Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

A Mechanistic Review on Phytomedicine and Natural Products in the Treatment of Diabetes

Author(s): Jyoti Nanda*, Neeraj Verma and Munesh Mani

Volume 19, Issue 7, 2023

Published on: 18 January, 2023

Article ID: e221222212125 Pages: 11

DOI: 10.2174/1573399819666221222155055

Price: $65

Open Access Journals Promotions 2
Abstract

Diabetes mellitus is a metabolic syndrome of excess glucose levels in the blood. It may be due to glucose intolerance by the tissues and inadequate insulin production from pancreatic β- cells. However, diabetic complication includes cardiovascular and kidney diseases, eye, skin, and foot complications, and neuropathy. The intention behind writing this article was to gather recent information regarding the use of ancient traditional medicinal plants having recent importance in treating diabetes. Several therapies are available for curing the condition based on severity and type of diabetes. Although pharmacological treatments are effective and economical, drugs are associated with unwanted side effects and physiological complications on long-term use. Interestingly, herbs and herbal plants have been used since ancient times against diabetes worldwide. Its importance still exists due to medicinal plants' effectiveness and safety profile in treating various diseases. In this article, we searched online databases, including PUBMED, SCOPUS, MEDLINE, and traditional resources, for collecting information regarding the use of plants against diabetes. We described the pathophysiology of the disease and incorporated plant sources and their chemical constituents responsible for antidiabetic activity with their mechanism in reducing blood glucose levels. The present article may be very helpful for researchers and professionals whose work is inclined towards diabetes and in search of lead compounds for the development of a suitable drug.

Keywords: Diabetes, phytoconstituents, herbs, pancreas, insulin, ethnopharmacology.

[1]
Carrasco-Sánchez FJ, Fernández-Rodríguez JM, Ena J, Gómez-Huelgas R, Carretero-Gómez J. Medical treatment of type 2 diabetes mellitus: Recommendations of the diabetes, obesity and nutrition group of the spanish society of internal medicine. Rev Clin Esp (Barc) 2021; 221(2): 101-8.
[http://dx.doi.org/10.1016/j.rceng.2020.06.009] [PMID: 33998485]
[2]
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. 9th ed Diabetes Res Clin Pract. 2019; 157.107843
[3]
International Diabetes Federation (IDF). IDF diabetes atlas. (8th ed.). Brussels, Belgium: International Diabetes Federation 2017; pp. 1-150.
[4]
International Diabetes Federation (IDF). IDF diabetes atlas. (9th ed.), Brussels, Belgium 2019.
[5]
Tan SY, Mei Wong JL, Sim YJ, et al. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diabetes Metab Syndr 2019; 13(1): 364-72.
[http://dx.doi.org/10.1016/j.dsx.2018.10.008] [PMID: 30641727]
[6]
Bonora E, Cataudella S, Marchesini G, et al. Incidence of diabetes mellitus in Italy in year 2018. A nationwide population-based study of the ARNO Diabetes Observatory. Nutr Metab Cardiovasc Dis 2021; 31(8): 2338-44.
[http://dx.doi.org/10.1016/j.numecd.2021.04.017] [PMID: 34074587]
[7]
Aschner P, Karuranga S, James S, et al. The International Diabetes Federation’s guide for diabetes epidemiological studies. Diabetes Res Clin Pract 2021; 172108630
[http://dx.doi.org/10.1016/j.diabres.2020.108630] [PMID: 33347900]
[8]
Marín-Peñalver JJ, Martín-Timón I, Sevillano-Collantes C, Cañizo-Gómez FJ. Update on the treatment of type 2 diabetes mellitus. World J Diabetes 2016; 7(17): 354-95.
[http://dx.doi.org/10.4239/wjd.v7.i17.354] [PMID: 27660695]
[9]
Chaudhury A, Duvoor C, Reddy Dendi VS, et al. Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front Endocrinol 2017; 8: 6.
[http://dx.doi.org/10.3389/fendo.2017.00006] [PMID: 28167928]
[10]
Sola D, Rossi L, Schianca GPC, et al. State of the art paper Sulfonylureas and their use in clinical practice. Arch Med Sci 2015; 4(4): 840-8.
[http://dx.doi.org/10.5114/aoms.2015.53304] [PMID: 26322096]
[11]
Imran M, Sharma JN, Kamal M, Asif M. Standardization and wound-healing activity of petroleum, ethanolic and aqueous extracts of Ficus benghalensis leaves 2021; 54(10): 1057-62.
[12]
Fitzgerald M, Heinrich M, Booker A. Medicinal plant analysis: A historical and regional discussion of emergent complex techniques. Front Pharmacol 2020; 10: 1480.
[http://dx.doi.org/10.3389/fphar.2019.01480] [PMID: 31998121]
[13]
Dimple KA, Kumar A, Kumar V, Tomer V. Traditional medicinal systems for treatment of diabetes mellitus: A review. Int J Pharm Pharm Sci 2018; 10(5): 7-17.
[http://dx.doi.org/10.22159/ijpps.2018v10i5.25374]
[14]
Fokunang CN, Ndikum V, Tabi OY, et al. Traditional Medicine: Past, present and future research and development prospects and integration in the National Health System of Cameroon. Afr J Tradit Complement Altern Med 2011; 8(3): 284-95.
[http://dx.doi.org/10.4314/ajtcam.v8i3.65276] [PMID: 22468007]
[15]
Pandey MM, Rastogi S, Rawat AKS. Indian traditional ayurvedic system of medicine and nutritional supplementation.In: Kummalue T, Ed Evidence-Based Complement Altern Med. 2013; p. 376327.
[16]
Vikram P, Chiruvella KK, Ripain IHA, Arifullah M. A recent review on phytochemical constituents and medicinal properties of kesum (Polygonum minus Huds.). Asian Pac J Trop Biomed 2014; 4(6): 430-5.
[http://dx.doi.org/10.12980/APJTB.4.2014C1255] [PMID: 25182942]
[17]
Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine (Abingdon) 2014; 42(12): 698-702.
[http://dx.doi.org/10.1016/j.mpmed.2014.09.007] [PMID: 25568613]
[18]
Lin X, Xu Y, Pan X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep 2020; 10(1): 14790.
[http://dx.doi.org/10.1038/s41598-020-71908-9] [PMID: 32901098]
[19]
Kannan R. India is home to 77 million diabetics, second highest in the world. The Hindu 2020; 15: 2-7.
[20]
Diabetes 2021; 4: 1-7. Available from: https://www.who.int/news-room/fact-sheets/detail/diabetes
[21]
US Department of Health and human services.. National diabetes statistics report, 2020. Natl Diabetes Stat Rep 2020; 2.
[22]
Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: a review of current trends. Oman Med J 2012; 27(4): 269-73.
[http://dx.doi.org/10.5001/omj.2012.68] [PMID: 23071876]
[23]
Ozougwu J, Obimba KC, Belonwu CD, Unakalamba CB. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J Physiol Pathophysiol 2013; (4): 46-57.
[24]
Parveen N, Roy A, Prasad P. Nushrat Parveen, Amit Roy, Pushpa Prasad. Diabetes mellitus – pathophysiology & herbal management. Pharm Biosci 2017; 5: 34-42.
[http://dx.doi.org/10.20510/ukjpb/5/i5/166554]
[25]
Burrack AL, Martinov T, Fife BT. T cell-mediated beta cell destruction: Autoimmunity and alloimmunity in the context of type 1 diabeteS. Front Endocrinol 2017; 8: 343.
[http://dx.doi.org/10.3389/fendo.2017.00343] [PMID: 29259578]
[26]
Navale AM, Paranjape AN. Glucose transporters: physiological and pathological roles. Biophys Rev 2016; 8(1): 5-9.
[http://dx.doi.org/10.1007/s12551-015-0186-2] [PMID: 28510148]
[27]
Mukherjee PK, Venkatesh P, Ponnusankar S. Ethnopharmacology and integrative medicine - Let the history tell the future. J Ayurveda Integr Med 2010; 1(2): 100-9.
[http://dx.doi.org/10.4103/0975-9476.65077] [PMID: 21836796]
[28]
Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environ Health Perspect 2001; 109 (Suppl. 1): 69-75.
[PMID: 11250806]
[29]
Farnsworth NR. The role of ethnopharmacology in drug development. Ciba Found Symp 1990; 154: 2-11.
[PMID: 2086037]
[30]
Grover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 2002; 81(1): 81-100.
[http://dx.doi.org/10.1016/S0378-8741(02)00059-4] [PMID: 12020931]
[31]
Skalli S, Hassikou R, Arahou M. An ethnobotanical survey of medicinal plants used for diabetes treatment in Rabat, Morocco. Heliyon 2019; 5(3)e01421
[http://dx.doi.org/10.1016/j.heliyon.2019.e01421] [PMID: 30976694]
[32]
Eddouks M, Maghrani M, Lemhadri A, Ouahidi ML, Jouad H. Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet). J Ethnopharmacol 2002; 82(2-3): 97-103.
[http://dx.doi.org/10.1016/S0378-8741(02)00164-2] [PMID: 12241983]
[33]
Ocvirk S, Kistler M, Khan S, Talukder SH, Hauner H. Traditional medicinal plants used for the treatment of diabetes in rural and urban areas of Dhaka, Bangladesh – an ethnobotanical survey. J Ethnobiol Ethnomed 2013; 9(1): 43.
[http://dx.doi.org/10.1186/1746-4269-9-43] [PMID: 23800215]
[34]
Jugran AK, Rawat S, Devkota HP, Bhatt ID, Rawal RS. Diabetes and plant‐derived natural products: From ethnopharmacological approaches to their potential for modern drug discovery and development. Phytother Res 2021; 35(1): 223-45.
[http://dx.doi.org/10.1002/ptr.6821] [PMID: 32909364]
[35]
Jaiswal YS, Williams LL. A glimpse of Ayurveda – The forgotten history and principles of Indian traditional medicine. J Tradit Complement Med 2017; 7(1): 50-3.
[http://dx.doi.org/10.1016/j.jtcme.2016.02.002] [PMID: 28053888]
[36]
Ingole RK. Antidiabetic drugs in ayurveda. Int Res J Pharm 2013; 4(6): 21-4.
[http://dx.doi.org/10.7897/2230-8407.04605]
[37]
Butala MA, Kukkupuni SK, Vishnuprasad CN. Ayurvedic anti-diabetic formulation Lodhrasavam inhibits alpha-amylase, alpha-glucosidase and suppresses adipogenic activity in vitro. J Ayurveda Integr Med 2017; 8(3): 145-51.
[http://dx.doi.org/10.1016/j.jaim.2017.03.005] [PMID: 28668259]
[38]
Goel R, Bhatia D, Gilani S, Katiyar D. Medicinal plants as anti-diabetics: A review. Int Bull Drug Res 2012; 1: 100-7.
[39]
Abdel-Aal RA, Abdel-Rahman MS, Al Bayoumi S, Ali LA. Effect of stevia aqueous extract on the antidiabetic activity of saxagliptin in diabetic rats. J Ethnopharmacol 2021; 265113188
[http://dx.doi.org/10.1016/j.jep.2020.113188] [PMID: 32783985]
[40]
Shabab S, Gholamnezhad Z, Mahmoudabady M. Protective effects of medicinal plant against diabetes induced cardiac disorder: A review. J Ethnopharmacol 2021; 265113328
[http://dx.doi.org/10.1016/j.jep.2020.113328] [PMID: 32871233]
[41]
Kim TH. A novel α-glucosidase inhibitory constituent from Uncaria gambir. J Nat Med 2016; 70(4): 811-5.
[http://dx.doi.org/10.1007/s11418-016-1014-0] [PMID: 27262298]
[42]
Wang YL, Xiao ZQ, Liu S, et al. Antidiabetic effects of Swertia macrosperma extracts in diabetic rats. J Ethnopharmacol 2013; 150(2): 536-44.
[http://dx.doi.org/10.1016/j.jep.2013.08.053] [PMID: 24055468]
[43]
Buchholz T, Melzig M. Medicinal plants traditionally used for treatment of obesity and diabetes mellitus - screening for pancreatic lipase and α-amylase inhibition. Phytother Res 2015; 30: 260-6.
[PMID: 26632284]
[44]
Ghosh D, Jana K, Bera TK, Ali KM, Ghosh A. Protective effect of aqueous extract of seed of Psoralea corylifolia (Somraji) and seed of Trigonella foenum-graecum L. (Methi) in streptozotocin-induced diabetic rat: A comparative evaluation. Pharmacognosy Res 2013; 5(4): 277-85.
[http://dx.doi.org/10.4103/0974-8490.118840] [PMID: 24174822]
[45]
Zuo J, Ji CL, Xia Y, Li X, Chen JW. Xanthones as α -glucosidase inhibitors from the antihyperglycemic extract of Securidaca inappendiculata. Pharm Biol 2014; 52(7): 898-903.
[http://dx.doi.org/10.3109/13880209.2013.872673] [PMID: 24621306]
[46]
Zhang Z, Xu H, Zhao H, et al. Edgeworthia gardneri (Wall.) Meisn. water extract improves diabetes and modulates gut microbiota. J Ethnopharmacol 2019; 239111854
[http://dx.doi.org/10.1016/j.jep.2019.111854] [PMID: 30954614]
[47]
Sansenya S, Nanok K. α‐glucosidase, α‐amylase inhibitory potential and antioxidant activity of fragrant black rice (Thai coloured rice). Flavour Fragrance J 2020; 35(4): 376-86.
[http://dx.doi.org/10.1002/ffj.3572]
[48]
Kam A, Li KM, Razmovski-Naumovski V, et al. A comparative study on the inhibitory effects of different parts and chemical constituents of pomegranate on α-amylase and α-glucosidase. Phytother Res 2013; 27(11): 1614-20.
[http://dx.doi.org/10.1002/ptr.4913] [PMID: 23280757]
[49]
Hou P, Qu Y, Liao Z, Zhao S, Feng Y, Zhang J. A diterpene derivative enhanced insulin signaling induced by high glucose level in HepG2 cells. J Nat Med 2020; 74(2): 434-40.
[http://dx.doi.org/10.1007/s11418-019-01384-7] [PMID: 31960210]
[50]
Zulet MA, Navas-Carretero S, Lara Y, Sánchez D, et al. A Fraxinus excelsior L. seeds/fruits extract benefits glucose homeostasis and adiposity related markers in elderly overweight/obese subjects: A longitudinal, randomized, crossover, double-blind, placebo-controlled nutritional intervention study. Phytomedicine 2014; 21(10): 1162-9.
[http://dx.doi.org/10.1016/j.phymed.2014.04.027] [PMID: 24877717]
[51]
Kosaraju J, Dubala A, Chinni S, Khatwal RB, Satish Kumar MN, Basavan D. A molecular connection of Pterocarpus marsupium, Eugenia jambolana and Gymnema sylvestre with dipeptidyl peptidase-4 in the treatment of diabetes. Pharm Biol 2014; 52(2): 268-71.
[http://dx.doi.org/10.3109/13880209.2013.823550] [PMID: 24074231]
[52]
Dutta Pramanick D. Anatomical studies on the leaf of Gymnema sylvestre (Retz.) R.Br. ex Schult. (Apocynaceae): A magical herbal medicine for diabetes. Int J Herb Med 2016; 4: 2016.
[53]
Daliu P, Annunziata G, Tenore GC, Santini A. Abscisic acid identification in Okra, Abelmoschus esculentus L. (Moench): perspective nutraceutical use for the treatment of diabetes. Nat Prod Res 2020; 34(1): 3-9.
[http://dx.doi.org/10.1080/14786419.2019.1637874] [PMID: 31282220]
[54]
Bustos-Brito C, Andrade-Cetto A, Giraldo-Aguirre JD, Moreno-Vargas AD, Quijano L. Acute hypoglycemic effect and phytochemical composition of Ageratina petiolaris. J Ethnopharmacol 2016; 185: 341-6.
[http://dx.doi.org/10.1016/j.jep.2016.03.048] [PMID: 27013093]
[55]
Shang N, Guerrero-Analco JA, Musallam L, et al. Adipogenic constituents from the bark of Larix laricina du Roi (K. Koch; Pinaceae), an important medicinal plant used traditionally by the Cree of Eeyou Istchee (Quebec, Canada) for the treatment of type 2 diabetes symptoms. J Ethnopharmacol 2012; 141(3): 1051-7.
[http://dx.doi.org/10.1016/j.jep.2012.04.002] [PMID: 22542642]
[56]
Bu T, Liu M, Zheng L, Guo Y, Lin X. α-glucosidase inhibition and the in vivo hypoglycemic effect of butyl-isobutyl-phthalate derived from the Laminaria japonica rhizoid. Phytother Res 2010; 24(11): 1588-91.
[http://dx.doi.org/10.1002/ptr.3139] [PMID: 21031613]
[57]
Pham AT, Malterud KE, Paulsen BS, Diallo D, Wangensteen H. α-Glucosidase inhibition, 15-lipoxygenase inhibition, and brine shrimp toxicity of extracts and isolated compounds from Terminalia macroptera leaves. Pharm Biol 2014; 52(9): 1166-9.
[http://dx.doi.org/10.3109/13880209.2014.880486] [PMID: 24635511]
[58]
Joycharat N, Issarachote P, Sontimuang C, Voravuthikunchai SP. Alpha-glucosidase inhibitory activity of ethanol extract, fractions and purified compounds from the wood of Albizia myriophylla. Nat Prod Res 2018; 32(11): 1291-4.
[http://dx.doi.org/10.1080/14786419.2017.1333990] [PMID: 28562078]
[59]
Yang D-C, Ponnuraj SP, Siraj F, et al. Amelioration of insulin resistance by Rk1 + Rg5 complex under endoplasmic reticulum stress conditions. Pharmacognosy Res 2014; 6(4): 292-6.
[http://dx.doi.org/10.4103/0974-8490.138257] [PMID: 25276065]
[60]
Mohankumar S, McFarlane JR. An aqueous extract of Curcuma longa (turmeric) rhizomes stimulates insulin release and mimics insulin action on tissues involved in glucose homeostasis in vitro. Phytother Res 2011; 25(3): 396-401.
[PMID: 20734343]
[61]
Santos M, Fortunato RH, Spotorno VG. Analysis of flavonoid glycosides with potential medicinal properties on Bauhinia uruguayensis and Bauhinia forficata subspecies pruinosa. Nat Prod Res 2019; 33(17): 2574-8.
[http://dx.doi.org/10.1080/14786419.2018.1460826] [PMID: 29620448]
[62]
Xiong H, Zhang S, Zhao Z, Zhao P, Chen L, Mei Z. Antidiabetic activities of entagenic acid in type 2 diabetic db/db mice and L6 myotubes via AMPK/GLUT4 pathway. J Ethnopharmacol 2018; 211: 366-74.
[http://dx.doi.org/10.1016/j.jep.2017.10.004] [PMID: 28993280]
[63]
Oloyede HOB, Bello TO, Ajiboye TO, Salawu MO. Antidiabetic and antidyslipidemic activities of aqueous leaf extract of Dioscoreophyllum cumminsii (Stapf) Diels in alloxan-induced diabetic rats. J Ethnopharmacol 2015; 166: 313-22.
[http://dx.doi.org/10.1016/j.jep.2015.02.049] [PMID: 25749145]
[64]
Zhang Y, Feng F, Chen T, Li Z, Shen QW. Antidiabetic and antihyperlipidemic activities of Forsythia suspensa (Thunb.) Vahl (fruit) in streptozotocin-induced diabetes mice. J Ethnopharmacol 2016; 192: 256-63.
[http://dx.doi.org/10.1016/j.jep.2016.07.002] [PMID: 27377336]
[65]
Simeonova R, Vitcheva V, Krasteva I, Zdraveva P, Konstantinov S, Ionkova I. Antidiabetic and antioxidant effects of saponarin from Gypsophila trichotoma on streptozotocin-induced diabetic normotensive and hypertensive rats. Phytomedicine 2016; 23(5): 483-90.
[http://dx.doi.org/10.1016/j.phymed.2016.02.024] [PMID: 27064007]
[66]
Nain P, Saini V, Sharma S, Nain J. Antidiabetic and antioxidant potential of Emblica officinalis Gaertn. leaves extract in streptozotocin-induced type-2 diabetes mellitus (T2DM) rats. J Ethnopharmacol 2012; 142(1): 65-71.
[http://dx.doi.org/10.1016/j.jep.2012.04.014] [PMID: 22855943]
[67]
Variya BC, Bakrania AK, Patel SS. Antidiabetic potential of gallic acid from Emblica officinalis: Improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling. Phytomedicine 2020; 73152906
[http://dx.doi.org/10.1016/j.phymed.2019.152906] [PMID: 31064680]
[68]
Kavishankar GB, Lakshmidevi N. Anti-diabetic effect of a novel N-Trisaccharide isolated from Cucumis prophetarum on streptozotocin–nicotinamide induced type 2 diabetic rats. Phytomedicine 2014; 21(5): 624-30.
[http://dx.doi.org/10.1016/j.phymed.2013.12.002] [PMID: 24462215]
[69]
Lu J, Wang Y, Yan H, Lin P, Gu W, Yu J. Antidiabetic effect of total saponins from Polygonatum kingianum in streptozotocin-induced daibetic rats. J Ethnopharmacol 2016; 179: 291-300.
[http://dx.doi.org/10.1016/j.jep.2015.12.057] [PMID: 26743227]
[70]
Raoufi S, Baluchnejadmojarad T, Roghani M, Ghazanfari T, Khojasteh F, Mansouri M. Antidiabetic potential of salvianolic acid B in multiple low-dose streptozotocin-induced diabetes. Pharm Biol 2015; 53(12): 1803-9.
[http://dx.doi.org/10.3109/13880209.2015.1008148] [PMID: 25885938]
[71]
Jain SK, Chandra K, Khan W, Jetley S, Ahmad S. Antidiabetic, toxicological, and metabolomic profiling of aqueous extract of Cichorium intybus seeds. Pharmacogn Mag 2018; 14(57): 377-83.
[http://dx.doi.org/10.4103/pm.pm_583_17]
[72]
Jiao Y, Wang X, Jiang X, Kong F, Wang S, Yan C. Antidiabetic effects of Morus alba fruit polysaccharides on high-fat diet- and streptozotocin-induced type 2 diabetes in rats. J Ethnopharmacol 2017; 199: 119-27.
[http://dx.doi.org/10.1016/j.jep.2017.02.003] [PMID: 28163112]
[73]
Veeresham C, Umamahesh B. Antihyperglycemic and insulin secretagogue activities of Abrus precatorius leaf extract. Pharmacognosy Res 2016; 8(4): 303-8.
[http://dx.doi.org/10.4103/0974-8490.188881] [PMID: 27695273]
[74]
Singh R, Arif T, Khan I, Sharma P. Therapeutic Sciences Phytochemicals in antidiabetic drug discovery. J Biomed Ther Sci 2014; 1(1): 1-33.
[75]
Edgar Romualdo EG, Lilia AM, Rafael SG, Alfredo SM. Antioxidant effects of damiana (Turnera diffusa Willd. ex Schult.) in kidney mitochondria from streptozotocin-diabetic rats. Nat Prod Res 2018; 32(23): 2840-3.
[http://dx.doi.org/10.1080/14786419.2017.1380009] [PMID: 28948849]
[76]
Sur T, Hazra A, Bhattacharyya D, Hazra A. Antiradical and antidiabetic properties of standardized extract of Sunderban mangrove Rhizophora mucronata. Pharmacogn Mag 2015; 11(42): 389-94.
[http://dx.doi.org/10.4103/0973-1296.153094] [PMID: 25829780]
[77]
Chellan N, Joubert E, Strijdom H, Roux C, Louw J, Muller C. Aqueous extract of unfermented honeybush (Cyclopia maculata) attenuates STZ-induced diabetes and β-cell cytotoxicity. Planta Med 2014; 80(08/09): 622-9.
[http://dx.doi.org/10.1055/s-0034-1368457]] [PMID: 24853761]
[78]
Mrabti HN, El Abbes Faouzi M, Mayuk FM, et al. Arbutus unedo L., (Ericaceae) inhibits intestinal glucose absorption and improves glucose tolerance in rodents. J Ethnopharmacol 2019; 235: 385-91.
[http://dx.doi.org/10.1016/j.jep.2019.02.013] [PMID: 30742883]
[79]
El-Bassossy HM, Hassan NA, Mahmoud MF, Fahmy A. Baicalein protects against hypertension associated with diabetes: Effect on vascular reactivity and stiffness. Phytomedicine 2014; 21(12): 1742-5.
[http://dx.doi.org/10.1016/j.phymed.2014.08.012] [PMID: 25442285]
[80]
Yankuzo H, Ahmed QU, Santosa RI, Akter SFU, Talib NA. Beneficial effect of the leaves of Murraya koenigii (Linn.) Spreng (Rutaceae) on diabetes-induced renal damage in vivo. J Ethnopharmacol 2011; 135(1): 88-94.
[http://dx.doi.org/10.1016/j.jep.2011.02.020] [PMID: 21354289]
[81]
Krawinkel MB, Ludwig C, Swai ME, Yang R, Chun KP, Habicht SD. Bitter gourd reduces elevated fasting plasma glucose levels in an intervention study among prediabetics in Tanzania. J Ethnopharmacol 2018; 216: 1-7.
[http://dx.doi.org/10.1016/j.jep.2018.01.016] [PMID: 29339109]
[82]
Desai S, Tatke P. Charantin: An important lead compound from Momordica charantia for the treatment of diabetes. J Pharmacogn Phytochem 2015; 3(6): 163-6.
[83]
Đorđević M, Grdović N, Mihailović M, et al. Centaurium erythraea extract improves survival and functionality of pancreatic beta-cells in diabetes through multiple routes of action. J Ethnopharmacol 2019; 242112043
[http://dx.doi.org/10.1016/j.jep.2019.112043] [PMID: 31252092]
[84]
Đorđević M, Mihailović M, Arambašić Jovanović J, et al. Centaurium erythraea methanol extract protects red blood cells from oxidative damage in streptozotocin-induced diabetic rats. J Ethnopharmacol 2017; 202: 172-83.
[http://dx.doi.org/10.1016/j.jep.2017.03.016] [PMID: 28323046]
[85]
Sefi M, Fetoui H, Lachkar N, et al. Centaurium erythrea (Gentianaceae) leaf extract alleviates streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. J Ethnopharmacol 2011; 135(2): 243-50.
[http://dx.doi.org/10.1016/j.jep.2011.02.029] [PMID: 21414399]
[86]
Lee SK, Ryu SH, Turk A, et al. Characterization of α-glucosidase inhibitory constituents of the fruiting body of lion’s mane mushroom (Hericium erinaceus). J Ethnopharmacol 2020; 262113197
[http://dx.doi.org/10.1016/j.jep.2020.113197] [PMID: 32738392]
[87]
Nazeam JA, El-Hefnawy HM, Omran G, Singab AN. Chemical profile and antihyperlipidemic effect of Portulaca oleracea L. seeds in streptozotocin-induced diabetic rats. Nat Prod Res 2018; 32(12): 1484-8.
[http://dx.doi.org/10.1080/14786419.2017.1353507] [PMID: 28726493]
[88]
Butterweck V, Semlin L, Feistel B, Pischel I, Bauer K, Verspohl EJ. Comparative evaluation of two different Opuntia ficus-indica extracts for blood sugar lowering effects in rats. Phytother Res 2011; 25(3): 370-5.
[PMID: 20687136]
[89]
Ma HY, Gao HY, Sun L, Huang J, Xu XM, Wu LJ. Constituents with α-glucosidase and advanced glycation end-product formation inhibitory activities from Salvia miltiorrhiza Bge. J Nat Med 2011; 65(1): 37-42.
[http://dx.doi.org/10.1007/s11418-010-0453-2] [PMID: 20835851]
[90]
Hwang JT, Kim SH, Hur HJ, et al. Decursin, an active compound isolated from Angelica gigas, inhibits fat accumulation, reduces adipocytokine secretion and improves glucose tolerance in mice fed a high-fat diet. Phytother Res 2012; 26(5): 633-8.
[http://dx.doi.org/10.1002/ptr.3612] [PMID: 21972114]
[91]
Ajiboye TO, Aliyu H, Tanimu MA, Muhammad RM, Ibitoye OB. Dioscoreophyllum cumminsii (Stapf) Diels leaves halt high-fructose induced metabolic syndrome: Hyperglycemia, insulin resistance, inflammation and oxidative stress. J Ethnopharmacol 2016; 192: 471-9.
[http://dx.doi.org/10.1016/j.jep.2016.08.024] [PMID: 27568876]
[92]
Mohanty IR, Borde M, Kumar CS, Maheshwari U. Dipeptidyl peptidase IV Inhibitory activity of Terminalia arjuna attributes to its cardioprotective effects in experimental diabetes: in silico, in vitro and in vivo analyses. Phytomedicine 2019; 57: 158-65.
[http://dx.doi.org/10.1016/j.phymed.2018.09.195] [PMID: 30668318]
[93]
Hegazy GA, Alnoury AM, Gad HG. The role of Acacia arabica extract as an antidiabetic, antihyperlipidemic, and antioxidant in streptozotocin-induced diabetic rats. Saudi Med J 2013; 34(7): 727-33.
[PMID: 23860893]
[94]
Yadav AV, Undale VR. Antidiabetic effect of Plumeria rubra Linn. In streptozotocin induced diabetic rats. Int J Pharm Sci Res 2017; 8(4): 1806-12.
[95]
Kumar V, Rathore K, Jain P, Ahmed Z. Biological activity of bauhinia racemose against diabetes and interlinked disorders like obesity and hyperlipidemia. Clinical Phytoscience 2017; 3(1): 7.
[http://dx.doi.org/10.1186/s40816-017-0044-9]
[96]
Kumar V, Jain P, Rathore K, Ahmed Z. Biological evaluation of Pupalia lappacea for antidiabetic, antiadipogenic, and hypolipidemic activity both in vitro and in vivo. Scientifica 2016; 2016: 1-9.
[http://dx.doi.org/10.1155/2016/1062430] [PMID: 26942038]
[97]
Rathore K, Singh V, Jain P, Rao SP, Ahmed Z, Thakur VS. In- vitro and in-vivo antiadipogenic, antidiabetic and hypolipidemic activity of Diospyros melanoxylon (Roxb.). J Ethnopharmacol 2014; 155: 1171-6.
[http://dx.doi.org/10.1016/j.jep.2014.06.050] [PMID: 25010927]
[98]
SR A, Vijay Y, Deepthi T, et al. Anti diabetic effect of ethanolic extract of leaves of Ocimum sanctum in alloxan induced diabetes in rats. IJBCP 2013; 2(5): 613-6.
[99]
Sharma AK, Sharma JN, Harish R, Joshi RK, Dixit VK. Standardization of herbal drugs: need of the day for global competition. J Pharm Res 2013; 12(3): 103-14.
[http://dx.doi.org/10.18579/jpcrkc/2013/12/3/79174]
[100]
Singh P, Jain P, Pandey R, Shukla SS. Phytotherapeutic review on diabetes. Spatula DD 2016; 5(4): 1.
[101]
Jain A, Jain P, Parihar DK. Comparative study of in-vitro antidiabetic and antibacterial activity of non-conventional curcuma species. J Biologic Active Prod from Nature 2019; 9(6): 457-64. [b]
[http://dx.doi.org/10.1080/22311866.2019.1710253]
[102]
Chung S, Shin EJ, Choi HK, Park JH, Hwang JT. Anacardic acid mitigates liver fat accumulation and impaired glucose tolerance in mice fed a high‐fat and high‐sucrose diet. Food Sci Nutr 2020; 8(2): 796-804.
[http://dx.doi.org/10.1002/fsn3.1322] [PMID: 32148789]
[103]
Eddouks M, Ajebli M, Hebi M. Ethnopharmacological survey of medicinal plants used in Daraa-Tafilalet region (Province of Errachidia), Morocco. J Ethnopharmacol 2017; 198: 516-30.
[http://dx.doi.org/10.1016/j.jep.2016.12.017] [PMID: 28003130]
[104]
Ghorbani A, Rashidi R, Shafiee-Nick R. Flavonoids for preserving pancreatic beta cell survival and function: A mechanistic review. Biomed Pharmacother 2019; 111: 947-57.
[http://dx.doi.org/10.1016/j.biopha.2018.12.127] [PMID: 30841474]
[105]
Barkaoui M, Katiri A, Msanda F. Ethnobotanical survey of medicinal plants used in the traditional treatment of diabetes in Chtouka Ait Baha and Tiznit (Western Anti-Atlas), Morocco. J Ethnopharmacol 2017; 198: 338-50.
[106]
Rao SP, Amrit I, Jain P, Singh V. Antiulcer activity of Agnimukha Churna. Int J Ayurveda Pharma Res 2014; 2(2): 40-6.
[107]
Shukla SS, Sharwan G, Jain P, Pandey R. Toxicity and safety profiles of methanolic extract of Pistacia integerrima J. L. Stewart ex Brandis (PI) for Wistar Rats. J Pharmacopuncture 2016; 19(3): 253-8.
[http://dx.doi.org/10.3831/KPI.2016.19.027] [PMID: 27695635]
[108]
Jain P, Pandey R, Shukla SS. Reproductive and developmental toxicity study of Talisadya churna: An ancient polyherbal formulation. IAJPR 2016; 6(5): 5641-53.
[109]
Jain P, Pandey R, Shukla SS. Acute and subacute toxicity studies of polyherbal formulation Talisadya churna in experimental animal model. MJPMS 2015; 1(1): 7-10.
[110]
Sharwan G, Jain P, Pandey R, Shukla SS. Toxicity profile of traditional herbal medicine. J Ayurvedic Herbal Med 2015; 1(3): 81-90.
[http://dx.doi.org/10.31254/jahm.2015.1306]
[111]
Jain P, Rao SP, Singh V, Pandey R, Shukla SS. Acute and sub-acute toxicity studies of an ancient ayurvedic formulation: Agnimukha churna. Columbia J Pharma Sci 2014; (1): 18-22.
[112]
Jain P, Satapathy T, Pandey RK. Acaricidal activity and clinical safety of arecoline hydrobromide on calves infested with cattle tick Rhipicephalus microplus (Acari: Ixodidae). Vet Parasitol 2021; 298(5)109490
[http://dx.doi.org/10.1016/j.vetpar.2021.109490] [PMID: 34271319]
[113]
Jain P, Satapathy T, Pandey RK. First report on efficacy of Citrus limetta seed oil in controlling cattle tick Rhipicephalus microplus in red Sahiwal calves. Vet Parasitol 2021; 296(June)109508
[http://dx.doi.org/10.1016/j.vetpar.2021.109508] [PMID: 34218174]
[114]
Jain P, Satapathy T, Pandey RK. Acaricidal activity and biochemical analysis of Citrus limetta seed oil for controlling Ixodid Tick Rhipicephalus microplus infesting cattle. Syst Appl Acarol 2021; 26(7): 1185-395.
[http://dx.doi.org/10.11158/saa.26.7.13]
[115]
Jain P, Satapathy T, Pandey RK. Rhipicephalus microplus (acari: Ixodidae): Clinical safety and potential control by topical application of cottonseed oil (Gossypium sp.) on cattle. Exp Parasitol 2020; 219108017
[http://dx.doi.org/10.1016/j.exppara.2020.108017] [PMID: 33039477]
[116]
Jain P, Satapathy T, Pandey RK. Rhipicephalus microplus: A parasite threatening cattle health and consequences of herbal acaricides for upliftment of livelihood of cattle rearing communities in Chhattisgarh. Biocatal Agric Biotechnol 2020; 26101611
[http://dx.doi.org/10.1016/j.bcab.2020.101611]
[117]
Jain P, Satapathy T, Pandey RK. Efficacy of arecoline hydrobromide against cattle tick Rhipicephalus (Boophilus) microplus. Int J Acarol 2020; 46(4): 268-75.
[http://dx.doi.org/10.1080/01647954.2020.1765018]
[118]
Jain P, Satapathy T, Pandey RK. First report on ticks (Acari: Ixodidae) controlling activity of cottonseed oil (Gossypium Sp.). Int J Acarol 2020; 46(4): 263-7.
[http://dx.doi.org/10.1080/01647954.2020.1767203]
[119]
Jain P, Satapathy T, Pandey RK. A mini review of methods to control ticks population infesting cattle in Chhattisgarh with special emphasis on herbal acaricides. IJNPR 2020; 11(12): 217-23.
[120]
Jain A, Parihar DK. Antibacterial, biofilm dispersal and antibiofilm potential of alkaloids and flavonoids of Curcuma. Biocatal Agric Biotechnol 2018; 16: 677-82.
[http://dx.doi.org/10.1016/j.bcab.2018.09.023]
[121]
Jain A, Jain P, Soni P, Tiwari A, Tiwari SP. Design and characterization of silver nanoparticles of different species of curcuma in the treatment of cancer using human colon cancer cell line (HT-29). J Gastrointest Cancer 2022.
[http://dx.doi.org/10.1007/s12029-021-00788-7] [PMID: 35043370]
[122]
Jain A, Parihar DK. Molecular marker based genetic diversity study of wild, cultivated and endangered species of Curcuma from Chhattisgarh region for in situ conservation. Biocatal Agric Biotechnol 2019; 18101033
[http://dx.doi.org/10.1016/j.bcab.2019.101033]
[123]
Rao SP, Jain P, Rathore P, Singh VK. Larvicidal and knockdown activity of Citrus limetta Risso oil against dengue virus vector. Indian J Nat Prod Resour 2016; 7(3): 256-60.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy