Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Palladium-catalyzed C-N Coupling Reactions in the Synthesis of Dibenzodiazepines

Author(s): Pooja Grewal and Navjeet Kaur*

Volume 26, Issue 20, 2022

Published on: 06 January, 2023

Page: [1813 - 1826] Pages: 14

DOI: 10.2174/1385272827666221228122631

Price: $65

Open Access Journals Promotions 2
Abstract

In today’s world, aryl halides have attracted our attention toward the amination reactions catalyzed by palladium. In this review article, there are some selected developments in the field of catalysis, and the Buchwald-Hartwig amination reaction is one of them. It is a common and highly efficient method reported for forming dibenzodiazepines. The readily accessible precursors and ammonia undergo cross-coupling reactions in the presence of a palladium catalyst; after that, the intermediate immediately undergoes intramolecular condensation to give the desired dibenzodiazepines in one step. Due to the structural characteristics of these compounds, the potential for diversification - principally for functional group incorporation - is immense. New and advanced technologies are also employed to form these medicinally important molecules and are reviewed here. Our purpose is to inform the researchers about recent advances in this protocol for the C-N bond formation, especially used for synthesizing dibenzodiazepines.

Keywords: Dibenzodiazepines, palladium, Pd(OAc)2, Pd2(dba)3, C-N coupling, amination reactions.

Next »
Graphical Abstract
[1]
(a) Li, X.; He, L.; Chen, H.; Wu, W.; Jiang, H. Copper-catalyzed aerobic C(sp2)-H functionalization for C-N bond formation: synthesis of pyrazoles and indazoles. J. Org. Chem., 2013, 78(8), 3636-3646.
[http://dx.doi.org/10.1021/jo400162d] [PMID: 23547954];
(b) Kaur, N. Metal catalysts: applications in higher-membered N-heterocycles synthesis. J. Indian Chem. Soc., 2015, 12(1), 9-45.
[http://dx.doi.org/10.1007/s13738-014-0451-5]
[2]
(a) Santos, C.M.M.; Freitas, M.; Fernandes, E. A comprehensive review on xanthone derivatives as α-glucosidase inhibitors. Eur. J. Med. Chem., 2018, 157, 1460-1479.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.073] [PMID: 30282319];
(b) Kaur, N. Synthesis of six- and seven-membered and larger heterocylces using Au and Ag catalysts. Inorg. Nano-Metal Chem., 2018, 48(11), 541-568.
[http://dx.doi.org/10.1080/24701556.2019.1567544]
[3]
(a) Kalaria, P.N.; Karad, S.C.; Raval, D.K. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur. J. Med. Chem., 2018, 158, 917-936.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.040] [PMID: 30261467];
(b) Kaur, N. Photochemical irradiation: Seven and higher membered O -heterocycles. Synth. Commun., 2018, 48(23), 2935-2964.
[http://dx.doi.org/10.1080/00397911.2018.1514051]
[4]
Kerru, N.; Bhaskaruni, S.V.H.S.; Gummidi, L.; Maddila, S.N.; Maddila, S.; Jonnalagadda, S.B. Recent advances in heterogeneous catalysts for the synthesis of imidazole derivatives. Synth. Commun., 2019, 49(19), 2437-2459.
[http://dx.doi.org/10.1080/00397911.2019.1639755]
[5]
(a) Kerru, N.; Singh, P.; Koorbanally, N.; Raj, R.; Kumar, V. Recent advances (2015–2016) in anticancer hybrids. Eur. J. Med. Chem., 2017, 142, 179-212.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.033] [PMID: 28760313];
(b) Kaur, N.; Kishore, D. Synthetic strategies applicable in the synthesis of privileged scaffold: 1,4-benzodiazepine. Synth. Commun., 2014, 44(10), 1375-1413.
[http://dx.doi.org/10.1080/00397911.2013.772202]
[6]
(a) Eftekhari-Sis, B.; Zirak, M.; Akbari, A. Arylglyoxals in synthesis of heterocyclic compounds. Chem. Rev., 2013, 113(5), 2958-3043.
[http://dx.doi.org/10.1021/cr300176g] [PMID: 23347156];
(b) Kaur, N. Synthesis of six- and seven-membered heterocycles under ultrasound irradiation. Synth. Commun., 2018, 48(11), 1235-1258.
[http://dx.doi.org/10.1080/00397911.2018.1434894]
[7]
(a) Kerru, N.; Maddila, S.; Jonnalagadda, S.B. Design of carbon-carbon and carbon-heteroatom bond formation reactions under green conditions. Curr. Org. Chem., 2019, 23, 3156-3192.;
(b) Kaur, N. Copper catalyzed synthesis of seven and higher membered heterocycles. Synth. Commun., 2019, 49(7), 879-916.
[http://dx.doi.org/10.1080/00397911.2018.1543780];
c) Kaur, N. Seven-membered N -heterocycles: metal and nonmetal assisted synthesis. Synth. Commun., 2019, 49(8), 987-1030.
