; Gülcin, İ. The green synthesis and molecular docking of novel N-substituted rhodanines as effective inhibitors for carbonic anhydrase and acetylcholinesterase enzymes. Bioorg. Chem., 2019, 90, 103096.
[http://dx.doi.org/10.1016/j.bioorg.2019.103096] [PMID: 31284100]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy