Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Imbalance of Th1 and Th2 Cytokines and Stem Cell Therapy in Pathological Pain

Author(s): Yao-Qing Yu* and Huan Wang*

Volume 23, Issue 1, 2024

Published on: 23 January, 2023

Page: [88 - 101] Pages: 14

DOI: 10.2174/1871527322666221226145828

Price: $65

Abstract

The pathophysiological importance of T helper 1 (Th1) and Th2 cell cytokines in pathological pain has been highly debated in recent decades. However, the analgesic strategy targeting individual cytokines still has a long way to go for clinical application. In this review, we focus on the contributions of Th1 cytokines (TNF-α, IFN-γ, and IL-2) and Th2 cytokines (IL-4, IL-5, IL-10, and IL-13) in rodent pain models and human pain-related diseases. A large number of studies have shown that Th1 and Th2 cytokines have opposing effects on pain modulation. The imbalance of Th1 and Th2 cytokines might determine the final effect of pain generation or inhibition. However, increasing evidence indicates that targeting the individual cytokine is not sufficient for the treatment of pathological pain. It is practical to suggest a promising therapeutic strategy against the combined effects of Th1 and Th2 cytokines. We summarize the current advances in stem cell therapy for pain-related diseases. Preclinical and clinical studies show that stem cells inhibit proinflammatory cytokines and release enormous Th2 cytokines that exhibit a strong analgesic effect. Therefore, a shift of the imbalance of Th1 and Th2 cytokines induced by stem cells will provide a novel therapeutic strategy against intractable pain. It is extremely important to reveal the cellular and molecular mechanisms of stem cell-mediated analgesia. The efficiency and safety of stem cell therapy should be carefully evaluated in animal models and patients with pathological pain.

Keywords: Pathological pain, cytokines, Th1, Th2, stem cells, analgesia.

Graphical Abstract
[1]
Machelska H. Dual peripheral actions of immune cells in neuropathic pain. Arch Immunol Ther Exp 2011; 59(1): 11-24.
[http://dx.doi.org/10.1007/s00005-010-0106-x] [PMID: 21234811]
[2]
Watkins LR, Maier SF. Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol Rev 2002; 82(4): 981-1011.
[http://dx.doi.org/10.1152/physrev.00011.2002] [PMID: 12270950]
[3]
Marchand F, Perretti M, McMahon SB. Role of the Immune system in chronic pain. Nat Rev Neurosci 2005; 6(7): 521-32.
[http://dx.doi.org/10.1038/nrn1700] [PMID: 15995723]
[4]
Moalem G, Tracey DJ. Immune and inflammatory mechanisms in neuropathic pain. Brain Res Brain Res Rev 2006; 51(2): 240-64.
[http://dx.doi.org/10.1016/j.brainresrev.2005.11.004] [PMID: 16388853]
[5]
Thacker MA, Clark AK, Marchand F, McMahon SB. Pathophysiology of peripheral neuropathic pain: Immune cells and molecules. Anesth Analg 2007; 105(3): 838-47.
[http://dx.doi.org/10.1213/01.ane.0000275190.42912.37] [PMID: 17717248]
[6]
Schäfers M, Sorkin L. Effect of cytokines on neuronal excitability. Neurosci Lett 2008; 437(3): 188-93.
[http://dx.doi.org/10.1016/j.neulet.2008.03.052] [PMID: 18420346]
[7]
Busch-Dienstfertig M, Stein C. Opioid receptors and opioid peptide-producing leukocytes in inflammatory pain – Basic and therapeutic aspects. Brain Behav Immun 2010; 24(5): 683-94.
[http://dx.doi.org/10.1016/j.bbi.2009.10.013] [PMID: 19879349]
[8]
Austin PJ, Moalem-Taylor G. The neuro-immune balance in neuropathic pain: Involvement of inflammatory immune cells, immune-like glial cells and cytokines. J Neuroimmunol 2010; 229(1-2): 26-50.
[http://dx.doi.org/10.1016/j.jneuroim.2010.08.013] [PMID: 20870295]
[9]
Liu Z, Fan H, Jiang S. CD4+ T-cell subsets in transplantation. Immunol Rev 2013; 252(1): 183-91.
[http://dx.doi.org/10.1111/imr.12038] [PMID: 23405905]
[10]
Raphael I, Nalawade S, Eagar TN, Forsthuber TG. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 2015; 74(1): 5-17.
[http://dx.doi.org/10.1016/j.cyto.2014.09.011] [PMID: 25458968]
[11]
Hirahara K, Nakayama T. CD4+ T-cell subsets in inflammatory diseases: Beyond the T h 1/T h 2 paradigm. Int Immunol 2016; 28(4): 163-71.
[http://dx.doi.org/10.1093/intimm/dxw006] [PMID: 26874355]
[12]
Kidd P. Th1/Th2 balance: The hypothesis, its limitations, and implications for health and disease. Altern Med Rev 2003; 8(3): 223-46.
[PMID: 12946237]
[13]
Martino M, Rocchi G, Escelsior A, Fornaro M. Immunomodulation mechanism of antidepressants: interactions between serotonin/norepinephrine balance and th1/th2 balance. Curr Neuropharmacol 2012; 10(2): 97-123.
[http://dx.doi.org/10.2174/157015912800604542] [PMID: 23204981]
[14]
Hickie I, Lloyd A. Are cytokines associated with neuropsychiatric syndromes in humans? Int J Immunopharmacol 1995; 17(8): 677-83.
[http://dx.doi.org/10.1016/0192-0561(95)00054-6] [PMID: 8847162]
[15]
Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986; 136(7): 2348-57.
[PMID: 2419430]
[16]
Palmer MT, Weaver CT. Autoimmunity: Increasing suspects in the CD4+ T cell lineup. Nat Immunol 2010; 11(1): 36-40.
[http://dx.doi.org/10.1038/ni.1802] [PMID: 20016508]
[17]
London CA, Abbas AK, Kelso A. Helper t cell subsets: Heterogeneity, functions and development. Vet Immunol Immunopathol 1998; 63(1-2): 37-44.
[http://dx.doi.org/10.1016/S0165-2427(98)00080-4] [PMID: 9656439]
[18]
Moalem G, Xu K, Yu L. T lymphocytes play a role in neuropathic pain following peripheral nerve injury in rats. Neuroscience 2004; 129(3): 767-77.
[http://dx.doi.org/10.1016/j.neuroscience.2004.08.035] [PMID: 15541898]
[19]
Üçeyler N, Schäfers M, Sommer C. Mode of action of cytokines on nociceptive neurons. Exp Brain Res 2009; 196(1): 67-78.
[http://dx.doi.org/10.1007/s00221-009-1755-z] [PMID: 19290516]
[20]
Malcangio M, Clark AK, Old EA. Neuropathic pain and cytokines: Current perspectives. J Pain Res 2013; 6: 803-14.
[http://dx.doi.org/10.2147/JPR.S53660] [PMID: 24294006]
[21]
Sommer C, Lindenlaub T, Teuteberg P, Schäfers M, Hartung T, Toyka KV. Anti-TNF-neutralizing antibodies reduce pain-related behavior in two different mouse models of painful mononeuropathy. Brain Res 2001; 913(1): 86-9.
[http://dx.doi.org/10.1016/S0006-8993(01)02743-3] [PMID: 11532251]
[22]
Cunha FQ, Poole S, Lorenzetti BB, Ferreira SH. The pivotal role of tumour necrosis factor α in the development of inflammatory hyperalgesia. Br J Pharmacol 1992; 107(3): 660-4.
[http://dx.doi.org/10.1111/j.1476-5381.1992.tb14503.x] [PMID: 1472964]
[23]
Wagner R, Myers RR. Endoneurial injection of TNF-α produces neuropathic pain behaviors. Neuroreport 1996; 7(18): 2897-902.