[http://dx.doi.org/10.1080/00397911.2019.1574351]
[8]
(a) Ju, Y.; Varma, R.S. Aqueous N-heterocyclization of primary amines and hydrazines with dihalides: microwave-assisted syntheses of N-azacycloalkanes, isoindole, pyrazole, pyrazolidine, and phthalazine derivatives. J. Org. Chem., 2006, 71(1), 135-141.
[http://dx.doi.org/10.1021/jo051878h] [PMID: 16388628];
(b) Kaur, N. Synthetic routes to seven and higher membered S -heterocycles by use of metal and nonmetal catalyzed reactions. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(3), 186-209.
[http://dx.doi.org/10.1080/10426507.2018.1539493];
c) Kaur, N.; Kishore, D. Microwave-assisted synthesis of seven and higher membered N-heterocycles. Synth. Commun., 2014, 44(18), 2577-2614.
[http://dx.doi.org/10.1080/00397911.2013.783922]
[9]
(a) Zárate-Zárate, D.; Aguilar, R.; Hernández-Benitez, R.I.; Labarrios, E.M.; Delgado, F.; Tamariz, J. Synthesis of α-ketols by functionalization of captodative alkenes and divergent preparation of heterocycles and natural products. Tetrahedron, 2015, 71(38), 6961-6978.
[http://dx.doi.org/10.1016/j.tet.2015.07.010];
(b) Kaur, N. Synthesis of seven and higher-membered heterocycles using ruthenium catalysts. Synth. Commun., 2019, 49(5), 617-661.
[http://dx.doi.org/10.1080/00397911.2018.1555711]
[10]
Leeson, P.D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov., 2007, 6(11), 881-890.
[http://dx.doi.org/10.1038/nrd2445] [PMID: 17971784]
[11]
Fang, W.Y.; Ravindar, L.; Rakesh, K.P.; Manukumar, H.M.; Shantharam, C.S.; Alharbi, N.S.; Qin, H.L. Synthetic approaches and pharmaceutical applications of chloro-containing molecules for drug discovery: A critical review. Eur. J. Med. Chem., 2019, 173, 117-153.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.063] [PMID: 30995567]
[12]
Kerru, N.; Singh-Pillay, A.; Awolade, P.; Singh, P. Current anti-diabetic agents and their molecular targets: A review. Eur. J. Med. Chem., 2018, 152, 436-488.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.061] [PMID: 29751237]
[13]
Smith, B.R.; Eastman, C.M.; Njardarson, J.T.; Beyond, C. H, O, and N! Analysis of the elemental composition of U.S. FDA approved drug architectures. J. Med. Chem., 2014, 57(23), 9764-9773.
[http://dx.doi.org/10.1021/jm501105n] [PMID: 25255063]
[14]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909-1950.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[15]
Deiters, A.; Martin, S.F. Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis. Chem. Rev., 2004, 104(5), 2199-2238.
[http://dx.doi.org/10.1021/cr0200872] [PMID: 15137789]
[16]
Greig, M.E.; Gibbons, A.J.; Young, G.A. Effects of a group of dibenzodiazepines on fatal systemic anaphylaxis in mice, rats, and guinea pigs. J. Med. Chem., 1971, 14(2), 153-156.
[http://dx.doi.org/10.1021/jm00284a017] [PMID: 5544402]
[17]
El-Sabbagh, O.I.; El-Nabtity, S.M. Synthesis and pharmacological studies for new benzotriazole and dibenzodiazepine derivatives as antipsychotic agents. Bull. Korean Chem. Soc., 2009, 30(7), 1445-1451.
[http://dx.doi.org/10.5012/bkcs.2009.30.7.1445]
[18]
Sangshetti, J.N.; Chouthe, R.S.; Jadhav, M.R.; Sakle, N.S.; Chabukswar, A.; Gonjari, I.; Darandale, S.; Shinde, D.B. Green synthesis and anxiolytic activity of some new dibenz-[1,4] diazepine-1-one analogues. Arab. J. Chem., 2017, 10, S1356-S1363.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.004]
[19]
Oates, J.A.; Wood, A.J.J.; Baldessarini, R.J.; Frankenburg, F.R. Clozapine. N. Engl. J. Med., 1991, 324(11), 746-754.
[http://dx.doi.org/10.1056/NEJM199103143241107] [PMID: 1671793]
[20]
Buchanan, R.W. Clozapine: Efficacy and Safety. Schizophr. Bull., 1995, 21(4), 579-591.
[http://dx.doi.org/10.1093/schbul/21.4.579] [PMID: 8749886]
[21]
Rowley, M.; Bristow, L.J.; Hutson, P.H. Current and novel approaches to the drug treatment of schizophrenia. J. Med. Chem., 2001, 44(4), 477-501.
[http://dx.doi.org/10.1021/jm0002432] [PMID: 11170639]
[22]
Sakaki, J.; Konishi, K.; Kishida, M.; Gunji, H.; Kanazawa, T.; Uchiyama, H.; Fukaya, H.; Mitani, H.; Kimura, M. Synthesis and structure–activity relationship of RXR antagonists based on the diazepinylbenzoic acid structure. Bioorg. Med. Chem. Lett., 2007, 17(17), 4808-4811.
[http://dx.doi.org/10.1016/j.bmcl.2007.06.079] [PMID: 17651969]
[23]
Smith, R.C.; Infante, M.; Singh, A.; Khandat, A. The effects of olanzapine on neurocognitive functioning in medication-refractory schizophrenia. Int. J. Neuropsychopharmacol., 2001, 4(3), 239-250.
[http://dx.doi.org/10.1017/S146114570100253X] [PMID: 11669086]
[24]
Guo, X.; Zhai, J.; Wei, Q.; Twamley, E.W.; Jin, H.; Fang, M.; Hu, M.; Zhao, J. Neurocognitive effects of first- and second-generation antipsychotic drugs in early-stage schizophrenia: A naturalistic 12-month follow-up study. Neurosci. Lett., 2011, 503(2), 141-146.
[http://dx.doi.org/10.1016/j.neulet.2011.08.027] [PMID: 21888948]
[25]
Bhana, N.; Foster, R.H.; Olney, R.; Plosker, G.L. Olanzapine. Drugs, 2001, 61(1), 111-161.
[http://dx.doi.org/10.2165/00003495-200161010-00011] [PMID: 11217867]
[26]
Su, J.; Tang, H.; McKittrick, B.A.; Burnett, D.A.; Zhang, H.; Smith-Torhan, A.; Fawzi, A.; Lachowicz, J. Modification of the clozapine structure by parallel synthesis. Bioorg. Med. Chem. Lett., 2006, 16(17), 4548-4553.
[http://dx.doi.org/10.1016/j.bmcl.2006.06.034] [PMID: 16806922]
[27]
Sasikumar, T.K.; Burnett, D.A.; Zhang, H.; Smith-Torhan, A.; Fawzi, A.; Lachowicz, J.E. Hydrazides of clozapine: A new class of D1 dopamine receptor subtype selective antagonists. Bioorg. Med. Chem. Lett., 2006, 16(17), 4543-4547.
[http://dx.doi.org/10.1016/j.bmcl.2006.06.022] [PMID: 16809034]
[28]
Cassidy, S.; Henry, J. Fatal toxicity of antidepressant drugs in overdose. BMJ, 1987, 295(6605), 1021-1024.
[http://dx.doi.org/10.1136/bmj.295.6605.1021] [PMID: 3690249]
[29]
Noskov, V.G.; Kalinina, L.N.; Noskova, M.N.; Kruglyak, Y.L.; Strukov, O.G.; Bezrukov, A.P.; Kurochkin, V.K. 11H-dibenzo[b,e]azepines. Part 1. Synthesis and ir spectra of dibenzo[b,f][1,4]oxazepines. Pharm. Chem. J., 1997, 31(8), 431-434.
[http://dx.doi.org/10.1007/BF02464359]
[30]
Wardrop, A.W.H.; Sainsbury, G.L.; Harrison, J.M.; Inch, T.D. Preparation of some dibenz[b,f][1,4]oxazepines and dibenz[b,e]azepines. J. Chem. Soc., Perkin Trans. 1, 1976, 12(12), 1279-1285.
[http://dx.doi.org/10.1039/p19760001279] [PMID: 985817]
[31]
Xu, X.; Guo, S.; Dang, Q.; Chen, J.; Bai, X. A new strategy toward fused-pyridine heterocyclic scaffolds: Bischler-Napieralski-type cyclization, followed by sulfoxide extrusion reaction. J. Comb. Chem., 2007, 9(5), 773-782.
[http://dx.doi.org/10.1021/cc0700389] [PMID: 17658898]
[32]
Cairns, J.; Clarkson, T.R.; Hamersma, J.A.M.; Rae, D.R. 11-(Tetrahydro-3 and 4-pyridinyl)dibenzo[b,e][1,4]diazepines undergo novel rearrangements on treatment with concentrated HBr. Tetrahedron Lett., 2002, 43(8), 1583-1585.
[http://dx.doi.org/10.1016/S0040-4039(02)00063-1]
[33]
Shi, F.; Xu, X.; Zheng, L.; Dang, Q.; Bai, X. Method development for a pyridobenzodiazepine library with multiple diversification points. J. Comb. Chem., 2008, 10(2), 158-161.
[http://dx.doi.org/10.1021/cc7002039] [PMID: 18260649]
[34]
Umemiya, H.; Fukasawa, H.; Ebisawa, M.; Eyrolles, L.; Kawachi, E.; Eisenmann, G.; Gronemeyer, H.; Hashimoto, Y.; Shudo, K.; Kagechika, H. Regulation of retinoidal actions by diazepinylbenzoic acids. Retinoid synergists which activate the RXR-RAR heterodimers. J. Med. Chem., 1997, 40(26), 4222-4234.
[http://dx.doi.org/10.1021/jm9704309] [PMID: 9435893]
[35]
Yang, J.; Che, X.; Dang, Q.; Wei, Z.; Gao, S.; Bai, X. Synthesis of Tricyclic 4-Chloro-pyrimido[4,5- b][1,4]benzodiazepines. Org. Lett., 2005, 7(8), 1541-1543.
[http://dx.doi.org/10.1021/ol050181f] [PMID: 15816747]
[36]
Jiang, X.; Lee, G.T.; Prasad, K.; Repič, O. A practical synthesis of a diazepinylbenzoic acid, a retinoid X receptor antagonist. Org. Process Res. Dev., 2008, 12(6), 1137-1141.
[http://dx.doi.org/10.1021/op800142b]
[37]
Smits, R.A.; Lim, H.D.; Stegink, B.; Bakker, R.A.; de Esch, I.J.P.; Leurs, R. Characterization of the histamine H4 receptor binding site. Part 1. Synthesis and pharmacological evaluation of dibenzodiazepine derivatives. J. Med. Chem., 2006, 49(15), 4512-4516.
[http://dx.doi.org/10.1021/jm051008s] [PMID: 16854056]
[38]
Joshua, A.V.; Sharma, S.K.; Strelkov, A.; Scott, J.R.; Martin-Iverson, M.T.; Abrams, D.N.; Silverstone, P.H.; McEwan, A.J.B. Synthesis and biodistribution of 8-iodo-11-(4-methylpiperazino)-5H-dibenzo[b,e][1,4]-diazepine: Iozapine. Bioorg. Med. Chem. Lett., 2007, 17(14), 4066-4069.
[http://dx.doi.org/10.1016/j.bmcl.2007.04.069] [PMID: 17502140]
[39]
Liao, Y.; Venhuis, B.J.; Rodenhuis, N.; Timmerman, W.; Wikström, H.; Meier, E.; Bartoszyk, G.D.; Böttcher, H.; Seyfried, C.A.; Sundell, S. New (sulfonyloxy)piperazinyldibenzazepines as potential atypical antipsychotics: chemistry and pharmacological evaluation. J. Med. Chem., 1999, 42(12), 2235-2244.
[http://dx.doi.org/10.1021/jm991005d] [PMID: 10377229]
[40]
Wang, L.; Sullivan, G.M.; Hexamer, L.A.; Hasvold, L.A.; Thalji, R.; Przytulinska, M.; Tao, Z.F.; Li, G.; Chen, Z.; Xiao, Z.; Gu, W.Z.; Xue, J.; Bui, M.H.; Merta, P.; Kovar, P.; Bouska, J.J.; Zhang, H.; Park, C.; Stewart, K.D.; Sham, H.L.; Sowin, T.J.; Rosenberg, S.H.; Lin, N.H. Design, synthesis, and biological activity of 5,10-dihydro-dibenzo[b,e][1,4]diazepin-11-one-based potent and selective Chk-1 inhibitors. J. Med. Chem., 2007, 50(17), 4162-4176.
[http://dx.doi.org/10.1021/jm070105d] [PMID: 17658776]
[41]
Baeza, A.; Burgos, C.; Alvarez-Builla, J.; Vaquero, J.J. Selective palladium-catalyzed amination of the heterocyclic core of variolins. Tetrahedron Lett., 2007, 48(14), 2597-2601.
[http://dx.doi.org/10.1016/j.tetlet.2007.02.011]
[42]
Bauer, D.; Whittington, D.A.; Coxon, A.; Bready, J.; Harriman, S.P.; Patel, V.F.; Polverino, A.; Harmange, J.C. Evaluation of indazole-based compounds as a new class of potent KDR/VEGFR-2 inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(17), 4844-4848.
[http://dx.doi.org/10.1016/j.bmcl.2008.07.080] [PMID: 18682324]
[43]
Torborg, C.; Beller, M. Recent applications of palladium-catalyzed coupling reactions in the pharmaceutical, agrochemical, and fine chemical industries. Adv. Synth. Catal., 2009, 351(18), 3027-3043.
[http://dx.doi.org/10.1002/adsc.200900587]
[44]
Carey, J.S.; Laffan, D.; Thomson, C.; Williams, M.T. Analysis of the reactions used for the preparation of drug candidate molecules. Org. Biomol. Chem., 2006, 4(12), 2337-2347.
[http://dx.doi.org/10.1039/b602413k] [PMID: 16763676]
[45]
Surry, D.S.; Buchwald, S.L. Biaryl phosphane ligands in palladium-catalyzed amination. Angew. Chem. Int. Ed., 2008, 47(34), 6338-6361.
[http://dx.doi.org/10.1002/anie.200800497] [PMID: 18663711]
[46]
Brickner, S.J.; Hutchinson, D.K.; Barbachyn, M.R.; Manninen, P.R.; Ulanowicz, D.A.; Garmon, S.A.; Grega, K.C.; Hendges, S.K.; Toops, D.S.; Ford, C.W.; Zurenko, G.E. Synthesis and antibacterial activity of U-100592 and U-100766, two oxazolidinone antibacterial agents for the potential treatment of multidrug-resistant gram-positive bacterial infections. J. Med. Chem., 1996, 39(3), 673-679.
[http://dx.doi.org/10.1021/jm9509556] [PMID: 8576909]
[47]
Bikker, J.A.; Brooijmans, N.; Wissner, A.; Mansour, T.S. Kinase domain mutations in cancer: implications for small molecule drug design strategies. J. Med. Chem., 2009, 52(6), 1493-1509.
[http://dx.doi.org/10.1021/jm8010542] [PMID: 19239229]
[48]
Quintás-Cardama, A.; Kantarjian, H.; Cortes, J. Flying under the radar: the new wave of BCR–ABL inhibitors. Nat. Rev. Drug Discov., 2007, 6(10), 834-848.
[http://dx.doi.org/10.1038/nrd2324] [PMID: 17853901]
[49]
Nilsson, J.W.; Thorstensson, F.; Kvarnström, I.; Oprea, T.; Samuelsson, B.; Nilsson, I. Solid-phase synthesis of libraries generated from a 4-phenyl-2-carboxy-piperazine scaffold. J. Comb. Chem., 2001, 3(6), 546-553.
[http://dx.doi.org/10.1021/cc010013o] [PMID: 11703150]
[50]
Driver, M.S.; Hartwig, J.F. A second-generation catalyst for aryl halide amination: mixed secondary amines from aryl halides and primary amines catalyzed by (DPPF)PdCl2. J. Am. Chem. Soc., 1996, 118(30), 7217-7218.
[http://dx.doi.org/10.1021/ja960937t]
[51]
Wolfe, J.P.; Wagaw, S.; Buchwald, S.L. An improved catalyst system for aromatic carbon-nitrogen bond formation: the possible involvement of bis(phosphine) palladium complexes as key intermediates. J. Am. Chem. Soc., 1996, 118(30), 7215-7216.
[http://dx.doi.org/10.1021/ja9608306]
[52]
Guari, Y.; van Es, D.S.; Reek, J.N.H.; Kamer, P.C.J.; van Leeuwen, P.W.N.M. An efficient, palladium-catalysed, amination of aryl bromides. Tetrahedron Lett., 1999, 40(19), 3789-3790.
[http://dx.doi.org/10.1016/S0040-4039(99)00527-4]
[53]
Shen, Q.; Ogata, T.; Hartwig, J.F. Highly reactive, general and long-lived catalysts for palladium-catalyzed amination of heteroaryl and aryl chlorides, bromides, and iodides: scope and structure-activity relationships. J. Am. Chem. Soc., 2008, 130(20), 6586-6596.
[http://dx.doi.org/10.1021/ja077074w] [PMID: 18444639]
[54]
Hartwig, J.F. Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides. Acc. Chem. Res., 2008, 41(11), 1534-1544.
[http://dx.doi.org/10.1021/ar800098p] [PMID: 18681463]
[55]
Marion, N.; Nolan, S.P. Well-defined N-heterocyclic carbenes-palladium(II) precatalysts for cross-coupling reactions. Acc. Chem. Res., 2008, 41(11), 1440-1449.
[http://dx.doi.org/10.1021/ar800020y] [PMID: 18774825]
[56]
Chambers, R.D. Fluorine in organic chemistry; CRC Press: USA, 2004.
[http://dx.doi.org/10.1002/9781444305371]
[57]
Kirsch, P. Modern fluoroorganic chemistry: synthesis, reactivity, applications; Wiley VCH, 2004.
[http://dx.doi.org/10.1002/352760393X]
[58]
Müller, K.; Faeh, C.; Diederich, F. Fluorine in pharmaceuticals: looking beyond intuition. Science, 2007, 317(5846), 1881-1886.
[http://dx.doi.org/10.1126/science.1131943] [PMID: 17901324]
[59]
Schlosser, M. Parametrization of substituents: effects of fluorine and other heteroatoms on OH, NH, and CH acidities. Angew. Chem. Int. Ed., 1998, 37(11), 1496-1513.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980619)37:11<1496::AID-ANIE1496>3.0.CO;2-U] [PMID: 29710919]
[60]
Heravi, M.M.; Kheilkordi, Z.; Zadsirjan, V.; Heydari, M.; Malmir, M. Buchwald-Hartwig reaction: An overview. J. Organomet. Chem., 2018, 861, 17-104.
[http://dx.doi.org/10.1016/j.jorganchem.2018.02.023]
[61]
Aniban, X.; Mamidala, S.; Burke, A.J. Metal-catalyzed routes to dibenzodiazepines (DBDAs) and structural analogues: recent advances. Eur. J. Org. Chem., 2018, 2018(47), 6743-6753.
[http://dx.doi.org/10.1002/ejoc.201801304]
[62]
Marques, C.S.; Burke, A.J. Ethyl 2,2-bis(4-methylphenylsulfonamido)acetate to aromatic α-amino acids: stable substrates for catalytic arylation reactions. Tetrahedron, 2013, 69(47), 10091-10097.
[http://dx.doi.org/10.1016/j.tet.2013.09.053]
[63]
Kano, T.; Yurino, T.; Asakawa, D.; Maruoka, K. Acid-catalyzed in situ generation of less accessible or unprecedented N-Boc imines from N-Boc aminals. Angew. Chem. Int. Ed., 2013, 52(21), 5532-5534.
[http://dx.doi.org/10.1002/anie.201300231] [PMID: 23589439]
[64]
Ciaccia, M.; Di Stefano, S. Mechanisms of imine exchange reactions in organic solvents. Org. Biomol. Chem., 2015, 13(3), 646-654.
[http://dx.doi.org/10.1039/C4OB02110J] [PMID: 25415257]
[65]
Lundgren, R.J.; Hesp, K.D.; Stradiotto, M. Design of new ‘DalPhos’ P,N-ligands: applications in transition-metal catalysis. Synlett, 2011, 2443-2458.
[66]
Lundgren, R.J.; Peters, B.D.; Alsabeh, P.G.; Stradiotto, M.; Stradiotto, M.A.A P N-ligand for palladium-catalyzed ammonia arylation: coupling of deactivated aryl chlorides, chemoselective arylations, and room temperature reactions. Angew. Chem. Int. Ed., 2010, 49(24), 4071-4074.
[http://dx.doi.org/10.1002/anie.201000526] [PMID: 20437437]
[67]
Peixoto, D.; Locati, A.; Marques, C.S.; Goth, A.; Ramalho, J.P.P.; Burke, A.J. A catalytic route to dibenzodiazepines involving Buchwald–Hartwig coupling: reaction scope and mechanistic consideration. RSC Advances, 2015, 5(121), 99990-99999.
[http://dx.doi.org/10.1039/C5RA19599C]
[68]
Surry, D.S.; Buchwald, S.L. Dialkylbiaryl phosphines in Pd-catalyzed amination: a user’s guide. Chem. Sci. (Camb.), 2011, 2(1), 27-50.
[http://dx.doi.org/10.1039/C0SC00331J] [PMID: 22432049]
[69]
Wagner, P.; Bollenbach, M.; Doebelin, C.; Bihel, F.; Bourguignon, J.J.; Salomé, C.; Schmitt, M. t-BuXPhos: a highly efficient ligand for Buchwald–Hartwig coupling in water. Green Chem., 2014, 16(9), 4170-4178.
[http://dx.doi.org/10.1039/C4GC00853G]
[70]
Hartwig, J.F.; Kawatsura, M.; Hauck, S.I.; Shaughnessy, K.H.; Alcazar-Roman, L.M. Room-temperature palladium-catalyzed amination of aryl bromides and chlorides and extended scope of aromatic C-N bond formation with a commercial ligand. J. Org. Chem., 1999, 64(15), 5575-5580.
[http://dx.doi.org/10.1021/jo990408i] [PMID: 11674624]
[71]
Lee, S.; Jørgensen, M.; Hartwig, J.F. Palladium-catalyzed synthesis of arylamines from aryl halides and lithium bis(trimethylsilyl)amide as an ammonia equivalent. Org. Lett., 2001, 3(17), 2729-2732.
[http://dx.doi.org/10.1021/ol016333y] [PMID: 11506620]
[72]
Wolfe, J.P.; Wagaw, S.; Marcoux, J.F.; Buchwald, S.L. Rational development of practical catalysts for aromatic carbon-nitrogen bond formation. Acc. Chem. Res., 1998, 31(12), 805-818.
[http://dx.doi.org/10.1021/ar9600650]
[73]
Wang, F.; Zhu, L.; Zhou, Y.; Bao, X.; Schaefer, H.F. III Is Pd(II)-promoted σ-bond metathesis mechanism operative for the Pd-PEPPSI complex-catalyzed amination of chlorobenzene with aniline? Experiment and theory. Chemistry, 2015, 21(10), 4153-4161.
[http://dx.doi.org/10.1002/chem.201406109] [PMID: 25640144]
[74]
Peixoto, D.; Burke, A.J. Process for preparing 1,4-dibenzodiazepines via Buchwald-Hartwig chemistry. Patent WO2016/207790A1, 2015.
[75]
Peixoto, D. Catalytic intramolecular arylation of imines and analogues potential drugs for neurodegenerative diseases. PhD Dissertation, University of Evora, 2015.
[76]
Alcazar-Roman, L.M.; Hartwig, J.F.; Rheingold, A.L.; Liable-Sands, L.M.; Guzei, I.A. Mechanistic studies of the palladium-catalyzed amination of aryl halides and the oxidative addition of aryl bromides to Pd(BINAP)2 and Pd(DPPF)2: an unusual case of zero-order kinetic behavior and product inhibition. J. Am. Chem. Soc., 2000, 122(19), 4618-4630.
[http://dx.doi.org/10.1021/ja9944599]
[77]
Singh, U.K.; Strieter, E.R.; Blackmond, D.G.; Buchwald, S.L. Mechanistic insights into the Pd(BINAP)-catalyzed amination of aryl bromides: kinetic studies under synthetically relevant conditions. J. Am. Chem. Soc., 2002, 124(47), 14104-14114.
[http://dx.doi.org/10.1021/ja026885r] [PMID: 12440909]
[78]
Shekhar, S.; Ryberg, P.; Hartwig, J.F.; Mathew, J.S.; Blackmond, D.G.; Strieter, E.R.; Buchwald, S.L. Reevaluation of the mechanism of the amination of aryl halides catalyzed by BINAP-ligated palladium complexes. J. Am. Chem. Soc., 2006, 128(11), 3584-3591.
[http://dx.doi.org/10.1021/ja045533c] [PMID: 16536531]
[79]
Yang, B.H.; Buchwald, S.L. Palladium-catalyzed amination of aryl halides and sulfonates. J. Organomet. Chem., 1999, 576(1-2), 125-146.
[http://dx.doi.org/10.1016/S0022-328X(98)01054-7]
[80]
Marques, C.S.; Burke, A.J. Catalytic arylation methods - from the academic lab to industrial processes; Wiley-VCH, 2015.
[81]
Hartwig, J.F. Transition metal catalyzed synthesis of arylamines and aryl ethers from aryl halides and triflates: scope and mechanism. Angew. Chem. Int. Ed., 1998, 37(15), 2046-2067.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980817)37:15<2046::AID-ANIE2046>3.0.CO;2-L] [PMID: 29711045]
[82]
Meyers, C.; Maes, B.U.W.; Loones, K.T.J.; Bal, G.; Lemière, G.L.F.; Dommisse, R.A. Study of a new rate increasing “base effect” in the palladium-catalyzed amination of aryl iodides. J. Org. Chem., 2004, 69(18), 6010-6017.
[http://dx.doi.org/10.1021/jo049774e] [PMID: 15373485]
[83]
Wolfe, J.P.; Tomori, H.; Sadighi, J.P.; Yin, J.; Buchwald, S.L. Simple, efficient catalyst system for the palladium-catalyzed amination of aryl chlorides, bromides, and triflates. J. Org. Chem., 2000, 65(4), 1158-1174.
[http://dx.doi.org/10.1021/jo991699y] [PMID: 10814067]
[84]
Christodoulou, M.S.; Beccalli, E.M.; Giofrè, S. Palladium-catalyzed benzodiazepines synthesis. Catalysts, 2020, 10(6), 634-671.
[http://dx.doi.org/10.3390/catal10060634]
[85]
De Meijere, A.; Diederich, F. Metal-catalyzed cross-coupling reaction; Wiley-VCH, 2004, pp. 1-916.
[http://dx.doi.org/10.1002/9783527619535]
[86]
Tolman, C.A. Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis. Chem. Rev., 1977, 77(3), 313-348.
[http://dx.doi.org/10.1021/cr60307a002]
[87]
Laha, J.K.; Tummalapalli, K.S.S.; Gupta, A. Graphical abstract: Eur. J. Org. Chem. 25/2014. Eur. J. Org. Chem., 2014, 25, 5383-5609.
[88]
Hu, W.; Teng, F.; Hu, H.; Luo, S.; Zhu, Q. Pd-catalyzed C(sp2)-H-imidoylative annulation: a general approach to construct dibenzoox(di)azepines. J. Org. Chem., 2019, 84(10), 6524-6535.
[http://dx.doi.org/10.1021/acs.joc.9b00683] [PMID: 31050283]
[89]
Wolfe, J.P.; Buchwald, S.L. Palladium-catalyzed amination of aryl triflates. J. Org. Chem., 1997, 62(5), 1264-1267.
[http://dx.doi.org/10.1021/jo961915s] [PMID: 10814067]
[90]
Louie, J.; Driver, M.S.; Hamann, B.C.; Hartwig, J.F. Palladium-catalyzed amination of aryl triflates and importance of triflate addition rate. J. Org. Chem., 1997, 62(5), 1268-1273.
[http://dx.doi.org/10.1021/jo961930x]
[91]
Wolfe, J.P.; Buchwald, S.L. Scope and limitations of the Pd/BINAP-catalyzed amination of aryl bromides. J. Org. Chem., 2000, 65(4), 1144-1157.
[http://dx.doi.org/10.1021/jo9916986] [PMID: 10814066]
[92]
Goodbrand, H.B.; Hu, N.X. Ligand-accelerated catalysis of the Ullmann condensation: application to hole conducting triarylamines. J. Org. Chem., 1999, 64(2), 670-674.
[http://dx.doi.org/10.1021/jo981804o]
[93]
Kiyomori, A.; Marcoux, J.F.; Buchwald, S.L. An efficient copper-catalyzed coupling of aryl halides with imidazoles. Tetrahedron Lett., 1999, 40(14), 2657-2660.
[http://dx.doi.org/10.1016/S0040-4039(99)00291-9]
[94]
Gujadhur, R.; Venkataraman, D.; Kintigh, J.T. Formation of arylnitrogen bonds using a soluble copper(I) catalyst. Tetrahedron Lett., 2001, 42(29), 4791-4793.
[http://dx.doi.org/10.1016/S0040-4039(01)00888-7]
[95]
Kwong, F.Y.; Klapars, A.; Buchwald, S.L. Copper-catalyzed coupling of alkylamines and aryl iodides: an efficient system even in an air atmosphere. Org. Lett., 2002, 4(4), 581-584.
[http://dx.doi.org/10.1021/ol0171867] [PMID: 11843596]
[96]
Gujadhur, R.K.; Bates, C.G.; Venkataraman, D. Formation of aryl-nitrogen, aryl-oxygen, and aryl-carbon bonds using well-defined copper(I)-based catalysts. Org. Lett., 2001, 3(26), 4315-4317.
[http://dx.doi.org/10.1021/ol0170105] [PMID: 11784206]
[97]
Hernández, S.; Moreno, I.; SanMartin, R.; Teresa Herrero, M.; Domínguez, E. An straightforward entry to new pyrazolo-fused dibenzo[1,4]diazepines. Org. Biomol. Chem., 2011, 9(7), 2251-2257.
[http://dx.doi.org/10.1039/c0ob00812e] [PMID: 21298173]
[98]
Laha, J.K.; Manral, N.; Hunjan, M.K. Palladium-catalysed regioselective N -arylation of anthranilamides: a tandem route for dibenzodiazepinone synthesis. New J. Chem., 2019, 43(19), 7339-7343.
[http://dx.doi.org/10.1039/C9NJ00539K]
[99]
Beccalli, E.M.; Broggini, G.; Paladino, G.; Zoni, C. Palladium-mediated approach to dibenzo[b,e][1,4]diazepines and benzopyrido-analogues. An efficient synthesis of tarpane. Tetrahedron, 2005, 61(1), 61-68.
[http://dx.doi.org/10.1016/j.tet.2004.10.061]
[100]
Takahashi, Y.; Hirokawa, T.; Watanabe, M.; Fujita, S.; Ogura, Y.; Enomoto, M.; Kuwahara, S. First synthesis of BU-4664L. Tetrahedron Lett., 2015, 56(41), 5670-5672.
[http://dx.doi.org/10.1016/j.tetlet.2015.08.070]
[101]
Tsvelikhovsky, D.; Buchwald, S.L. Concise palladium-catalyzed synthesis of dibenzodiazepines and structural analogues. J. Am. Chem. Soc., 2011, 133(36), 14228-14231.
[http://dx.doi.org/10.1021/ja206229y] [PMID: 21838278]
[102]
Maiti, D.; Buchwald, S.L. Orthogonal Cu- and Pd-based catalyst systems for the O- and N-arylation of aminophenols. J. Am. Chem. Soc., 2009, 131(47), 17423-17429.
[http://dx.doi.org/10.1021/ja9081815] [PMID: 19899753]
[103]
Fors, B.P.; Watson, D.A.; Biscoe, M.R.; Buchwald, S.L. A highly active catalyst for Pd-catalyzed amination reactions: cross-coupling reactions using aryl mesylates and the highly selective monoarylation of primary amines using aryl chlorides. J. Am. Chem. Soc., 2008, 130(41), 13552-13554.
[http://dx.doi.org/10.1021/ja8055358] [PMID: 18798626]
[104]
Sabot, C.; Kumar, K.A.; Meunier, S.; Mioskowski, C. A convenient aminolysis of esters catalyzed by 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) under solvent-free conditions. Tetrahedron Lett., 2007, 48(22), 3863-3866.
[http://dx.doi.org/10.1016/j.tetlet.2007.03.146]
[105]
Guram, A.S.; Rennels, R.A.; Buchwald, S.L. A simple catalytic method for the conversion of aryl bromides to arylamines. Angew. Chem. Int. Ed. Engl., 1995, 34(12), 1348-1350.
[http://dx.doi.org/10.1002/anie.199513481]
[106]
Guram, A.S.; Rennels, R.A.; Buchwald, S.L. Eine einfache katalytische methode zur synthese von arylaminen aus arylbromiden. Angew. Chem., 1995, 107(12), 1456-1459.
[http://dx.doi.org/10.1002/ange.19951071216]
[107]
Old, D.W.; Wolfe, J.P.; Buchwald, S.L. A highly active catalyst for palladium-catalyzed cross-coupling reactions: room-temperature Suzuki couplings and amination of unactivated aryl chlorides. J. Am. Chem. Soc., 1998, 120(37), 9722-9723.
[http://dx.doi.org/10.1021/ja982250+]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy