Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

Neuroprotective Potential and Underlying Pharmacological Mechanism of Carvacrol for Alzheimer’s and Parkinson’s Diseases

Author(s): Hayate Javed*, Nagoor Meeran Mohamed Fizur, Niraj Kumar Jha, Ghulam Md. Ashraf and Shreesh Ojha*

Volume 21, Issue 6, 2023

Published on: 13 March, 2023

Page: [1421 - 1432] Pages: 12

DOI: 10.2174/1570159X21666221223120251

Price: $65

Abstract

The phytochemicals have antioxidant properties to counter the deleterious effects of oxidative stress in the central nervous system and can be a promising drug candidate for neurodegenerative diseases. Among various phytochemicals, constituents of spice origin have recently received special attention for neurodegenerative diseases owing to their health benefits, therapeutic potential, edible nature, and dietary accessibility and availability. Carvacrol, a phenolic monoterpenoid, has garnered attention in treating and managing various human diseases. It possesses diverse pharmacological effects, including antioxidant, anti-inflammatory, antimicrobial and anticancer. Alzheimer's disease (AD) and Parkinson's disease (PD) are major public health concerns that place a significant financial burden on healthcare systems worldwide. The global burden of these diseases is expected to increase in the next few decades owing to increasing life expectancies. Currently, there is no cure for neurodegenerative diseases, such as AD and PD, and the available drugs only give symptomatic relief. For a long time, oxidative stress has been recognized as a primary contributor to neurodegeneration. Carvacrol enhances memory and cognition by modulating the effects of oxidative stress, inflammation, and Aβ25-35- induced neurotoxicity in AD. Moreover, it also reduces the production of reactive oxygen species and proinflammatory cytokine levels in PD, which further prevents the loss of dopaminergic neurons in the substantia nigra and improves motor functions. This review highlights carvacrol's potential antioxidant and anti-inflammatory properties in managing and treating AD and PD.

Keywords: Carvacrol, Alzheimer’s disease, oxidative stress, Parkinson’s disease, antioxidant, inflammation.

Graphical Abstract
[1]
Sofowora, A.; Ogunbodede, E.; Onayade, A. The role and place of medicinal plants in the strategies for disease prevention. Afr. J. Tradit. Complement. Altern. Med., 2013, 10(5), 210-229.
[http://dx.doi.org/10.4314/ajtcam.v10i5.2] [PMID: 24311829]
[2]
Rahmani, A.H.; Al Zohairy, M.A.; Aly, S.M.; Khan, M.A. Curcumin: A potential candidate in prevention of cancer via modulation of molecular pathways. BioMed Res. Int., 2014, 2014, 1-15.
[http://dx.doi.org/10.1155/2014/761608] [PMID: 25295272]
[3]
Soliman, K.M.; Badeaa, R.I. Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi. Food Chem. Toxicol., 2002, 40(11), 1669-1675.
[http://dx.doi.org/10.1016/S0278-6915(02)00120-5] [PMID: 12176092]
[4]
Vila, R. Thyme: The genus thymus. In: Medicinal and Aromatic Plants-Industrial Profiles; , 2002.
[5]
Ultee, A.; Bennik, M.H.J.; Moezelaar, R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol., 2002, 68(4), 1561-1568.
[http://dx.doi.org/10.1128/AEM.68.4.1561-1568.2002] [PMID: 11916669]
[6]
Burt, S. Essential oils: their antibacterial properties and potential applications in foods—a review. Int. J. Food Microbiol., 2004, 94(3), 223-253.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2004.03.022] [PMID: 15246235]
[7]
De Vincenzi, M.; Stammati, A.; De Vincenzi, A.; Silano, M. Constituents of aromatic plants: Carvacrol. Fitoterapia, 2004, 75(7-8), 801-804.
[http://dx.doi.org/10.1016/j.fitote.2004.05.002] [PMID: 15567271]
[8]
Monzote, L.; Stamberg, W.; Staniek, K.; Gille, L. Toxic effects of carvacrol, caryophyllene oxide, and ascaridole from essential oil of Chenopodium ambrosioides on mitochondria. Toxicol. Appl. Pharmacol., 2009, 240(3), 337-347.
[http://dx.doi.org/10.1016/j.taap.2009.08.001] [PMID: 19666043]
[9]
Liolios, C.C.; Graikou, K.; Skaltsa, E.; Chinou, I. Dittany of crete: A botanical and ethnopharmacological review. J. Ethnopharmacol., 2010, 131(2), 229-241.
[http://dx.doi.org/10.1016/j.jep.2010.06.005] [PMID: 20633631]
[10]
Andersen, A. Final report on the safety assessment of sodium p-chloro-m-cresol, p-chloro-m-cresol, chlorothymol, mixed cresols, m-cresol, o-cresol, p-cresol, isopropyl cresols, thymol, o-cymen-5-ol, and carvacrol. Int. J. Toxicol., 2006, 25(1_suppl)(Suppl. 1), 29-127.
[http://dx.doi.org/10.1080/10915810600716653] [PMID: 16835130]
[11]
Mansour, S.A.; Messeha, S.S.; el-Gengaihi, S.E. Botanical biocides. 4. Mosquitocidal activity of certain Thymus capitatus constituents. J. Nat. Toxins, 2000, 9(1), 49-62.
[PMID: 10701181]
[12]
Park, B.S.; Choi, W.S.; Kim, J.H.; Kim, K.H.; Lee, S.E. Monoterpenes from thyme (Thymus vulgaris) as potential mosquito repellents. J. Am. Mosq. Control Assoc., 2005, 21(1), 80-83.
[http://dx.doi.org/10.2987/8756-971X(2005)21[80:MFTTVA]2.0.CO;2] [PMID: 15825766]
[13]
Xu, H.; Delling, M.; Jun, J.C.; Clapham, D.E. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat. Neurosci., 2006, 9(5), 628-635.
[http://dx.doi.org/10.1038/nn1692] [PMID: 16617338]
[14]
Ultee, A.; Kets, E.P.W.; Smid, E.J. Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol., 1999, 65(10), 4606-4610.
[http://dx.doi.org/10.1128/AEM.65.10.4606-4610.1999] [PMID: 10508096]
[15]
Roller, S.; Seedhar, P. Carvacrol and cinnamic acid inhibit microbial growth in fresh-cut melon and kiwifruit at 4o and 8oC. Lett. Appl. Microbiol., 2002, 35(5), 390-394.
[http://dx.doi.org/10.1046/j.1472-765X.2002.01209.x] [PMID: 12390487]
[16]
Ultee, A.; Slump, R.A.; Steging, G.; Smid, E.J. Antimicrobial activity of carvacrol toward Bacillus cereus on rice. J. Food Prot., 2000, 63(5), 620-624.
[http://dx.doi.org/10.4315/0362-028X-63.5.620] [PMID: 10826719]
[17]
Olasupo, N.A.; Fitzgerald, D.J.; Narbad, A.; Gasson, M.J. Inhibition of Bacillus subtilis and Listeria innocua by nisin in combination with some naturally occurring organic compounds. J. Food Prot., 2004, 67(3), 596-600.
[http://dx.doi.org/10.4315/0362-028X-67.3.596] [PMID: 15035380]
[18]
Kiskó, G.; Roller, S. Carvacrol and p-cymene inactivate Escherichia coli O157:H7 in apple juice. BMC Microbiol., 2005, 5(1), 36.
[http://dx.doi.org/10.1186/1471-2180-5-36] [PMID: 15963233]
[19]
Guillén, F.; Zapata, P.J.; Martínez-Romero, D.; Castillo, S.; Serrano, M.; Valero, D. Improvement of the overall quality of table grapes stored under modified atmosphere packaging in combination with natural antimicrobial compounds. J. Food Sci., 2007, 72(3), S185-S190.
[http://dx.doi.org/10.1111/j.1750-3841.2007.00305.x] [PMID: 17995812]
[20]
Luna, A.; Lábaque, M.C.; Zygadlo, J.A.; Marin, R.H. Effects of thymol and carvacrol feed supplementation on lipid oxidation in broiler meat. Poult. Sci., 2010, 89(2), 366-370.
[http://dx.doi.org/10.3382/ps.2009-00130] [PMID: 20075292]
[21]
Feketa, V.V.; Marrelli, S.P. Systemic administration of the TRPV3 ion channel agonist carvacrol induces hypothermia in conscious rodents. PLoS One, 2015, 10(11), e0141994.
[http://dx.doi.org/10.1371/journal.pone.0141994] [PMID: 26528923]
[22]
Xu, H.; Ramsey, I.S.; Kotecha, S.A.; Moran, M.M.; Chong, J.A.; Lawson, D.; Ge, P.; Lilly, J.; Silos-Santiago, I.; Xie, Y.; DiStefano, P.S.; Curtis, R.; Clapham, D.E. TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature, 2002, 418(6894), 181-186.
[http://dx.doi.org/10.1038/nature00882] [PMID: 12077604]
[23]
Nazıroğlu, M. A novel antagonist of TRPM2 and TRPV4 channels: Carvacrol. Metab. Brain Dis., 2022, 37(3), 711-728.
[http://dx.doi.org/10.1007/s11011-021-00887-1] [PMID: 34989943]
[24]
Christensen, K.; Doblhammer, G.; Rau, R.; Vaupel, J.W. Ageing populations: The challenges ahead. Lancet, 2009, 374(9696), 1196-1208.
[http://dx.doi.org/10.1016/S0140-6736(09)61460-4] [PMID: 19801098]
[25]
Dorsey, E.R.; Constantinescu, R.; Thompson, J.P.; Biglan, K.M.; Holloway, R.G.; Kieburtz, K.; Marshall, F.J.; Ravina, B.M.; Schifitto, G.; Siderowf, A.; Tanner, C.M. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology, 2007, 68(5), 384-386.
[http://dx.doi.org/10.1212/01.wnl.0000247740.47667.03] [PMID: 17082464]
[26]
Cummings, J.L.; Morstorf, T.; Zhong, K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res. Ther., 2014, 6(4), 37.
[http://dx.doi.org/10.1186/alzrt269] [PMID: 25024750]
[27]
Rafii, M.S.; Aisen, P.S. Recent developments in Alzheimer’s disease therapeutics. BMC Med., 2009, 7(1), 7.
[http://dx.doi.org/10.1186/1741-7015-7-7] [PMID: 19228370]
[28]
Moreira, P.I.; Carvalho, C.; Zhu, X.; Smith, M.A.; Perry, G. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim. Biophys. Acta Mol. Basis Dis., 2010, 1802(1), 2-10.
[http://dx.doi.org/10.1016/j.bbadis.2009.10.006] [PMID: 19853658]
[29]
Bird, T.D. Genetic factors in Alzheimer’s disease. N. Engl. J. Med., 2005, 352(9), 862-864.
[http://dx.doi.org/10.1056/NEJMp058027] [PMID: 15745976]
[30]
Capell, A.; Steiner, H.; Romig, H.; Keck, S.; Baader, M.; Grim, M.G.; Baumeister, R.; Haass, C. Presenilin-1 differentially facilitates endoproteolysis of the β-amyloid precursor protein and Notch. Nat. Cell Biol., 2000, 2(4), 205-211.
[http://dx.doi.org/10.1038/35008626] [PMID: 10783238]
[31]
Corder, E.H.; Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C.; Small, G.W.; Roses, A.D.; Haines, J.L.; Pericak-Vance, M.A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 1993, 261(5123), 921-923.
[http://dx.doi.org/10.1126/science.8346443] [PMID: 8346443]
[32]
Moreira, P.I.; Cardoso, S.M.; Santos, M.S.; Oliveira, C.R. The key role of mitochondria in Alzheimer’s disease. J. Alzheimers Dis., 2006, 9(2), 101-110.
[http://dx.doi.org/10.3233/JAD-2006-9202] [PMID: 16873957]
[33]
Moreira, P.I.; Duarte, A.I.; Santos, M.S.; Rego, A.C.; Oliveira, C.R. An integrative view of the role of oxidative stress, mitochondria and insulin in Alzheimer’s disease. J. Alzheimers Dis., 2009, 16(4), 741-761.
[http://dx.doi.org/10.3233/JAD-2009-0972] [PMID: 19387110]
[34]
Moreira, P.I.; Santos, M.S.; Oliveira, C.R. Alzheimer’s disease: A lesson from mitochondrial dysfunction. Antioxid. Redox Signal., 2007, 9(10), 1621-1630.
[http://dx.doi.org/10.1089/ars.2007.1703] [PMID: 17678440]
[35]
Holmes, C. Review: Systemic inflammation and Alzheimer’s disease. Neuropathol. Appl. Neurobiol., 2013, 39(1), 51-68.
[http://dx.doi.org/10.1111/j.1365-2990.2012.01307.x] [PMID: 23046210]
[36]
Luque-Contreras, D.; Carvajal, K.; Toral-Rios, D.; Franco-Bocanegra, D.; Campos-Peña, V. Oxidative stress and metabolic syndrome: Cause or consequence of Alzheimer’s disease? Oxid. Med. Cell. Longev., 2014, 2014, 1-11.
[http://dx.doi.org/10.1155/2014/497802] [PMID: 24683436]
[37]
Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol., 2018, 14, 450-464.
[http://dx.doi.org/10.1016/j.redox.2017.10.014] [PMID: 29080524]
[38]
Dumont, M.; Stack, C.; Elipenahli, C.; Jainuddin, S.; Gerges, M.; Starkova, N.N.; Yang, L.; Starkov, A.A.; Beal, F. Behavioral deficit, oxidative stress, and mitochondrial dysfunction precede tau pathology in P301S transgenic mice. FASEB J., 2011, 25(11), 4063-4072.
[http://dx.doi.org/10.1096/fj.11-186650] [PMID: 21825035]
[39]
Markesbery, W.R. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic. Biol. Med., 1997, 23(1), 134-147.
[http://dx.doi.org/10.1016/S0891-5849(96)00629-6] [PMID: 9165306]
[40]
Flynn, J.M.; Melov, S. SOD2 in mitochondrial dysfunction and neurodegeneration. Free Radic. Biol. Med., 2013, 62, 4-12.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.05.027] [PMID: 23727323]
[41]
Holley, A.K.; Bakthavatchalu, V.; Velez-Roman, J.M.; St Clair, D.K. Manganese superoxide dismutase: Guardian of the powerhouse. Int. J. Mol. Sci., 2011, 12(10), 7114-7162.
[http://dx.doi.org/10.3390/ijms12107114] [PMID: 22072939]
[42]
Cao, J.; Hou, J.; Ping, J.; Cai, D. Advances in developing novel therapeutic strategies for Alzheimer’s disease. Mol. Neurodegener., 2018, 13(1), 64.
[http://dx.doi.org/10.1186/s13024-018-0299-8] [PMID: 30541602]
[43]
Heneka, M.T.; Carson, M.J.; Khoury, J.E.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[44]
Glenn, J.A.; Jordan, F.L.; Thomas, W.E. Further studies on the identification of microglia in mixed brain cell cultures. Brain Res. Bull., 1989, 22(6), 1049-1052.
[http://dx.doi.org/10.1016/0361-9230(89)90018-X] [PMID: 2551467]
[45]
Glenn, J.A.; Ward, S.A.; Stone, C.R.; Booth, P.L.; Thomas, W.E. Characterisation of ramified microglial cells: detailed morphology, morphological plasticity and proliferative capability. J. Anat., 1992, 180(Pt 1), 109-118.
[PMID: 1452465]
[46]
Davalos, D.; Grutzendler, J.; Yang, G.; Kim, J.V.; Zuo, Y.; Jung, S.; Littman, D.R.; Dustin, M.L.; Gan, W.B. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci., 2005, 8(6), 752-758.
[http://dx.doi.org/10.1038/nn1472] [PMID: 15895084]
[47]
Eyo, U.B.; Dailey, M.E. Microglia: Key elements in neural development, plasticity, and pathology. J. Neuroimmune Pharmacol., 2013, 8(3), 494-509.
[http://dx.doi.org/10.1007/s11481-013-9434-z] [PMID: 23354784]
[48]
Nolte, C.; Möller, T.; Walter, T.; Kettenmann, H. Complement 5a controls motility of murine microglial cells in vitro via activation of an inhibitory G-protein and the rearrangement of the actin cytoskeleton. Neuroscience, 1996, 73(4), 1091-1107.
[http://dx.doi.org/10.1016/0306-4522(96)00106-6] [PMID: 8809827]
[49]
Zhu, M.; Wang, X.; Sun, L.; Schultzberg, M.; Hjorth, E. Can inflammation be resolved in Alzheimer’s disease? Ther. Adv. Neurol. Disord., 2018, 11.
[http://dx.doi.org/10.1177/1756286418791107] [PMID: 30116300]
[50]
Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. (N. Y.), 2018, 4(1), 575-590.
[http://dx.doi.org/10.1016/j.trci.2018.06.014] [PMID: 30406177]
[51]
Chaney, A.; Williams, S.R.; Boutin, H. In vivo molecular imaging of neuroinflammation in Alzheimer’s disease. J. Neurochem., 2019, 149(4), 438-451.
[http://dx.doi.org/10.1111/jnc.14615] [PMID: 30339715]
[52]
Blasko, I.; Veerhuis, R.; Stampfer-Kountchev, M.; Saurwein-Teissl, M.; Eikelenboom, P.; Grubeck-Loebenstein, B. Costimulatory effects of interferon-gamma and interleukin-1beta or tumor necrosis factor alpha on the synthesis of Abeta1-40 and Abeta1-42 by human astrocytes. Neurobiol. Dis., 2000, 7(6)(6 Pt B), 682-689.
[http://dx.doi.org/10.1006/nbdi.2000.0321] [PMID: 11114266]
[53]
Hu, J.; Akama, K.T.; Krafft, G.A.; Chromy, B.A.; Van Eldik, L.J. Amyloid-β peptide activates cultured astrocytes: morphological alterations, cytokine induction and nitric oxide release. Brain Res., 1998, 785(2), 195-206.
[http://dx.doi.org/10.1016/S0006-8993(97)01318-8] [PMID: 9518610]
[54]
Itzhaki, R.F. Corroboration of a major role for herpes simplex virus type 1 in Alzheimer’s disease. Front. Aging Neurosci., 2018, 10, 324.
[http://dx.doi.org/10.3389/fnagi.2018.00324] [PMID: 30405395]
[55]
Itzhaki, R.F.; Lin, W.R.; Shang, D.; Wilcock, G.K.; Faragher, B.; Jamieson, G.A. Herpes simplex virus type 1 in brain and risk of Alzheimer’s disease. Lancet, 1997, 349(9047), 241-244.
[http://dx.doi.org/10.1016/S0140-6736(96)10149-5] [PMID: 9014911]
[56]
Jamieson, G.A.; Maitland, N.J.; Wilcock, G.K.; Craske, J.; Itzhaki, R.F. Latent herpes simplex virus type 1 in normal and Alzheimer’s disease brains. J. Med. Virol., 1991, 33(4), 224-227.
[http://dx.doi.org/10.1002/jmv.1890330403] [PMID: 1649907]
[57]
Hemling, N.; Röyttä, M.; Rinne, J.; Pöllänen, P.; Broberg, E.; Tapio, V.; Vahlberg, T.; Hukkanen, V. Herpesviruses in brains in Alzheimer’s and Parkinson’s diseases. Ann. Neurol., 2003, 54(2), 267-271.
[http://dx.doi.org/10.1002/ana.10662] [PMID: 12891684]
[58]
Eimer, W.A.; Vijaya Kumar, D.K.; Navalpur Shanmugam, N.K.; Rodriguez, A.S.; Mitchell, T.; Washicosky, K.J.; György, B.; Breakefield, X.O.; Tanzi, R.E.; Moir, R.D. Alzheimer’s disease-associated β-amyloid is rapidly seeded by herpesviridae to protect against brain infection. Neuron, 2018, 99(1), 56-63.e3.
[http://dx.doi.org/10.1016/j.neuron.2018.06.030] [PMID: 30001512]
[59]
Readhead, B.; Haure-Mirande, J.V.; Funk, C.C.; Richards, M.A.; Shannon, P.; Haroutunian, V.; Sano, M.; Liang, W.S.; Beckmann, N.D.; Price, N.D.; Reiman, E.M.; Schadt, E.E.; Ehrlich, M.E.; Gandy, S.; Dudley, J.T. Multiscale analysis of independent alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron, 2018, 99(1), 64-82.e7.
[http://dx.doi.org/10.1016/j.neuron.2018.05.023] [PMID: 29937276]
[60]
Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol., 2015, 28(2), 203-209.
[PMID: 25830558]
[61]
Minter, M.R.; Hinterleitner, R.; Meisel, M.; Zhang, C.; Leone, V.; Zhang, X.; Oyler-Castrillo, P.; Zhang, X.; Musch, M.W.; Shen, X.; Jabri, B.; Chang, E.B.; Tanzi, R.E.; Sisodia, S.S. Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1ΔE9 murine model of Alzheimer’s disease. Sci. Rep., 2017, 7(1), 10411.
[http://dx.doi.org/10.1038/s41598-017-11047-w] [PMID: 28874832]
[62]
Jankovic, J. Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry, 2008, 79(4), 368-376.
[http://dx.doi.org/10.1136/jnnp.2007.131045] [PMID: 18344392]
[63]
Yacoubian, T.A.; Standaert, D.G. Targets for neuroprotection in Parkinson’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2009, 1792(7), 676-687.
[http://dx.doi.org/10.1016/j.bbadis.2008.09.009] [PMID: 18930814]
[64]
Farrer, M.J. Genetics of Parkinson disease: Paradigm shifts and future prospects. Nat. Rev. Genet., 2006, 7(4), 306-318.
[http://dx.doi.org/10.1038/nrg1831] [PMID: 16543934]
[65]
Klein, C.; Westenberger, A. Genetics of Parkinson’s disease. Cold Spring Harb. Perspect. Med., 2012, 2(1), a008888.
[http://dx.doi.org/10.1101/cshperspect.a008888] [PMID: 22315721]
[66]
Davie, C.A. A review of Parkinson’s disease. Br. Med. Bull., 2008, 86(1), 109-127.
[http://dx.doi.org/10.1093/bmb/ldn013] [PMID: 18398010]
[67]
Rascol, O.; Payoux, P.; Ory, F.; Ferreira, J.J.; Brefel-Courbon, C.; Montastruc, J.L. Limitations of current Parkinson’s disease therapy. Ann. Neurol., 2003, 53(S3)(Suppl. 3), S3-S15.
[http://dx.doi.org/10.1002/ana.10513] [PMID: 12666094]
[68]
Hwang, O. Role of oxidative stress in Parkinson’s disease. Exp. Neurobiol., 2013, 22(1), 11-17.
[http://dx.doi.org/10.5607/en.2013.22.1.11] [PMID: 23585717]
[69]
Giordano, S.; Darley-Usmar, V.; Zhang, J. Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease. Redox Biol., 2014, 2, 82-90.
[http://dx.doi.org/10.1016/j.redox.2013.12.013] [PMID: 24494187]
[70]
Coyle, J.T.; Puttfarcken, P. Oxidative stress, glutamate, and neurodegenerative disorders. Science, 1993, 262(5134), 689-695.
[http://dx.doi.org/10.1126/science.7901908] [PMID: 7901908]
[71]
Franco-Iborra, S.; Vila, M.; Perier, C. The Parkinson disease mitochondrial hypothesis. Neuroscientist, 2016, 22(3), 266-277.
[http://dx.doi.org/10.1177/1073858415574600] [PMID: 25761946]
[72]
Langston, J.W.; Ballard, P.; Tetrud, J.W.; Irwin, I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 1983, 219(4587), 979-980.
[http://dx.doi.org/10.1126/science.6823561] [PMID: 6823561]
[73]
Betarbet, R.; Sherer, T.B.; MacKenzie, G.; Garcia-Osuna, M.; Panov, A.V.; Greenamyre, J.T. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurosci., 2000, 3(12), 1301-1306.
[http://dx.doi.org/10.1038/81834] [PMID: 11100151]
[74]
Subramaniam, S.R.; Chesselet, M.F. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog. Neurobiol., 2013, 106-107, 17-32.
[http://dx.doi.org/10.1016/j.pneurobio.2013.04.004] [PMID: 23643800]
[75]
Zucca, F.A.; Basso, E.; Cupaioli, F.A.; Ferrari, E.; Sulzer, D.; Casella, L.; Zecca, L. Neuromelanin of the human substantia nigra: An update. Neurotox. Res., 2014, 25(1), 13-23.
[http://dx.doi.org/10.1007/s12640-013-9435-y] [PMID: 24155156]
[76]
Blesa, J.; Trigo-Damas, I.; Quiroga-Varela, A.; Jackson-Lewis, V.R. Oxidative stress and Parkinson’s disease. Front. Neuroanat., 2015, 9, 91.