[http://dx.doi.org/10.1097/00001756-199611250-00018] [PMID: 9116205]
[24]
Sorkin LS, Xiao WH, Wagner R, Myers RR. Tumour necrosis factor-α induces ectopic activity in nociceptive primary afferent fibres. Neuroscience 1997; 81(1): 255-62.
[http://dx.doi.org/10.1016/S0306-4522(97)00147-4] [PMID: 9300418]
[25]
Schäfers M, Lee DH, Brors D, Yaksh TL, Sorkin LS. Increased sensitivity of injured and adjacent uninjured rat primary sensory neurons to exogenous tumor necrosis factor-alpha after spinal nerve ligation. J Neurosci 2003; 23(7): 3028-38.
[http://dx.doi.org/10.1523/JNEUROSCI.23-07-03028.2003] [PMID: 12684490]
[26]
Zelenka M, Schäfers M, Sommer C. Intraneural injection of interleukin-1β and tumor necrosis factor-alpha into rat sciatic nerve at physiological doses induces signs of neuropathic pain. Pain 2005; 116(3): 257-63.
[http://dx.doi.org/10.1016/j.pain.2005.04.018] [PMID: 15964142]
[27]
Schäfers M, Sorkin LS, Sommer C. Intramuscular injection of tumor necrosis factor-alpha induces muscle hyperalgesia in rats. Pain 2003; 104(3): 579-88.
[http://dx.doi.org/10.1016/S0304-3959(03)00115-5] [PMID: 12927630]
[28]
Ribeiro RA, Vale ML, Thomazzi SM, et al. Involvement of resident macrophages and mast cells in the writhing nociceptive response induced by zymosan and acetic acid in mice. Eur J Pharmacol 2000; 387(1): 111-8.
[http://dx.doi.org/10.1016/S0014-2999(99)00790-6] [PMID: 10633169]
[29]
Ribeiro RA, Vale ML, Ferreira SH, Cunha FQ. Analgesic effect of thalidomide on inflammatory pain. Eur J Pharmacol 2000; 391(1-2): 97-103.
[http://dx.doi.org/10.1016/S0014-2999(99)00918-8] [PMID: 10720640]
[30]
Granados-Soto V, Alonso-López R, Asomoza-Espinosa R, Rufino MO, Gomes-Lopes LD, Ferreira SH. Participation of COX, IL-1 beta and TNF alpha in formalin-induced inflammatory pain. Proc West Pharmacol Soc 2001; 44: 15-7.
[PMID: 11793965]
[31]
Schäfers M, Brinkhoff J, Neukirchen S, Marziniak M, Sommer C. Combined epineurial therapy with neutralizing antibodies to tumor necrosis factor-alpha and interleukin-1 receptor has an additive effect in reducing neuropathic pain in mice. Neurosci Lett 2001; 310(2-3): 113-6.
[http://dx.doi.org/10.1016/S0304-3940(01)02077-8] [PMID: 11585580]
[32]
Chichorro JG, Lorenzetti BB, Zampronio AR. Involvement of bradykinin, cytokines, sympathetic amines and prostaglandins in formalin-induced orofacial nociception in rats. Br J Pharmacol 2004; 141(7): 1175-84.
[http://dx.doi.org/10.1038/sj.bjp.0705724] [PMID: 15006904]
[33]
Dogrul A, Gul H, Yesilyurt O, Ulas UH, Yildiz O. Systemic and spinal administration of etanercept, a tumor necrosis factor alpha inhibitor, blocks tactile allodynia in diabetic mice. Acta Diabetol 2011; 48(2): 135-42.
[http://dx.doi.org/10.1007/s00592-010-0237-x] [PMID: 21104419]
[34]
Marchand F, Tsantoulas C, Singh D, et al. Effects of etanercept and minocycline in a rat model of spinal cord injury. Eur J Pain 2009; 13(7): 673-81.
[http://dx.doi.org/10.1016/j.ejpain.2008.08.001] [PMID: 18849175]
[35]
DeLeo JA, Rutkowski MD, Stalder AK, Campbell IL. Transgenic expression of TNF by astrocytes increases mechanical allodynia in a mouse neuropathy model. Neuroreport 2000; 11(3): 599-602.
[http://dx.doi.org/10.1097/00001756-200002280-00033] [PMID: 10718321]
[36]
Quesada JR, Talpaz M, Rios A, Kurzrock R, Gutterman JU. Clinical toxicity of interferons in cancer patients: A review. J Clin Oncol 1986; 4(2): 234-43.
[http://dx.doi.org/10.1200/JCO.1986.4.2.234] [PMID: 2418169]
[37]
Tsuda M, Masuda T, Kitano J, Shimoyama H, Tozaki-Saitoh H, Inoue K. IFN-γ receptor signaling mediates spinal microglia activation driving neuropathic pain. Proc Natl Acad Sci USA 2009; 106(19): 8032-7.
[http://dx.doi.org/10.1073/pnas.0810420106] [PMID: 19380717]
[38]
Robertson B, Xu XJ, Hao JX, et al. Interferon-γ receptors in nociceptive pathways. Neuroreport 1997; 8(5): 1311-6.
[http://dx.doi.org/10.1097/00001756-199703240-00050] [PMID: 9175135]
[39]
Costigan M, Moss A, Latremoliere A, et al. T-cell infiltration and signaling in the adult dorsal spinal cord is a major contributor to neuropathic pain-like hypersensitivity. J Neurosci 2009; 29(46): 14415-22.
[http://dx.doi.org/10.1523/JNEUROSCI.4569-09.2009] [PMID: 19923276]
[40]
Ferreira SH, Lorenzetti BB, Bristow AF, Poole S. Interleukin-1β as a potent hyperalgesic agent antagonized by a tripeptide analogue. Nature 1988; 334(6184): 698-700.
[http://dx.doi.org/10.1038/334698a0] [PMID: 3137474]
[41]
Ren K, Torres R. Role of interleukin-1β during pain and inflammation. Brain Res Brain Res Rev 2009; 60(1): 57-64.
[http://dx.doi.org/10.1016/j.brainresrev.2008.12.020] [PMID: 19166877]
[42]
Fukuoka H, Kawatani M, Hisamitsu T, Takeshige C. Cutaneous hyperalgesia induced by peripheral injection of interleukin-1β in the rat. Brain Res 1994; 657(1-2): 133-40.
[http://dx.doi.org/10.1016/0006-8993(94)90960-1] [PMID: 7820610]
[43]
Safieh-Garabedian B, Poole S, Allchorne A, Winter J, Woolf CJ. Contribution of interleukin-1β to the inflammation-induced increase in nerve growth factor levels and inflammatory hyperalgesia. Br J Pharmacol 1995; 115(7): 1265-75.
[http://dx.doi.org/10.1111/j.1476-5381.1995.tb15035.x] [PMID: 7582555]
[44]
Reeve AJ, Patel S, Fox A, Walker K, Urban L. Intrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat. Eur J Pain 2000; 4(3): 247-57.
[http://dx.doi.org/10.1053/eujp.2000.0177] [PMID: 10985868]
[45]
Sung CS, Wen ZH, Chang WK, et al. Intrathecal interleukin-1β administration induces thermal hyperalgesia by activating inducible nitric oxide synthase expression in the rat spinal cord. Brain Res 2004; 1015(1-2): 145-53.
[http://dx.doi.org/10.1016/j.brainres.2004.04.068] [PMID: 15223378]
[46]
Oka T, Aou S, Hori T. Intracerebroventricular injection of interleukin-1β induces hyperalgesia in rats. Brain Res 1993; 624(1-2): 61-8.
[http://dx.doi.org/10.1016/0006-8993(93)90060-Z] [PMID: 8252417]
[47]
Kawasaki Y, Zhang L, Cheng JK, Ji RR. Cytokine mechanisms of central sensitization: Distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 2008; 28(20): 5189-94.
[http://dx.doi.org/10.1523/JNEUROSCI.3338-07.2008] [PMID: 18480275]
[48]
Cunha JM, Cunha FQ, Poole S, Ferreira SH. Cytokine-mediated inflammatory hyperalgesia limited by interleukin-1 receptor antagonist. Br J Pharmacol 2000; 130(6): 1418-24.
[http://dx.doi.org/10.1038/sj.bjp.0703434] [PMID: 10903985]
[49]
Sweitzer S, Martin D, DeLeo JA. Intrathecal interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor exhibits an anti-allodynic action in a rat model of neuropathic pain. Neuroscience 2001; 103(2): 529-39.
[http://dx.doi.org/10.1016/S0306-4522(00)00574-1] [PMID: 11246166]
[50]
Guo W, Wang H, Watanabe M, et al. Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J Neurosci 2007; 27(22): 6006-18.
[http://dx.doi.org/10.1523/JNEUROSCI.0176-07.2007] [PMID: 17537972]
[51]
Wolf G, Gabay E, Tal M, Yirmiya R, Shavit Y. Genetic impairment of interleukin-1 signaling attenuates neuropathic pain, autotomy, and spontaneous ectopic neuronal activity, following nerve injury in mice. Pain 2006; 120(3): 315-24.
[http://dx.doi.org/10.1016/j.pain.2005.11.011] [PMID: 16426759]
[52]
Członkowski A, Stein C, Herz A. Peripheral mechanisms of opioid antinociception in inflammation: Involvement of cytokines. Eur J Pharmacol 1993; 242(3): 229-35.
[http://dx.doi.org/10.1016/0014-2999(93)90246-E] [PMID: 8281987]
[53]
DeLEO JA. Colburn RW, Nichols M, Malhotra A. Interleukin-6-mediated hyperalgesia/allodynia and increased spinal IL-6 expression in a rat mononeuropathy model. J Interferon Cytokine Res 1996; 16(9): 695-700.
[http://dx.doi.org/10.1089/jir.1996.16.695] [PMID: 8887053]
[54]
Lee KM, Jeon SM, Cho HJ. Interleukin-6 induces microglial CX3CR1 expression in the spinal cord after peripheral nerve injury through the activation of p38 MAPK. Eur J Pain 2010; 14(7): 682.e1-682.e12.
[http://dx.doi.org/10.1016/j.ejpain.2009.10.017] [PMID: 19959384]
[55]
Dominguez E, Rivat C, Pommier B, Mauborgne A, Pohl M. JAK/STAT3 pathway is activated in spinal cord microglia after peripheral nerve injury and contributes to neuropathic pain development in rat. J Neurochem 2008; 107(1): 50-60.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05566.x] [PMID: 18636982]
[56]
Schoeniger-Skinner DK, Ledeboer A, Frank MG, et al. Interleukin-6 mediates low-threshold mechanical allodynia induced by intrathecal HIV-1 envelope glycoprotein gp120. Brain Behav Immun 2007; 21(5): 660-7.
[http://dx.doi.org/10.1016/j.bbi.2006.10.010] [PMID: 17204394]
[57]
Ramer MS, Murphy PG, Richardson PM, Bisby MA. Spinal nerve lesion-induced mechanoallodynia and adrenergic sprouting in sensory ganglia are attenuated in interleukin-6 knockout mice. Pain 1998; 78(2): 115-21.
[http://dx.doi.org/10.1016/S0304-3959(98)00121-3] [PMID: 9839821]
[58]
Murphy PG, Ramer MS, Borthwick L, Gauldie J, Richardson PM, Bisby MA. Endogenous interleukin-6 contributes to hypersensitivity to cutaneous stimuli and changes in neuropeptides associated with chronic nerve constriction in mice. Eur J Neurosci 1999; 11(7): 2243-53.
[http://dx.doi.org/10.1046/j.1460-9568.1999.00641.x] [PMID: 10383613]
[59]
Cunha FQ, Poole S, Lorenzetti BB, Veiga FH, Ferreira SH. Cytokine-mediated inflammatory hyperalgesia limited by interleukin-4. Br J Pharmacol 1999; 126(1): 45-50.
[http://dx.doi.org/10.1038/sj.bjp.0702266] [PMID: 10051119]
[60]
Vale ML, Marques JB, Moreira CA, et al. Antinociceptive effects of interleukin-4, -10, and -13 on the writhing response in mice and zymosan-induced knee joint incapacitation in rats. J Pharmacol Exp Ther 2003; 304(1): 102-8.
[http://dx.doi.org/10.1124/jpet.102.038703] [PMID: 12490580]
[61]
Hao S, Mata M, Glorioso JC, Fink DJ. HSV-mediated expression of interleukin-4 in dorsal root ganglion neurons reduces neuropathic pain. Mol Pain 2006; 1744-8069-2-.
[http://dx.doi.org/10.1186/1744-8069-2-6] [PMID: 16503976]
[62]
Üçeyler N. Topuzoğlu T, Schießer P, Hahnenkamp S, Sommer C. IL-4 deficiency is associated with mechanical hypersensitivity in mice. PLoS One 2011; 6(12): e28205.
[http://dx.doi.org/10.1371/journal.pone.0028205] [PMID: 22164245]
[63]
Lees JG, Duffy SS, Perera CJ, Moalem-Taylor G. Depletion of Foxp3+ regulatory T cells increases severity of mechanical allodynia and significantly alters systemic cytokine levels following peripheral nerve injury. Cytokine 2015; 71(2): 207-14.
[http://dx.doi.org/10.1016/j.cyto.2014.10.028] [PMID: 25461400]
[64]
Ma F, Zhang L, Oz HS, Mashni M, Westlund KN. Dysregulated TNFα promotes cytokine proteome profile increases and bilateral orofacial hypersensitivity. Neuroscience 2015; 300: 493-507.
[http://dx.doi.org/10.1016/j.neuroscience.2015.05.046] [PMID: 26033565]
[65]
Perini F, D’Andrea G, Galloni E, et al. Plasma cytokine levels in migraineurs and controls. Headache 2005; 45(7): 926-31.
[http://dx.doi.org/10.1111/j.1526-4610.2005.05135.x] [PMID: 15985111]
[66]
Wagner R, Janjigian M, Myers RR. Anti-inflammatory interleukin-10 therapy in CCI neuropathy decreases thermal hyperalgesia, macrophage recruitment, and endoneurial TNF-α expression. Pain 1998; 74(1): 35-42.
[http://dx.doi.org/10.1016/S0304-3959(97)00148-6] [PMID: 9514558]
[67]
Milligan ED, Sloane EM, Langer SJ, et al. Repeated intrathecal injections of plasmid DNA encoding interleukin-10 produce prolonged reversal of neuropathic pain. Pain 2006; 126(1): 294-308.
[http://dx.doi.org/10.1016/j.pain.2006.07.009] [PMID: 16949747]
[68]
Ledeboer A, Jekich BM, Sloane EM, et al. Intrathecal interleukin-10 gene therapy attenuates paclitaxel-induced mechanical allodynia and proinflammatory cytokine expression in dorsal root ganglia in rats. Brain Behav Immun 2007; 21(5): 686-98.
[http://dx.doi.org/10.1016/j.bbi.2006.10.012] [PMID: 17174526]
[69]
Borghi SM, Pinho RFA, Zarpelon AC, et al. Interleukin-10 limits intense acute swimming-induced muscle mechanical hyperalgesia in mice. Exp Physiol 2015; 100(5): 531-44.
[http://dx.doi.org/10.1113/EP085026] [PMID: 25711612]
[70]
Lindenlaub T, Sommer C. Cytokines in sural nerve biopsies from inflammatory and non-inflammatory neuropathies. Acta Neuropathol 2003; 105(6): 593-602.
[http://dx.doi.org/10.1007/s00401-003-0689-y] [PMID: 12734666]
[71]
Verri WA Jr, Cunha TM, Parada CA, Poole S, Cunha FQ, Ferreira SH. Hypernociceptive role of cytokines and chemokines: Targets for analgesic drug development? Pharmacol Ther 2006; 112(1): 116-38.
[http://dx.doi.org/10.1016/j.pharmthera.2006.04.001] [PMID: 16730375]
[72]
Saadé NE, Nasr IW, Massaad CA, Safieh-Garabedian B, Jabbur SJ, Kanaan SA. Modulation of ultraviolet-induced hyperalgesia and cytokine upregulation by interleukins 10 and 13. Br J Pharmacol 2000; 131(7): 1317-24.
[http://dx.doi.org/10.1038/sj.bjp.0703699] [PMID: 11090103]
[73]
Karam MC, Al-Kouba JE, Bazzi SI, Smith CB, Leung L. Interleukin-13 reduces hyperalgesia and the level of interleukin-1β in BALB/c mice infected with Leishmania major with an up-regulation of interleukin-6. J Neuroimmunol 2011; 234(1-2): 49-54.
[http://dx.doi.org/10.1016/j.jneuroim.2011.02.003] [PMID: 21402416]
[74]
Karam MC, Merckbawi R, El-Kouba JE, Bazzi SI, Bodman-Smith KB. In leishmania major-induced inflammation, interleukin-13 reduces hyperalgesia, down-regulates IL-1β and up-regulates IL-6 in an IL-4 independent mechanism1This project was mainly funded by the Balamand Research Grant.1. Exp Parasitol 2013; 134(2): 200-5.
[http://dx.doi.org/10.1016/j.exppara.2013.02.005] [PMID: 23499883]
[75]
Wang K, Wu H, Wang G, Li M, Zhang Z, Gu G. The effects of electroacupuncture on TH1/TH2 cytokine mRNA expression and mitogen-activated protein kinase signaling pathways in the splenic T cells of traumatized rats. Anesth Analg 2009; 109(5): 1666-73.
[http://dx.doi.org/10.1213/ANE.0b013e3181b5a234] [PMID: 19843806]
[76]
Du L, Long Y, Kim JJ, Chen B, Zhu Y, Dai N. Protease activated receptor-2 induces immune activation and visceral hypersensitivity in post-infectious irritable bowel syndrome mice. Dig Dis Sci 2019; 64(3): 729-39.
[http://dx.doi.org/10.1007/s10620-018-5367-y] [PMID: 30446929]
[77]
Liu Z, Sun J, Liang T, Huang X. Increased expression of cyclooxygenase 2 in synovium tissues and synovial fluid from patients with knee osteoarthritis is associated with downregulated microRNA 758 3p expression. Exp Ther Med 2021; 22(3): 1001.
[http://dx.doi.org/10.3892/etm.2021.10433] [PMID: 34345283]
[78]
Brini AT, Amodeo G, Ferreira LM, et al. Therapeutic effect of human adipose-derived stem cells and their secretome in experimental diabetic pain. Sci Rep 2017; 7(1): 9904.
[http://dx.doi.org/10.1038/s41598-017-09487-5] [PMID: 28851944]
[79]
Motrich RD, Breser ML, Sánchez LR, Godoy GJ, Prinz I, Rivero VE. IL-17 is not essential for inflammation and chronic pelvic pain development in an experimental model of chronic prostatitis/chronic pelvic pain syndrome. Pain 2016; 157(3): 585-97.
[http://dx.doi.org/10.1097/j.pain.0000000000000405] [PMID: 26882345]
[80]
Noor S, Sanchez JJ, Sun MS, et al. The LFA-1 antagonist BIRT377 reverses neuropathic pain in prenatal alcohol-exposed female rats via actions on peripheral and central neuroimmune function in discrete pain-relevant tissue regions. Brain Behav Immun 2020; 87: 339-58.
[http://dx.doi.org/10.1016/j.bbi.2020.01.002] [PMID: 31918004]
[81]
Liu J, Liu S, Pan W, Li Y. Wogonoside attenuates the articular cartilage injury and the infiltration of Th1/Th2-type cytokines in papain-induced osteoarthritis in rat model via inhibiting the NF-κB and ERK1/2 activation. Immunopharmacol Immunotoxicol 2021; 43(3): 343-52.
[http://dx.doi.org/10.1080/08923973.2021.1913503] [PMID: 33881378]
[82]
Jung H, Son GM, Lee JJ, Park HS. Therapeutic effects of tonsil-derived mesenchymal stem cells in an atopic dermatitis mouse model. In Vivo 2021; 35(2): 845-57.
[http://dx.doi.org/10.21873/invivo.12325] [PMID: 33622877]
[83]
Cañete JD, Martínez SE, Farrés J, et al. Differential Th1/Th2 cytokine patterns in chronic arthritis: Interferon gamma is highly expressed in synovium of rheumatoid arthritis compared with seronegative spondyloarthropathies. Ann Rheum Dis 2000; 59(4): 263-8.
[http://dx.doi.org/10.1136/ard.59.4.263] [PMID: 10733472]
[84]
Mostafazadeh A, Saravi M, Niaki HA, et al. HLA-DRBeta1, circulating Th1/Th2 cytokines and immunological homunculus in coronary atherosclerosis. Iran J Allergy Asthma Immunol 2011; 10(1): 11-9.
[http://dx.doi.org/10.01/ijaai.1119] [PMID: 21358010]
[85]
Larussa T, Suraci E, Leone I, et al. Short-term therapy with celecoxib and lansoprazole modulates Th1/ Th2 immune response in human gastric mucosa. Helicobacter 2010; 15(5): 449-59.
[http://dx.doi.org/10.1111/j.1523-5378.2010.00796.x] [PMID: 21083751]
[86]
Teixeira-Salum TB, Rodrigues DBR, Gervásio AM, Souza CJA, Rodrigues V Jr, Loyola AM. Distinct Th1, Th2 and treg cytokines balance in chronic periapical granulomas and radicular cysts. J Oral Pathol Med 2010; 39(3): 250-6.
[http://dx.doi.org/10.1111/j.1600-0714.2009.00863.x] [PMID: 20102461]
[87]
Ma W, Wang K, Du J, Luan J, Lou G. Multi-dose parecoxib provides an immunoprotective effect by balancing T helper 1 (Th1), Th2, Th17 and regulatory T cytokines following laparoscopy in patients with cervical cancer. Mol Med Rep 2015; 11(4): 2999-3008.
[http://dx.doi.org/10.3892/mmr.2014.3003] [PMID: 25434365]
[88]
Kaufmann I, Eisner C, Richter P, et al. Lymphocyte subsets and the role of TH1/TH2 balance in stressed chronic pain patients. Neuroimmunomodulation 2007; 14(5): 272-80.
[http://dx.doi.org/10.1159/000115041] [PMID: 18239379]
[89]
Koch A, Zacharowski K, Boehm O, et al. Nitric oxide and pro-inflammatory cytokines correlate with pain intensity in chronic pain patients. Inflamm Res 2007; 56(1): 32-7.
[http://dx.doi.org/10.1007/s00011-007-6088-4] [PMID: 17334668]
[90]
Wesseldijk F, Huygen FJ, Heijmans-Antonissen C, Niehof SP, Zijlstra FJ. Tumor necrosis factor-α and interleukin-6 are not correlated with the characteristics of Complex Regional Pain Syndrome type 1 in 66 patients. Eur J Pain 2008; 12(6): 716-21.
[http://dx.doi.org/10.1016/j.ejpain.2007.10.010] [PMID: 18055234]
[91]
Uçeyler N, Rogausch JP, Toyka KV, Sommer C. Differential expression of cytokines in painful and painless neuropathies. Neurology 2007; 69(1): 42-9.
[http://dx.doi.org/10.1212/01.wnl.0000265062.92340.a5] [PMID: 17606879]
[92]
Alexander GM, Peterlin BL, Perreault MJ, Grothusen JR, Schwartzman RJ. Changes in plasma cytokines and their soluble receptors in complex regional pain syndrome. J Pain 2012; 13(1): 10-20.
[http://dx.doi.org/10.1016/j.jpain.2011.10.003] [PMID: 22172450]
[93]
Ritz BW, Alexander GM, Nogusa S, et al. Elevated blood levels of inflammatory monocytes (CD14+CD16+) in patients with complex regional pain syndrome. Clin Exp Immunol 2011; 164(1): 108-17.
[http://dx.doi.org/10.1111/j.1365-2249.2010.04308.x] [PMID: 21303362]
[94]
Heijmans-Antonissen C, Wesseldijk F, Munnikes RJM, et al. Multiplex bead array assay for detection of 25 soluble cytokines in blister fluid of patients with complex regional pain syndrome type 1. Mediators Inflamm 2006; 2006(1): 1-8.
[http://dx.doi.org/10.1155/MI/2006/28398] [PMID: 16864900]
[95]
Russo MA, Fiore NT, van Vreden C, et al. Expansion and activation of distinct central memory T lymphocyte subsets in complex regional pain syndrome. J Neuroinflammation 2019; 16(1): 63.
[http://dx.doi.org/10.1186/s12974-019-1449-9] [PMID: 30885223]
[96]
Üçeyler N, Riediger N, Kafke W, Sommer C. Differential gene expression of cytokines and neurotrophic factors in nerve and skin of patients with peripheral neuropathies. J Neurol 2015; 262(1): 203-12.
[http://dx.doi.org/10.1007/s00415-014-7556-8] [PMID: 25371017]
[97]
Le Maitre C, Hoyland J, Freemont AJ. Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1β and TNFα expression profile. Arthritis Res Ther 2007; 9(4): R77.
[http://dx.doi.org/10.1186/ar2275] [PMID: 17688691]
[98]
Kraychete DC, Sakata RK, Issy AM, Bacellar O, Santos-Jesus R, Carvalho EM. Serum cytokine levels in patients with chronic low back pain due to herniated disc: Analytical cross-sectional study. Sao Paulo Med J 2010; 128(5): 259-62.
[http://dx.doi.org/10.1590/S1516-31802010000500003] [PMID: 21181064]
[99]
Luchting B, Rachinger-Adam B, Zeitler J, et al. Disrupted TH17/Treg balance in patients with chronic low back pain. PLoS One 2014; 9(8): e104883.
[http://dx.doi.org/10.1371/journal.pone.0104883] [PMID: 25122126]
[100]
Luchting B, Rachinger-Adam B, Heyn J, Hinske L, Kreth S, Azad S. Anti-inflammatory T-cell shift in neuropathic pain. J Neuroinflammation 2015; 12(1): 12.
[http://dx.doi.org/10.1186/s12974-014-0225-0] [PMID: 25608762]
[101]
Rosine N, Etcheto A, Hendel-Chavez H, et al. Increase in il-31 serum levels is associated with reduced structural damage in early axial spondyloarthritis. Sci Rep 2018; 8(1): 7731.
[http://dx.doi.org/10.1038/s41598-018-25722-z] [PMID: 29769586]
[102]
Menzies V, Lyon DE. Integrated review of the association of cytokines with fibromyalgia and fibromyalgia core symptoms. Biol Res Nurs 2010; 11(4): 387-94.
[http://dx.doi.org/10.1177/1099800409348328] [PMID: 19933683]
[103]
Rodriguez-Pintó I, Agmon-Levin N, Howard A, Shoenfeld Y. Fibromyalgia and cytokines. Immunol Lett 2014; 161(2): 200-3.
[http://dx.doi.org/10.1016/j.imlet.2014.01.009] [PMID: 24462815]
[104]
Üçeyler N, Kewenig S, Kafke W, Kittel-Schneider S, Sommer C. Skin cytokine expression in patients with fibromyalgia syndrome is not different from controls. BMC Neurol 2014; 14(1): 185.
[http://dx.doi.org/10.1186/s12883-014-0185-0] [PMID: 25240423]
[105]
Wang H, Moser M, Schiltenwolf M, Buchner M. Circulating cytokine levels compared to pain in patients with fibromyalgia -- a prospective longitudinal study over 6 months. J Rheumatol 2008; 35(7): 1366-70.
[PMID: 18528959]
[106]
Alfieri FM, Santos VBL, Soares AR, et al. Concentration of cytokines in patients with osteoarthritis of the knee and fibromyalgia. Clin Interv Aging 2014; 9: 939-44.
[http://dx.doi.org/10.2147/CIA.S60330] [PMID: 24959074]
[107]
Wallace DJ, Linker-Israeli M, Hallegua D, Silverman S, Silver D, Weisman MH. Cytokines play an aetiopathogenetic role in fibromyalgia: A hypothesis and pilot study. Rheumatology 2001; 40(7): 743-9.
[http://dx.doi.org/10.1093/rheumatology/40.7.743] [PMID: 11477278]
[108]
Andrés-Rodríguez L, Borràs X, Feliu-Soler A, et al. Peripheral immune aberrations in fibromyalgia: A systematic review, meta-analysis and meta-regression. Brain Behav Immun 2020; 87: 881-9.
[http://dx.doi.org/10.1016/j.bbi.2019.12.020] [PMID: 31887417]
[109]
Üçeyler N, Valenza R, Stock M, Schedel R, Sprotte G, Sommer C. Reduced levels of antiinflammatory cytokines in patients with chronic widespread pain. Arthritis Rheum 2006; 54(8): 2656-64.
[http://dx.doi.org/10.1002/art.22026] [PMID: 16871547]
[110]
Sturgill J, McGee E, Menzies V. Unique cytokine signature in the plasma of patients with fibromyalgia. J Immunol Res 2014; 2014: 1-5.
[http://dx.doi.org/10.1155/2014/938576] [PMID: 24741634]
[111]
Chang DH, Wu PS, Wang YC, et al. Clinicopathology of immunoglobulin G4–related chronic sclerosing sialadenitis. Otolaryngol Head Neck Surg 2016; 155(6): 974-81.
[http://dx.doi.org/10.1177/0194599816665603] [PMID: 27576683]
[112]
Takenaka K, Takada K, Kobayashi D, Moriguchi M, Harigai M, Miyasaka N. A case of IgG4-related disease with features of Mikulicz’s disease, and retroperitoneal fibrosis and lymphadenopathy mimicking Castleman’s disease. Mod Rheumatol 2011; 21(4): 410-4.
[http://dx.doi.org/10.3109/s10165-010-0410-7] [PMID: 21243399]
[113]
Perugino CA, Stone JH. IgG4-related disease: An update on pathophysiology and implications for clinical care. Nat Rev Rheumatol 2020; 16(12): 702-14.
[http://dx.doi.org/10.1038/s41584-020-0500-7] [PMID: 32939060]
[114]
Zen Y, Fujii T, Harada K, et al. Th2 and regulatory immune reactions are increased in immunoglobin G4-related sclerosing pancreatitis and cholangitis. Hepatology 2007; 45(6): 1538-46.
[http://dx.doi.org/10.1002/hep.21697] [PMID: 17518371]
[115]
Kanari H, Kagami S, Kashiwakuma D, et al. Role of Th2 cells in IgG4-related lacrimal gland enlargement. Int Arch Allergy Immunol 2010; 152 (Suppl. 1): 47-53.
[http://dx.doi.org/10.1159/000312125] [PMID: 20523063]
[116]
Tanaka A, Moriyama M, Nakashima H, et al. Th2 and regulatory immune reactions contribute to IgG4 production and the initiation of mikulicz disease. Arthritis Rheum 2012; 64(1): 254-63.
[http://dx.doi.org/10.1002/art.33320] [PMID: 21898360]
[117]
Nakashima H, Miyake K, Moriyama M, et al. An amplification of IL-10 and TGF-beta in patients with IgG4-related tubulointerstitial nephritis. Clin Nephrol 2010; 73(5): 385-91.
[http://dx.doi.org/10.5414/CNP73385] [PMID: 20420800]
[118]
Tsuboi H, Matsuo N, Iizuka M, et al. Analysis of IgG4 class switch-related molecules in IgG4-related disease. Arthritis Res Ther 2012; 14(4): R171.
[http://dx.doi.org/10.1186/ar3924] [PMID: 22824292]
[119]
Müller T, Beutler C, Picó AH, et al. Increased T-helper 2 cytokines in bile from patients with IgG4-related cholangitis disrupt the tight junction-associated biliary epithelial cell barrier. Gastroenterology 2013; 144(5): 1116-28.
[http://dx.doi.org/10.1053/j.gastro.2013.01.055] [PMID: 23391819]
[120]
Takeuchi M, Sato Y, Ohno K, et al. T helper 2 and regulatory T-cell cytokine production by mast cells: A key factor in the pathogenesis of IgG4-related disease. Mod Pathol 2014; 27(8): 1126-36.
[http://dx.doi.org/10.1038/modpathol.2013.236] [PMID: 24390219]
[121]
Moriyama M, Tanaka A, Maehara T, Furukawa S, Nakashima H, Nakamura S. T helper subsets in sjögren’s syndrome and IgG4-related dacryoadenitis and sialoadenitis: A critical review. J Autoimmun 2014; 51: 81-8.
[http://dx.doi.org/10.1016/j.jaut.2013.07.007] [PMID: 23920005]
[122]
Yamamoto M, Takahashi H, Shinomura Y. Mechanisms and assessment of IgG4-related disease: Lessons for the rheumatologist. Nat Rev Rheumatol 2014; 10(3): 148-59.
[http://dx.doi.org/10.1038/nrrheum.2013.183] [PMID: 24296677]
[123]
Üçeyler N, Eberle T, Rolke R, Birklein F, Sommer C. Differential expression patterns of cytokines in complex regional pain syndrome. Pain 2007; 132(1): 195-205.
[http://dx.doi.org/10.1016/j.pain.2007.07.031] [PMID: 17890011]
[124]
Uçeyler N, Kafke W, Riediger N, et al. Elevated proinflammatory cytokine expression in affected skin in small fiber neuropathy. Neurology 2010; 74(22): 1806-13.
[http://dx.doi.org/10.1212/WNL.0b013e3181e0f7b3] [PMID: 20513817]
[125]
Kasashima S, Kawashima A, Kasashima F, Endo M, Matsumoto Y, Kawakami K. Inflammatory features, including symptoms, increased serum interleukin-6, and C-reactive protein, in IgG4-related vascular diseases. Heart Vessels 2018; 33(12): 1471-81.
[http://dx.doi.org/10.1007/s00380-018-1203-8] [PMID: 29931542]
[126]
Eisenberg E, Sandler I, Treister R, Suzan E, Haddad M. Anti tumor necrosis factor - alpha adalimumab for complex regional pain syndrome type 1 (CRPS-I): A case series. Pain Pract 2013; 13(8): 649-56.
[http://dx.doi.org/10.1111/papr.12070] [PMID: 23668697]
[127]
Lu D, Song H, Shi G. Anti-TNF-α treatment for pelvic pain associated with endometriosis. Cochrane Libr 2013; (3): CD008088.
[http://dx.doi.org/10.1002/14651858.CD008088.pub3] [PMID: 23543560]
[128]
Koninckx PR, Craessaerts M, Timmerman D, Cornillie F, Kennedy S. Anti-TNF- treatment for deep endometriosis-associated pain: A randomized placebo-controlled trial. Hum Reprod 2008; 23(9): 2017-23.
[http://dx.doi.org/10.1093/humrep/den177] [PMID: 18556683]
[129]
Pimentel DC, El Abd O, Benyamin RM, et al. Anti-tumor necrosis factor antagonists in the treatment of low back pain and radiculopathy: A systematic review and meta-analysis. Pain Physician 2014; 17(1): E27-44.
[PMID: 24452656]
[130]
Fromont A, De Seze J, Fleury MC, Maillefert JF, Moreau T. Inflammatory demyelinating events following treatment with anti-tumor necrosis factor. Cytokine 2009; 45(2): 55-7.
[http://dx.doi.org/10.1016/j.cyto.2008.11.002] [PMID: 19109035]
[131]
Nuki G, Bresnihan B, Bear MB, McCabe D. Long-term safety and maintenance of clinical improvement following treatment with anakinra (recombinant human interleukin-1 receptor antagonist) in patients with rheumatoid arthritis: Extension phase of a randomized, double-blind, placebo-controlled trial. Arthritis Rheum 2002; 46(11): 2838-46.
[http://dx.doi.org/10.1002/art.10578] [PMID: 12428223]
[132]
Rubbert-Roth A. Assessing the safety of biologic agents in patients with rheumatoid arthritis. Rheumatology 2012; 51 (Suppl. 5): v38-47.
[http://dx.doi.org/10.1093/rheumatology/kes114] [PMID: 22718926]
[133]
Maxwell LJ, Zochling J, Boonen A, et al. TNF-alpha inhibitors for ankylosing spondylitis. Cochrane Libr 2015; (4): CD005468.
[http://dx.doi.org/10.1002/14651858.CD005468.pub2] [PMID: 25887212]
[134]
Dinarello CA, Simon A, van der Meer JWM. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov 2012; 11(8): 633-52.
[http://dx.doi.org/10.1038/nrd3800] [PMID: 22850787]
[135]
Alten R, Gram H, Joosten LA, et al. The human anti-IL-1β monoclonal antibody ACZ885 is effective in joint inflammation models in mice and in a proof-of-concept study in patients with rheumatoid arthritis. Arthritis Res Ther 2008; 10(3): R67.
[http://dx.doi.org/10.1186/ar2438] [PMID: 18534016]
[136]
Chevalier X, Goupille P, Beaulieu AD, et al. Intraarticular injection of anakinra in osteoarthritis of the knee: A multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum 2009; 61(3): 344-52.
[http://dx.doi.org/10.1002/art.24096] [PMID: 19248129]
[137]
Cohen SB, Proudman S, Kivitz AJ, et al. A randomized, double-blind study of AMG 108 (a fully human monoclonal antibody to IL-1R1) in patients with osteoarthritis of the knee. Arthritis Res Ther 2011; 13(4): R125.
[http://dx.doi.org/10.1186/ar3430] [PMID: 21801403]
[138]
Araki M. Blockade of IL-6 signaling in neuromyelitis optica. Neurochem Int 2019; 130: 104315.
[http://dx.doi.org/10.1016/j.neuint.2018.10.012] [PMID: 30342072]
[139]
Lotan I, McGowan R, Levy M. Anti-IL-6 therapies for neuromyelitis optica spectrum disorders: A systematic review of safety and efficacy. Curr Neuropharmacol 2020; 19(2): 220-32.
[http://dx.doi.org/10.2174/1570159X18666200429010825] [PMID: 32348222]
[140]
Ohtori S, Miyagi M, Eguchi Y, et al. Efficacy of epidural administration of anti-interleukin-6 receptor antibody onto spinal nerve for treatment of sciatica. Eur Spine J 2012; 21(10): 2079-84.
[http://dx.doi.org/10.1007/s00586-012-2183-5] [PMID: 22350007]
[141]
Raimondo MG, Biggioggero M, Crotti C, Becciolini A, Favalli EG. Profile of sarilumab and its potential in the treatment of rheumatoid arthritis. Drug Des Devel Ther 2017; 11: 1593-603.
[http://dx.doi.org/10.2147/DDDT.S100302] [PMID: 28579757]
[142]
Boyce EG, Rogan EL, Vyas D, Prasad N, Mai Y. Sarilumab: Review of a second il-6 receptor antagonist indicated for the treatment of rheumatoid arthritis. Ann Pharmacother 2018; 52(8): 780-91.
[http://dx.doi.org/10.1177/1060028018761599] [PMID: 29482351]
[143]
Atzeni F, Nucera V, Masala IF, Sarzi-Puttini P, Bonitta G. Il-6 involvement in pain, fatigue and mood disorders in rheumatoid arthritis and the effects of il-6 inhibitor sarilumab. Pharmacol Res 2019; 149: 104402.
[http://dx.doi.org/10.1016/j.phrs.2019.104402] [PMID: 31536783]
[144]
Bae SC, Lee YH. Comparison of the efficacy and tolerability of tocilizumab, sarilumab, and sirukumab in patients with active rheumatoid arthritis: A bayesian network meta-analysis of randomized controlled trials. Clin Rheumatol 2018; 37(6): 1471-9.
[http://dx.doi.org/10.1007/s10067-018-4006-5] [PMID: 29404725]
[145]
Padda J, Khalid K, Zubair U, et al. Stem cell therapy and its significance in pain management. Cureus 2021; 13(8): e17258.
[http://dx.doi.org/10.7759/cureus.17258] [PMID: 34540482]
[146]
Chen L, Huang H, Sharma HS, Zuo H, Sanberg PR. Cell transplantation as a pain therapy targets both analgesia and neural repair Cell Transplant 2013; 22(1_suppl Suppl. 1): 11-9.
[http://dx.doi.org/10.3727/096368913X672091] [PMID: 23992823]
[147]
Ren J, Liu N, Sun N, Zhang K, Yu L. Mesenchymal stem cells and their exosomes: Promising therapeutics for chronic pain. Curr Stem Cell Res Ther 2019; 14(8): 644-53.
[http://dx.doi.org/10.2174/1574888X14666190912162504] [PMID: 31512998]
[148]
Wang Q, He H, Xie S, Wei Q, He C. Mesenchymal stem cells transplantation for neuropathic pain induced by peripheral nerve injury in animal models: A systematic review. Stem Cells Dev 2020; 29(22): 1420-8.
[http://dx.doi.org/10.1089/scd.2020.0131] [PMID: 32962522]
[149]
Joshi HP, Jo HJ, Kim YH, An SB, Park CK, Han I. Stem cell therapy for modulating neuroinflammation in neuropathic pain. Int J Mol Sci 2021; 22(9): 4853.
[http://dx.doi.org/10.3390/ijms22094853] [PMID: 34063721]
[150]
Bryk M, Karnas E, Mlost J, Zuba-Surma E, Starowicz K. Mesenchymal stem cells and extracellular vesicles for the treatment of pain: Current status and perspectives. Br J Pharmacol 2022; 179(17): 4281-99.
[http://dx.doi.org/10.1111/bph.15569] [PMID: 34028798]
[151]
Vonk LA, van Dooremalen SFJ, Liv N, et al. Mesenchymal stromal/stem cell-derived extracellular vesicles promote human cartilage regeneration in vitro. Theranostics 2018; 8(4): 906-20.
[http://dx.doi.org/10.7150/thno.20746] [PMID: 29463990]
[152]
Chen C, Chen F, Yao C, et al. Intrathecal injection of human umbilical cord-derived mesenchymal stem cells ameliorates neuropathic pain in rats. Neurochem Res 2016; 41(12): 3250-60.
[http://dx.doi.org/10.1007/s11064-016-2051-5] [PMID: 27655256]
[153]
Shiue SJ, Rau RH, Shiue HS, et al. Mesenchymal stem cell exosomes as a cell-free therapy for nerve injury–induced pain in rats. Pain 2019; 160(1): 210-23.
[http://dx.doi.org/10.1097/j.pain.0000000000001395] [PMID: 30188455]
[154]
Miranda JP, Camões SP, Gaspar MM, et al. The secretome derived from 3d-cultured umbilical cord tissue mscs counteracts manifestations typifying rheumatoid arthritis. Front Immunol 2019; 10: 18.
[http://dx.doi.org/10.3389/fimmu.2019.00018] [PMID: 30804924]
[155]
Hsu JM, Shiue SJ, Yang KD, et al. Locally applied stem cell exosome-scaffold attenuates nerve injury-induced pain in rats. J Pain Res 2020; 13: 3257-68.
[http://dx.doi.org/10.2147/JPR.S286771] [PMID: 33304105]
[156]
Wu L, Pan X, Chen H, Fu X, Jiang J, Ding M. Repairing and analgesic effects of umbilical cord mesenchymal stem cell transplantation in mice with spinal cord injury. BioMed Res Int 2020; 2020: 1-10.
[http://dx.doi.org/10.1155/2020/7650354] [PMID: 32337276]
[157]
Song L, Sun Z, Kim D, et al. Adipose stem cells from chronic pancreatitis patients improve mouse and human islet survival and function. Stem Cell Res Ther 2017; 8(1): 192.
[http://dx.doi.org/10.1186/s13287-017-0627-x] [PMID: 28854965]
[158]
Mert T, Kurt AH. Altun İ Celik A, Baran F, Gunay I. Pulsed magnetic field enhances therapeutic efficiency of mesenchymal stem cells in chronic neuropathic pain model. Bioelectromagnetics 2017; 38(4): 255-64.
[http://dx.doi.org/10.1002/bem.22038] [PMID: 28130880]
[159]
Ebbinghaus M, Jenei-Lanzl Z, Segond von Banchet G, et al. A Promising new approach for the treatment of inflammatory pain: Transfer of stem cell-derived tyrosine hydroxylase-positive cells. Neuroimmunomodulation 2018; 25(4): 225-37.
[http://dx.doi.org/10.1159/000495349] [PMID: 30566959]
[160]
dos Santos GGL, Oliveira ALL, Santos DS, et al. Mesenchymal stem cells reduce the oxaliplatin-induced sensory neuropathy through the reestablishment of redox homeostasis in the spinal cord. Life Sci 2021; 265: 118755.
[http://dx.doi.org/10.1016/j.lfs.2020.118755] [PMID: 33189826]
[161]
Sun Y, Zhang D, Li H, Long R, Sun Q. Intrathecal administration of human bone marrow mesenchymal stem cells genetically modified with human proenkephalin gene decrease nociceptive pain in neuropathic rats. Mol Pain 2017; 13.
[http://dx.doi.org/10.1177/1744806917701445] [PMID: 28326940]
[162]
Cheng Z, Wang L, Qu M, et al. Mesenchymal stem cells attenuate blood-brain barrier leakage after cerebral ischemia in mice. J Neuroinflammation 2018; 15(1): 135.
[http://dx.doi.org/10.1186/s12974-018-1153-1] [PMID: 29724240]
[163]
Huang X, Wang W, Liu X, et al. Bone mesenchymal stem cells attenuate radicular pain by inhibiting microglial activation in a rat noncompressive disk herniation model. Cell Tissue Res 2018; 374(1): 99-110.
[http://dx.doi.org/10.1007/s00441-018-2855-5] [PMID: 29858667]
[164]
Al-Massri KF, Ahmed LA, El-Abhar HS. Mesenchymal stem cells therapy enhances the efficacy of pregabalin and prevents its motor impairment in paclitaxel-induced neuropathy in rats: Role of Notch1 receptor and JAK/STAT signaling pathway. Behav Brain Res 2019; 360: 303-11.
[http://dx.doi.org/10.1016/j.bbr.2018.12.013] [PMID: 30543902]
[165]
Zhu L, Shi Y, Liu L, Wang H, Shen P, Yang H. Mesenchymal stem cells-derived exosomes ameliorate nucleus pulposus cells apoptosis via delivering miR-142-3p: Therapeutic potential for intervertebral disc degenerative diseases. Cell Cycle 2020; 19(14): 1727-39.
[http://dx.doi.org/10.1080/15384101.2020.1769301] [PMID: 32635856]
[166]
Li J, Deng G, Wang H, et al. Interleukin-1β pre-treated bone marrow stromal cells alleviate neuropathic pain through CCL7-mediated inhibition of microglial activation in the spinal cord. Sci Rep 2017; 7(1): 42260.
[http://dx.doi.org/10.1038/srep42260] [PMID: 28195183]
[167]
Zhu C, Wang K, Chen Z, et al. Antinociceptive effect of intrathecal injection of miR-9-5p modified mouse bone marrow mesenchymal stem cells on a mouse model of bone cancer pain. J Neuroinflammation 2020; 17(1): 85.
[http://dx.doi.org/10.1186/s12974-020-01765-w] [PMID: 32178691]
[168]
Allakhverdi Z, Comeau MR, Smith DE, et al. CD34+ hemopoietic progenitor cells are potent effectors of allergic inflammation. J Allergy Clin Immunol 2009; 123(2): 472-478.e1.
[http://dx.doi.org/10.1016/j.jaci.2008.10.022] [PMID: 19064280]
[169]
Fu QL, Chow YY, Sun SJ, et al. Mesenchymal stem cells derived from human induced pluripotent stem cells modulate T‐cell phenotypes in allergic rhinitis. Allergy 2012; 67(10): 1215-22.
[http://dx.doi.org/10.1111/j.1398-9995.2012.02875.x.] [PMID: 22882409]
[170]
Ito T, Wang YH, Duramad O, et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med 2005; 202(9): 1213-23.
[http://dx.doi.org/10.1084/jem.20051135] [PMID: 16275760]
[171]
Batten P, Sarathchandra P, Antoniw JW, et al. Human mesenchymal stem cells induce T cell anergy and downregulate T cell allo-responses via the TH2 pathway: Relevance to tissue engineering human heart valves. Tissue Eng 2006; 12(8): 2263-73.
[http://dx.doi.org/10.1089/ten.2006.12.2263] [PMID: 16968166]
[172]
van Buul GM, Siebelt M, Leijs MJC, et al. Mesenchymal stem cells reduce pain but not degenerative changes in a mono-iodoacetate rat model of osteoarthritis. J Orthop Res 2014; 32(9): 1167-74.
[http://dx.doi.org/10.1002/jor.22650] [PMID: 24839120]
[173]
Durand C, Pezet S, Eutamène H, et al. Persistent visceral allodynia in rats exposed to colorectal irradiation is reversed by mesenchymal stromal cell treatment. Pain 2015; 156(8): 1465-76.
[http://dx.doi.org/10.1097/j.pain.0000000000000190] [PMID: 25887464]
[174]
Watanabe S, Uchida K, Nakajima H, et al. Early transplantation of mesenchymal stem cells after spinal cord injury relieves pain hypersensitivity through suppression of pain-related signaling cascades and reduced inflammatory cell recruitment. Stem Cells 2015; 33(6): 1902-14.
[http://dx.doi.org/10.1002/stem.2006] [PMID: 25809552]
[175]
Vickers R, Karsten E, Lilischkis R, Flood J. A preliminary report on stem cell therapy for neuropathic pain in humans. J Pain Res 2014; 7: 255-63.
[http://dx.doi.org/10.2147/JPR.S63361] [PMID: 24855388]
[176]
Pettine KA, Murphy MB, Suzuki RK, Sand TT. Percutaneous injection of autologous bone marrow concentrate cells significantly reduces lumbar discogenic pain through 12 months. Stem Cells 2015; 33(1): 146-56.
[http://dx.doi.org/10.1002/stem.1845] [PMID: 25187512]
[177]
Pezato R, Almeida DC, Bezerra TF, et al. Immunoregulatory effects of bone marrow-derived mesenchymal stem cells in the nasal polyp microenvironment. Mediators Inflamm 2014; 2014: 1-11.
[http://dx.doi.org/10.1155/2014/583409] [PMID: 24707116]
[178]
Freitag J, Bates D, Wickham J, et al. Adipose-derived mesenchymal stem cell therapy in the treatment of knee osteoarthritis: A randomized controlled trial. Regen Med 2019; 14(3): 213-30.
[http://dx.doi.org/10.2217/rme-2018-0161] [PMID: 30762487]
[179]
Qi Y, Ma J, Li S, Liu W. Applicability of adipose-derived mesenchymal stem cells in treatment of patients with type 2 diabetes. Stem Cell Res Ther 2019; 10(1): 274.
[http://dx.doi.org/10.1186/s13287-019-1362-2] [PMID: 31455405]
[180]
Motrich RD, Breser ML, Molina RI, Tissera A, Olmedo JJ, Rivero VE. Patients with chronic prostatitis/chronic pelvic pain syndrome show T helper type 1 (Th1) and Th17 self-reactive immune responses specific to prostate and seminal antigens and diminished semen quality. BJU Int 2020; 126(3): 379-87.
[http://dx.doi.org/10.1111/bju.15117] [PMID: 32437049]
[181]
Song M, Deng L, Shen H, et al. Th1, Th2, and Th17 cells are dysregulated, but only Th17 cells relate to C‐reactive protein, D‐dimer, and mortality risk in stanford type a aortic dissection patients. J Clin Lab Anal 2022; 36(6): e24469.
[http://dx.doi.org/10.1002/jcla.24469] [PMID: 35522124]
[182]
Peng Y, Yang J, Guo D, et al. Sufentanil postoperative analgesia reduce the increase of T helper 17 (Th17) cells and FoxP3+ regulatory T (Treg) cells in rat hepatocellular carcinoma surgical model: A randomised animal study. BMC Anesthesiol 2020; 20(1): 212.
[http://dx.doi.org/10.1186/s12871-020-01129-0] [PMID: 32847505]
[183]
Hombach AA, Geumann U, Günther C, Hermann FG, Abken H. IL7-IL12 engineered mesenchymal stem cells (MSCs) improve a car t cell attack against colorectal cancer cells. Cells 2020; 9(4): 873.
[http://dx.doi.org/10.3390/cells9040873] [PMID: 32260097]
[184]
Fu Y, Kong Y, Li J, et al. Mesenchymal stem cells combined with traditional Chinese medicine (qi‐fang‐bi‐min‐tang) alleviates rodent allergic rhinitis. J Cell Biochem 2020; 121(2): 1541-51.
[http://dx.doi.org/10.1002/jcb.29389] [PMID: 31535402]
[185]
Peng X, Guo H, Yuan J, et al. Extracellular vesicles released from hiPSC-derived MSCs attenuate chronic prostatitis/chronic pelvic pain syndrome in rats by immunoregulation. Stem Cell Res Ther 2021; 12(1): 198.
[http://dx.doi.org/10.1186/s13287-021-02269-x] [PMID: 33743834]
[186]
Ji RR, Xu ZZ, Gao YJ. Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov 2014; 13(7): 533-48.
[http://dx.doi.org/10.1038/nrd4334] [PMID: 24948120]
[187]
Gangadhar M, Mishra R, Sriram D, Yogeeswari P. Future directions in the treatment of neuropathic pain: A review on various therapeutic targets. CNS Neurol Disord Drug Targets 2014; 13(1): 63-81.
[http://dx.doi.org/10.2174/18715273113126660192] [PMID: 24152326]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy