[5]
Zeng, H.; Wu, X. Alzheimer’s disease drug development based on computer-aided drug design. Eur. J. Med. Chem., 2016, 121, 851-863.
[9]
de Almeida Franzoi, A.E.; de Souza Moreira, B.B.; dos Reis, F.I.; Magno Goncalves, M.V.; de Paula, W.K.; Ribas, F.D. Alzheimer’s disease and the main aspects - Literature review. EC Neurol., 2018, 10(5), 412-425.
[12]
Verdile, G; Fuller, S; Atwood, CS; Laws, SM; Gandy, SE; Martins, RN The role of beta amyloid in Alzheimer's disease: Still a cause of everything or the only one who got caught? Pharmacol. Res., 2004, 50(4), 397-409.
[15]
Larner, A.J. Secretases as therapeutic targets in Alzheimer’s disease: Patents 2000 - 2004. Expert. Opin. Ther. Pat., 2004, 14(10), 1403-20.
[25]
Korolev, I.O. Alzheimer's disease: A clinical and basic science review. Med. Student Res. J., 2014, 04, 24-33.
[32]
Venugopal, C.; Demos, C.M.; Rao, K.S.J.; Pappolla, M.A. Beta-secretase: Structure, function, and evolution. CNS Neurol. Disord. Drug Targets, 2008, 7(3), 278-294.
[46]
Cheng, J.; Deming, T.J. synthesis of polypeptides by ROP of NCAs. Pept. Mater., 2011, 2011(310), 1-26.
[56]
John, V.; Beck, J.P.; Bienkowski, M.J. Human β-Secretase (BACE) and BACE inhibitors. J. Med. Chem., 2003, 46(22), 4625-4630.
[57]
Al-tel, TH; Semreen, MH; Al-qawasmeh, RA; Schmidt, MF; El-awadi, R; Ardah, M Design, synthesis, and qualitative structure–activity evaluations of novel β-secretase inhibitors as potential alzheimer’s drug leads. J. Med. Chem., 2011, 54(24), 8373-8385.
[61]
Tobergte, D.R.; Curtis, S. An introdution to medicinal chemistry. J. Chem. Inf. Model., 2013, 53(9), 1689-1699.
[62]
Use for budesonide and formoterol. US Patent US 8,461,211 B2, 2011.
[78]
Mei, W.; Ji, S.; Xiao, W.; Jiang, X.W.C. Synthesis and biological evaluation of benzothiazol-based 1,3,4-oxadiazole derivatives as amyloid β-targeted compounds against Alzheimer’s disease. Monatsh. für Chem., 2017, 148, 1807-1815.
[79]
Scott, J.D.; Li, S.W.; Brunskill, A.P.J.; Chen, X.; Cox, K.; Cumming, J.N. Discovery of the 3-imino-1,2,4-thiadiazinane 1,1-dioxide derivative verubecestat (MK-8931)-A β-site amyloid precursor protein cleaving enzyme 1 inhibitor for the treatment of Alzheimer's disease. J. Med. Chem., 2016, 59(23), 10435-10450.
[80]
Huang, H.; La, D.S.; Cheng, A.C.; Whittington, D.A.; Patel, V.F.; Chen, K. Structure- and property-based design of aminooxazoline xanthenes as selective, orally efficacious, and CNS penetrable BACE inhibitors for the treatment of alzheimer’s disease. J. Med. Chem., 2012, 55(21), 9156-9169.
[81]
Jeffrey, J.; Liu, Q.; Yuan, C.; Gore, V.; Lopez, P.; Ma, V. Development of 2-aminooxazoline 3-azaxanthenes as orally efficacious b -secretase inhibitors for the potential treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2015, 25, 767-74.
[82]
Chaluvaraju, K.C.; Niranjan, M.S.; Kiran, S. 1, 3, 4 oxadiazole a potent drug candidate with various pharmacological activities. Int. J. Pharm. Pharm. Sci., 2011, 3(3), 9-16.
[84]
Jordan, J.B.; Whittington, D.A.; Bartberger, M.D.; Sickmier, E.A.; Chen, K.; Cheng, Y. Fragment-linking approach using (19)F NMR spectroscopy to obtain highly potent and selective inhibitors of β-secretase. J. Med. Chem., 2016, 59(8), 3732-49.
[87]
Mani, R.J.; Mittal, K.; Katare, D.P. Protective effects of quercetin in Zebrafish model of Alzheimer’s disease. Asian J. Pharm., 2018, 12(September), S660-S666.
[90]
Carbone, M.; Li, Y.; Irace, C.; Mollo, E.; Castelluccio, F.; Pascale, A. Structure and cytotoxicity of phidianidines A and B: First finding of 1,2,4-oxadiazole system in a marine natural product. Org. Lett., 2011, 13(10), 2516-2519.
[91]
Villa, F.A.; Gerwick, L.; Villa, F.A.; Gerwick, L. Marine natural product drug discovery: Leads for treatment of inflammation, cancer, infections, and neurological disorders. Immunopharmacol. Immunotoxicol., 2017, 32(2), 228-37.
[101]
Kennedy, ME; Stamford, AW; Chen, X; Cox, K; Cumming, JN; Dockendorf, MF The BACE1 inhibitor verubecestat (MK-8931) reduces CNS b-amyloid in animal models and in Alzheimer’s disease patients. 2016.
[106]
Sur, C.; Kost, J.; Scott, D.; Adamczuk, K.; Fox, N.C.; Cummings, J.L. BACE inhibition causes rapid, regional, and non-progressive volume reduction in Alzheimer's disease brain. Brain, 2020, 143(12), 3816-3826.
[107]
Sur, C.; Ph, D.; Mukai, Y.; Voss, T.; Furtek, C.; Mahoney, E. Randomized trial of verubecestat for mild-to-moderate alzheimer's disease. N Engl. J. Med., 2018, 378(18), 1691-1703.
[108]
Villarreal, S.; Zhao, F.; Hyde, L.A.; Holder, D.; Forest, T. Chronic verubecestat treatment suppresses amyloid accumulation in advanced aged Tg2576-AβPPswe mice without inducing microhemorrhage. J. Alzheimers Dis., 2017, 59(9), 1393-1413.
[109]
Yoshihara, T.; Uchida, N.; Azuma, F.; Russell, M.; Hughes, G.; Haeberlein, S.B. BACE1 inhibitor lanabecestat (AZD3293) in a phase 1 study of healthy japanese subjects: pharmacokinetics and effects on plasma and cerebrospinal fluid A β. Peptides, 2017, 1-12.
[110]
Wang, J.; Logovinsky, V.; Hendrix, S.B.; Stanworth, S.H.; Perdomo, C.; Xu, L. ADCOMS: A composite clinical outcome for prodromal Alzheimer's disease trials. J. Neurol. Neurosurg. Psychiatry, 2016, 87(9), 993-9.