[http://dx.doi.org/10.3389/fnana.2015.00091] [PMID: 26217195]
[77]
Double, K.L.; Ben-Shachar, D.; Youdim, M.B.H.; Zecca, L.; Riederer, P.; Gerlach, M. Influence of neuromelanin on oxidative pathways within the human substantia nigra. Neurotoxicol. Teratol., 2002, 24(5), 621-628.
[http://dx.doi.org/10.1016/S0892-0362(02)00218-0] [PMID: 12200193]
[78]
Zecca, L.; Casella, L.; Albertini, A.; Bellei, C.; Zucca, F.A.; Engelen, M.; Zadlo, A.; Szewczyk, G.; Zareba, M.; Sarna, T. Neuromelanin can protect against iron-mediated oxidative damage in system modeling iron overload of brain aging and Parkinson’s disease. J. Neurochem., 2008, 106(4), 1866-1875.
[PMID: 18624918]
[79]
Surace, M.J.; Block, M.L. Targeting microglia-mediated neurotoxicity: The potential of NOX2 inhibitors. Cell. Mol. Life Sci., 2012, 69(14), 2409-2427.
[http://dx.doi.org/10.1007/s00018-012-1015-4] [PMID: 22581365]
[80]
Ramesh, G.; MacLean, A.G.; Philipp, M.T. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm., 2013, 2013, 1-20.
[http://dx.doi.org/10.1155/2013/480739] [PMID: 23997430]
[81]
Jang, H.; Boltz, D.A.; Webster, R.G.; Smeyne, R.J. Viral parkinsonism. Biochim. Biophys. Acta Mol. Basis Dis., 2009, 1792(7), 714-721.
[http://dx.doi.org/10.1016/j.bbadis.2008.08.001] [PMID: 18760350]
[82]
Hawkes, C.H.; Del Tredici, K.; Braak, H. Parkinson’s disease: A dual-hit hypothesis. Neuropathol. Appl. Neurobiol., 2007, 33(6), 599-614.
[http://dx.doi.org/10.1111/j.1365-2990.2007.00874.x] [PMID: 17961138]
[83]
Braak, H.; Ghebremedhin, E.; Rüb, U.; Bratzke, H.; Del Tredici, K. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res., 2004, 318(1), 121-134.
[http://dx.doi.org/10.1007/s00441-004-0956-9] [PMID: 15338272]
[84]
Braak, H.; Tredici, K.D.; Rüb, U.; de Vos, R.A.I.; Jansen Steur, E.N.H.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging, 2003, 24(2), 197-211.
[http://dx.doi.org/10.1016/S0197-4580(02)00065-9] [PMID: 12498954]
[85]
Alma, M.H.; Mavi, A.; Yildirim, A.; Digrak, M.; Hirata, T. Screening chemical composition and in vitro antioxidant and antimicrobial activities of the essential oils from Origanum syriacum L. growing in Turkey. Biol. Pharm. Bull., 2003, 26(12), 1725-1729.
[http://dx.doi.org/10.1248/bpb.26.1725] [PMID: 14646179]
[86]
Radonic, A.; Milos, M. Chemical composition and In vitro evaluation of antioxidant effect of free volatile compounds from Satureja montana L. Free Radic. Res., 2003, 37(6), 673-679.
[http://dx.doi.org/10.1080/1071576031000105643] [PMID: 12868494]
[87]
Sökmen, M.; Serkedjieva, J.; Daferera, D.; Gulluce, M.; Polissiou, M.; Tepe, B.; Akpulat, H.A.; Sahin, F.; Sokmen, A. in vitro antioxidant, antimicrobial, and antiviral activities of the essential oil and various extracts from herbal parts and callus cultures of Origanum acutidens. J. Agric. Food Chem., 2004, 52(11), 3309-3312.
[http://dx.doi.org/10.1021/jf049859g] [PMID: 15161188]
[88]
Karioti, A.; Vrahimi-Hadjilouca, T.; Droushiotis, D.; Rancic, A.; Hadjipavlou-Litina, D.; Skaltsa, H. Analysis of the essential oil of Origanum dubium growing wild in Cyprus. Investigation of its antioxidant capacity and antimicrobial activity. Planta Med., 2006, 72(14), 1330-1334.
[http://dx.doi.org/10.1055/s-2006-947255] [PMID: 17022006]
[89]
Aeschbach, R.; Löliger, J.; Scott, B.C.; Murcia, A.; Butler, J.; Halliwell, B.; Aruoma, O.I. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem. Toxicol., 1994, 32(1), 31-36.
[http://dx.doi.org/10.1016/0278-6915(84)90033-4] [PMID: 7510659]
[90]
Miguel, M.G.; Figueiredo, A.C.; Costa, M.M.; Martins, D.; Duarte, J.; Barroso, J.G.; Pedro, L.G. Effect of the volatile constituents isolated from Thymus albicans, Th. mastichina, Th. carnosus and Thymbra capitata in sunflower oil. Nahrung, 2003, 47(6), 397-402.
[http://dx.doi.org/10.1002/food.200390089] [PMID: 14727767]
[91]
Mastelić, J.; Jerković, I.; Blažević, I.; Poljak-Blaži, M.; Borović, S.; Ivančić-Baće, I.; Smrečki, V.; Žarković, N.; Brčić-Kostic, K.; Vikić-Topić, D.; Müller, N. Comparative study on the antioxidant and biological activities of carvacrol, thymol, and eugenol derivatives. J. Agric. Food Chem., 2008, 56(11), 3989-3996.
[http://dx.doi.org/10.1021/jf073272v] [PMID: 18473475]
[92]
Guimarães, A.G.; Oliveira, G.F.; Melo, M.S.; Cavalcanti, S.C.H.; Antoniolli, A.R.; Bonjardim, L.R.; Silva, F.A.; Santos, J.P.A.; Rocha, R.F.; Moreira, J.C.F.; Araújo, A.A.S.; Gelain, D.P.; Quintans-Júnior, L.J. Bioassay-guided evaluation of antioxidant and antinociceptive activities of carvacrol. Basic Clin. Pharmacol. Toxicol., 2010, 107(6), 949-957.
[http://dx.doi.org/10.1111/j.1742-7843.2010.00609.x] [PMID: 20849525]
[93]
Teissedre, P.L.; Waterhouse, A.L. Inhibition of oxidation of human low-density lipoproteins by phenolic substances in different essential oils varieties. J. Agric. Food Chem., 2000, 48(9), 3801-3805.
[http://dx.doi.org/10.1021/jf990921x] [PMID: 10995274]
[94]
Jayakumar, S.; Madankumar, A.; Asokkumar, S.; Raghunandhakumar, S.; Gokula dhas, K.; Kamaraj, S.; Josephine, D.M.G.; Devaki, T. Potential preventive effect of carvacrol against diethylnitrosamine-induced hepatocellular carcinoma in rats. Mol. Cell. Biochem., 2012, 360(1-2), 51-60.
[http://dx.doi.org/10.1007/s11010-011-1043-7] [PMID: 21879312]
[95]
Hotta, M.; Nakata, R.; Katsukawa, M.; Hori, K.; Takahashi, S.; Inoue, H. Carvacrol, a component of thyme oil, activates PPARα and γ and suppresses COX-2 expression. J. Lipid Res., 2010, 51(1), 132-139.
[http://dx.doi.org/10.1194/jlr.M900255-JLR200] [PMID: 19578162]
[96]
Yessoufou, A.; Wahli, W. Multifaceted roles of peroxisome proliferator-activated receptors (PPARs) at the cellular and whole organism levels. Swiss Med. Wkly., 2010, 140, w13071.
[http://dx.doi.org/10.4414/smw.2010.13071] [PMID: 20842602]
[97]
Fehrenbacher, J.C.; LoVerme, J.; Clarke, W.; Hargreaves, K.M.; Piomelli, D.; Taylor, B.K. Rapid pain modulation with nuclear receptor ligands. Brain Res. Brain Res. Rev., 2009, 60(1), 114-124.
[http://dx.doi.org/10.1016/j.brainresrev.2008.12.019] [PMID: 19162071]
[98]
Moraes, L.A.; Piqueras, L.; Bishop-Bailey, D. Peroxisome proliferator-activated receptors and inflammation. Pharmacol. Ther., 2006, 110(3), 371-385.
[http://dx.doi.org/10.1016/j.pharmthera.2005.08.007] [PMID: 16168490]
[99]
Guimarães, A.G.; Xavier, M.A.; de Santana, M.T.; Camargo, E.A.; Santos, C.A.; Brito, F.A.; Barreto, E.O.; Cavalcanti, S.C.H.; Antoniolli, Â.R.; Oliveira, R.C.M.; Quintans-Júnior, L.J. Carvacrol attenuates mechanical hypernociception and inflammatory response. Naunyn Schmiedebergs Arch. Pharmacol., 2012, 385(3), 253-263.
[http://dx.doi.org/10.1007/s00210-011-0715-x] [PMID: 22139435]
[100]
Jakob-Roetne, R.; Jacobsen, H. Alzheimer’s disease: from pathology to therapeutic approaches. Angew. Chem. Int. Ed., 2009, 48(17), 3030-3059.
[http://dx.doi.org/10.1002/anie.200802808] [PMID: 19330877]
[101]
Zamanian, M.Y.; Kujawska, M.; Nikbakhtzadeh, M.; Hassanshahi, A.; Ramezanpour, S.; Kamiab, Z.; Bazmandegan, G. Carvacrol as a potential neuroprotective agent for neurological diseases: A systematic review article. CNS Neurol. Disord. Drug Targets, 2021, 20(10), 942-953.
[http://dx.doi.org/10.2174/1871527320666210506185042] [PMID: 33970850]
[102]
Ali-Shtayeh, M.S.; Abu-Zaitoun, S.Y.; Dudai, N.; Jamous, R.M. Downy Lavender Oil: A promising source of antimicrobial, antiobesity, and anti-Alzheimer’s disease agents. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-10.
[http://dx.doi.org/10.1155/2020/5679408] [PMID: 32089724]
[103]
Aebisher, D.; Cichonski, J.; Szpyrka, E.; Masjonis, S.; Chrzanowski, G. Essential oils of seven lamiaceae plants and their antioxidant capacity. Molecules, 2021, 26(13), 3793.
[http://dx.doi.org/10.3390/molecules26133793] [PMID: 34206525]
[104]
Orhan, I.E.; Senol, F.S.; Haznedaroglu, M.Z.; Koyu, H.; Erdem, S.A.; Yılmaz, G.; Cicek, M.; Yaprak, A.E.; Ari, E.; Kucukboyaci, N.; Toker, G. Neurobiological evaluation of thirty-one medicinal plant extracts using microtiter enzyme assays. Clinical Phytoscience, 2017, 2(1), 9.
[http://dx.doi.org/10.1186/s40816-016-0023-6]
[105]
Ballard, C.; Greig, N.; Guillozet-Bongaarts, A.; Enz, A.; Darvesh, S. Cholinesterases: Roles in the brain during health and disease. Curr. Alzheimer Res., 2005, 2(3), 307-318.
[http://dx.doi.org/10.2174/1567205054367838] [PMID: 15974896]
[106]
Mukherjee, P.K.; Kumar, V.; Mal, M.; Houghton, P.J. Acetylcholinesterase inhibitors from plants. Phytomedicine, 2007, 14(4), 289-300.
[http://dx.doi.org/10.1016/j.phymed.2007.02.002] [PMID: 17346955]
[107]
Orhan, I.; Şener, B.; Choudhary, M.I.; Khalid, A. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some Turkish medicinal plants. J. Ethnopharmacol., 2004, 91(1), 57-60.
[http://dx.doi.org/10.1016/j.jep.2003.11.016] [PMID: 15036468]
[108]
Jukic, M.; Politeo, O.; Maksimovic, M.; Milos, M.; Milos, M. In vitro acetylcholinesterase inhibitory properties of thymol, carvacrol and their derivatives thymoquinone and thymohydroquinone. Phytother. Res., 2007, 21(3), 259-261.
[http://dx.doi.org/10.1002/ptr.2063] [PMID: 17186491]
[109]
Kurt, B.Z.; Gazioglu, I.; Dag, A.; Salmas, R.E.; Kayık, G.; Durdagi, S.; Sonmez, F. Synthesis, anticholinesterase activity and molecular modeling study of novel carbamate-substituted thymol/carvacrol derivatives. Bioorg. Med. Chem., 2017, 25(4), 1352-1363.
[http://dx.doi.org/10.1016/j.bmc.2016.12.037] [PMID: 28089589]
[110]
Zengin Kurt, B.; Durdagi, S.; Celebi, G.; Ekhteiari Salmas, R.; Sonmez, F. Synthesis, anticholinesterase activity and molecular modeling studies of novel carvacrol-substituted amide derivatives. J. Biomol. Struct. Dyn., 2020, 38(3), 841-859.
[http://dx.doi.org/10.1080/07391102.2019.1590243] [PMID: 30836858]
[111]
Kaufmann, D.; Dogra, A.K.; Wink, M. Myrtenal inhibits acetylcholinesterase, a known Alzheimer target. J. Pharm. Pharmacol., 2011, 63(10), 1368-1371.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01344.x] [PMID: 21899553]
[112]
Medhat, D.; El-mezayen, H.A.; El-Naggar, M.E.; Farrag, A.R.; Abdelgawad, M.E.; Hussein, J.; Kamal, M.H. Evaluation of urinary 8-hydroxy-2-deoxyguanosine level in experimental Alzheimer’s disease: Impact of carvacrol nanoparticles. Mol. Biol. Rep., 2019, 46(4), 4517-4527.
[http://dx.doi.org/10.1007/s11033-019-04907-3] [PMID: 31209743]
[113]
Azizi, Z.; Salimi, M.; Amanzadeh, A.; Majelssi, N.; Naghdi, N. Carvacrol and thymol attenuate cytotoxicity induced by amyloid β25-35 via activating protein kinase C and inhibiting oxidative stress in PC12 cells. Iran. Biomed. J., 2020, 24(4), 243-250.
[http://dx.doi.org/10.29252/ibj.24.4.243] [PMID: 32306722]
[114]
Azizi, Z.; Ebrahimi, S.; Saadatfar, E.; Kamalinejad, M.; Majlessi, N. Cognitive-enhancing activity of thymol and carvacrol in two rat models of dementia. Behav. Pharmacol., 2012, 23(3), 241-249.
[http://dx.doi.org/10.1097/FBP.0b013e3283534301] [PMID: 22470103]
[115]
Park, J.H.; Hong, J.H.; Lee, S.W.; Ji, H.D.; Jung, J.A.; Yoon, K.W.; Lee, J.I.; Won, K.S.; Song, B.I.; Kim, H.W. The effect of chronic cerebral hypoperfusion on the pathology of Alzheimer’s disease: A positron emission tomography study in rats. Sci. Rep., 2019, 9(1), 14102.
[http://dx.doi.org/10.1038/s41598-019-50681-4] [PMID: 31575996]
[116]
Shahrokhi, R.A.; Hafizibarjin, Z.; Rezvani, M.E.; Safari, F.; Afkhami Aghda, F.; Zare, M.F. Carvacrol suppresses learning and memory dysfunction and hippocampal damages caused by chronic cerebral hypoperfusion. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(4), 581-589.
[http://dx.doi.org/10.1007/s00210-019-01754-8] [PMID: 31729545]
[117]
Trist, B.G.; Hare, D.J.; Double, K.L. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell, 2019, 18(6), e13031.
[http://dx.doi.org/10.1111/acel.13031] [PMID: 31432604]
[118]
Puspita, L.; Chung, S.Y.; Shim, J. Oxidative stress and cellular pathologies in Parkinson’s disease. Mol. Brain, 2017, 10(1), 53.
[http://dx.doi.org/10.1186/s13041-017-0340-9] [PMID: 29183391]
[119]
Pajares, M.; I Rojo, A.; Manda, G.; Boscá, L.; Cuadrado, A. Inflammation in Parkinson’s disease: Mechanisms and therapeutic implications. Cells, 2020, 9(7), 1687.
[http://dx.doi.org/10.3390/cells9071687] [PMID: 32674367]
[120]
Lima, M.M.; Martins, E.F.; Delattre, A.M.; Proenca, M.B.; Mori, M.A.; Carabelli, B.; Ferraz, A.C. Motor and non-motor features of Parkinson’s disease - a review of clinical and experimental studies. CNS Neurol. Disord. Drug Targets, 2012, 11(4), 439-449.
[http://dx.doi.org/10.2174/187152712800792893] [PMID: 22483309]
[121]
Hamzehloei, L.; Rezvani, M.E.; Rajaei, Z. Effects of carvacrol and physical exercise on motor and memory impairments associated with Parkinson’s disease. Arq. Neuropsiquiatr., 2019, 77(7), 493-500.
[http://dx.doi.org/10.1590/0004-282x20190079] [PMID: 31365641]
[122]
Manouchehrabadi, M.; Farhadi, M.; Azizi, Z.; Torkaman-Boutorabi, A. Carvacrol protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro models of Parkinson’s disease. Neurotox. Res., 2020, 37(1), 156-170.
[http://dx.doi.org/10.1007/s12640-019-00088-w] [PMID: 31364033]
[123]
Haddadi, H.; Rajaei, Z.; Alaei, H.; Shahidani, S. Chronic treatment with carvacrol improves passive avoidance memory in a rat model of Parkinson’s disease. Arq. Neuropsiquiatr., 2018, 76(2), 71-77.
[http://dx.doi.org/10.1590/0004-282x20170193] [PMID: 29489959]
[124]
Tiefensee, R.C.; Gasparotto, J.; Petiz, L.L.; Brum, P.O.; Peixoto, D.O.; Kunzler, A.; da Rosa Silva, H.T.; Bortolin, R.C.; Almeida, R.F.; Quintans-Junior, L.J.; Araújo, A.A.; Moreira, J.C.F.; Gelain, D.P. Oral administration of carvacrol/β-cyclodextrin complex protects against 6-hydroxydopamine-induced dopaminergic denervation. Neurochem. Int., 2019, 126, 27-35.
[http://dx.doi.org/10.1016/j.neuint.2019.02.021] [PMID: 30849398]
[125]
Dati, L.M.; Ulrich, H.; Real, C.C.; Feng, Z.P.; Sun, H.S.; Britto, L.R. Carvacrol promotes neuroprotection in the mouse hemiparkinsonian model. Neuroscience, 2017, 356, 176-181.
[http://dx.doi.org/10.1016/j.neuroscience.2017.05.013] [PMID: 28526576]
[126]
Lins, L.C.R.F.; Souza, M.F.; Bispo, J.M.M.; Gois, A.M.; Melo, T.C.S.; Andrade, R.A.S.; Quintans-Junior, L.J.; Ribeiro, A.M.; Silva, R.H.; Santos, J.R.; Marchioro, M. Carvacrol prevents impairments in motor and neurochemical parameters in a model of progressive parkinsonism induced by reserpine. Brain Res. Bull., 2018, 139, 9-15.
[http://dx.doi.org/10.1016/j.brainresbull.2018.01.017] [PMID: 29378222]
[127]
Opdyke, D.L. Monographs on fragrance raw materials. Food Cosmet. Toxicol., 1979, 17, 695-923.
[128]
Austgulen, L.T.; Solheim, E.; Scheline, R.R. Metabolism in rats of p-cymene derivatives: Carvacrol and thymol. Pharmacol. Toxicol., 1987, 61(2), 98-102.
[http://dx.doi.org/10.1111/j.1600-0773.1987.tb01783.x] [PMID: 2959918]
[129]
Savelev, S.U.; Okello, E.J.; Perry, E.K. Butyryl- and acetyl-cholinesterase inhibitory activities in essential oils of Salvia species and their constituents. Phytother. Res., 2004, 18(4), 315-324.
[http://dx.doi.org/10.1002/ptr.1451] [PMID: 15162368]
[130]
Trabace, L.; Zotti, M.; Morgese, M.G.; Tucci, P.; Colaianna, M.; Schiavone, S.; Avato, P.; Cuomo, V. Estrous cycle affects the neurochemical and neurobehavioral profile of carvacrol-treated female rats. Toxicol. Appl. Pharmacol., 2011, 255(2), 169-175.
[http://dx.doi.org/10.1016/j.taap.2011.06.011] [PMID: 21723308]
[131]
Mechan, A.O.; Fowler, A.; Seifert, N.; Rieger, H.; Wöhrle, T.; Etheve, S.; Wyss, A.; Schüler, G.; Colletto, B.; Kilpert, C.; Aston, J.; Elliott, J.M.; Goralczyk, R.; Mohajeri, M.H. Monoamine reuptake inhibition and mood-enhancing potential of a specified oregano extract. Br. J. Nutr., 2011, 105(8), 1150-1163.
[http://dx.doi.org/10.1017/S0007114510004940] [PMID: 21205415]
[132]
Elhady, M.A.; Khalaf, A.A.A.; Kamel, M.M.; Noshy, P.A. Carvacrol ameliorates behavioral disturbances and DNA damage in the brain of rats exposed to propiconazole. Neurotoxicology, 2019, 70, 19-25.
[http://dx.doi.org/10.1016/j.neuro.2018.10.008] [PMID: 30392869]
[133]
Sadegh, M.; Sakhaie, M.H. Carvacrol mitigates proconvulsive effects of lipopolysaccharide, possibly through the hippocampal cyclooxygenase-2 inhibition. Metab. Brain Dis., 2018, 33(6), 2045-2050.
[http://dx.doi.org/10.1007/s11011-018-0314-3] [PMID: 30229386]
[134]
Samarghandian, S.; Farkhondeh, T.; Samini, F.; Borji, A. Protective effects of carvacrol against oxidative stress induced by chronic stress in rat’s brain, liver, and kidney. Biochem. Res. Int., 2016, 2016, 1-7.
[http://dx.doi.org/10.1155/2016/2645237] [PMID: 26904286]
[135]
Tavares, A.G.; Andrade, J.; Silva, R.R.A.; Marques, C.S.; Silva, J.O.R.; Vanetti, M.C.D.; Melo, N.R.; Soares, N.F.F. Carvacrol-loaded liposome suspension: Optimization, characterization and incorporation into poly(vinyl alcohol) films. Food Funct., 2021, 12(14), 6549-6557.
[http://dx.doi.org/10.1039/D1FO00479D] [PMID: 34096962]
[136]
Andrade, J.; González-Martínez, C.; Chiralt, A. Liposomal encapsulation of carvacrol to obtain active poly (vinyl alcohol) films. Molecules, 2021, 26(6), 1589.
[http://dx.doi.org/10.3390/molecules26061589] [PMID: 33805693]
[137]
He, J.; Huang, S.; Sun, X.; Han, L.; Chang, C.; Zhang, W.; Zhong, Q. Carvacrol loaded solid lipid nanoparticles of propylene glycol monopalmitate and glyceryl monostearate: Preparation, characterization, and synergistic antimicrobial activity. Nanomaterials (Basel), 2019, 9(8), 1162.
[http://dx.doi.org/10.3390/nano9081162] [PMID: 31416170]
[138]
Cacciatore, I.; Di Giulio, M.; Fornasari, E.; Di Stefano, A.; Cerasa, L.S.; Marinelli, L.; Turkez, H.; Di Campli, E.; Di Bartolomeo, S.; Robuffo, I.; Cellini, L. Carvacrol codrugs: A new approach in the antimicrobial plan. PLoS One, 2015, 10(4), e0120937.
[http://dx.doi.org/10.1371/journal.pone.0120937] [PMID: 25859852]
[139]
Hagan, E.C.; Hansen, W.H.; Fitzhugh, O.G.; Jenner, P.M.; Jones, W.I.; Taylor, J.M.; Long, E.L.; Nelson, A.A.; Brouwer, J.B. Food flavourings and compounds of related structure. II. Subacute and chronic toxicity. Food Cosmet. Toxicol., 1967, 5(2), 141-157.
[http://dx.doi.org/10.1016/S0015-6264(67)82961-4] [PMID: 6068552]
[140]
McOmie, W.A.; Anderson, H.H.; Estess, F.M. Comparative toxicity of certain t-butyl substituted cresols and xylenols. J. Am. Pharm. Assoc. (Sci. Ed), 1949, 38(7), 366-369.
[http://dx.doi.org/10.1002/jps.3030380704] [PMID: 18136803]
[141]
Kennedy, D.O.; Wake, G.; Savelev, S.; Tildesley, N.T.J.; Perry, E.K.; Wesnes, K.A.; Scholey, A.B. Modulation of mood and cognitive performance following acute administration of single doses of Melissa officinalis (Lemon balm) with human CNS nicotinic and muscarinic receptor-binding properties. Neuropsychopharmacology, 2003, 28(10), 1871-1881.
[http://dx.doi.org/10.1038/sj.npp.1300230] [PMID: 12888775]
[142]
Kumar, G.P.; Khanum, F. Neuroprotective potential of phytochemicals. Pharmacogn. Rev., 2012, 6(12), 81-90.
[http://dx.doi.org/10.4103/0973-7847.99898] [PMID: 23055633]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy