Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Review Article

Multifunctional Nanoparticles for Organelle-Specific Targeted Drug Delivery in Cancer Therapy

Author(s): Surbhi Tomar, Vaibhav Rajoriya, Prashant Sahu, Shivangi Agarwal, Suresh P. Vyas and Sushil K. Kashaw*

Volume 12, Issue 3, 2022

Published on: 27 December, 2022

Page: [191 - 203] Pages: 13

DOI: 10.2174/2468187313666221219150315

Price: $65

Abstract

Successful drug delivery with a carrier into the targeted organelles (nucleus, mitochondria, lysosomes, etc.) is vital for achieving effective disease treatment. Nanoparticle (NP) based drug delivery systems (NDDSs) depend on targeted delivery and are mainly focused on cellmembrane targeting. In this review, we summarize research on multifunctional NPs with organellespecific drug delivery. Different effective strategies are proposed for these nanoparticles functionalizing by altering their chemical composition or by functional groups grafting onto their surface for improving the ability of organelle targeting. Only when the released concentration of drugs becomes high enough will they interact with specific organelles by molecular targets to induce apoptosis of tumor cells. One of the prime goals for drug delivery research targeted is Organelle-specific delivery.

Keywords: Cell organelles, targeted delivery, multifunctional nanoparticle, tumor cell, organelle-specific, lysosomes.

Graphical Abstract
[1]
Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater 2016; 1(5): 16014.
[http://dx.doi.org/10.1038/natrevmats.2016.14]
[2]
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[3]
Chakraborty K, Tripathi A, Mishra S, Mallick AM, Roy RS. Emerging concepts in designing next-generation multifunctional nanomedicine for cancer treatment. Biosci Rep 2022; 42(7): BSR20212051.
[http://dx.doi.org/10.1042/BSR20212051] [PMID: 35638450]
[4]
Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 2015; 33(9): 941-51.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[5]
Chauhan VP, Jain RK. Strategies for advancing cancer nanomedicine. Nat Mater 2013; 12(11): 958-62.
[http://dx.doi.org/10.1038/nmat3792] [PMID: 24150413]
[6]
Guo X, Wang L, Wei X, Zhou S. Polymer-based drug delivery systems for cancer treatment. J Polym Sci A Polym Chem 2016; 54(22): 3525-50.
[http://dx.doi.org/10.1002/pola.28252]
[7]
Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 2013; 42(3): 1147-235.
[http://dx.doi.org/10.1039/C2CS35265F] [PMID: 23238558]
[8]
Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 2013; 65(1): 71-9.
[http://dx.doi.org/10.1016/j.addr.2012.10.002] [PMID: 23088862]
[9]
Huang C, Butler PJ, Tong S, Muddana HS, Bao G, Zhang S. Substrate stiffness regulates cellular uptake of nanoparticles. Nano Lett 2013; 13(4): 1611-5.
[http://dx.doi.org/10.1021/nl400033h] [PMID: 23484640]
[10]
Yu W, Liu R, Zhou Y, Gao H. Size-tunable strategies for a tumor targeted drug delivery system. ACS Cent Sci 2020; 6(2): 100-16.
[http://dx.doi.org/10.1021/acscentsci.9b01139] [PMID: 32123729]
[11]
Kulkarni SA, Feng SS. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res 2013; 30(10): 2512-22.
[http://dx.doi.org/10.1007/s11095-012-0958-3] [PMID: 23314933]
[12]
Huang K, Ma H, Liu J, et al. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano 2012; 6(5): 4483-93.
[http://dx.doi.org/10.1021/nn301282m] [PMID: 22540892]
[13]
Tang PS, Sathiamoorthy S, Lustig LC, et al. The role of ligand density and size in mediating quantum dot nuclear transport. Small 2014; 10(20): 4182-92.
[14]
Anselmo AC, Modery-Pawlowski CL, Menegatti S, et al. Platelet-like nanoparticles: Mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano 2014; 8(11): 11243-53.
[http://dx.doi.org/10.1021/nn503732m] [PMID: 25318048]
[15]
Ejigah V, Owoseni O, Bataille-Backer P, Ogundipe OD, Fisusi FA, Adesina SK. Approaches to improve macromolecule and nanoparticle accumulation in the tumor microenvironment by the enhanced permeability and retention effect. Polymers 2022; 14(13): 2601.
[http://dx.doi.org/10.3390/polym14132601] [PMID: 35808648]
[16]
Nakamura H, Jun F, Maeda H. Development of next-generation macromolecular drugs based on the EPR effect: Challenges and pitfalls. Expert Opin Drug Deliv 2015; 12(1): 53-64.
[http://dx.doi.org/10.1517/17425247.2014.955011] [PMID: 25425260]
[17]
Guo X, Shi C, Yang G, Wang J, Cai Z, Zhou S. Dual-responsive polymer micelles for target-cell-specific anticancer drug delivery. Chem Mater 2014; 26(15): 4405-18.
[http://dx.doi.org/10.1021/cm5012718]
[18]
Guo X, Shi C, Wang J, Di S, Zhou S. pH-triggered intracellular release from actively targeting polymer micelles. Biomaterials 2013; 34(18): 4544-54.
[http://dx.doi.org/10.1016/j.biomaterials.2013.02.071] [PMID: 23510854]
[19]
Shi C, Guo X, Qu Q, Tang Z, Wang Y, Zhou S. Actively targeted delivery of anticancer drug to tumor cells by redox-responsive star-shaped micelles. Biomaterials 2014; 35(30): 8711-22.
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.036] [PMID: 25002267]
[20]
Roy D, Berguig GY, Ghosn B, et al. Synthesis and characterization of transferrin-targeted chemotherapeutic delivery systems prepared via RAFT copolymerization of high molecular weight PEG macromonomers. Polym Chem 2014; 5(5): 1791-9.
[http://dx.doi.org/10.1039/C3PY01404E] [PMID: 25221630]
[21]
Zhu G, Zheng J, Song E, et al. Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc Natl Acad Sci USA 2013; 110(20): 7998-8003.
[http://dx.doi.org/10.1073/pnas.1220817110] [PMID: 23630258]
[22]
Wang CH, Kang ST, Lee YH, Luo YL, Huang YF, Yeh CK. Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis. Biomaterials 2012; 33(6): 1939-47.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.036] [PMID: 22142768]
[23]
Wang R, Zhu G, Mei L, et al. Automated modular synthesis of aptamer-drug conjugates for targeted drug delivery. J Am Chem Soc 2014; 136(7): 2731-4.
[http://dx.doi.org/10.1021/ja4117395] [PMID: 24483627]
[24]
Kim J, Nam HY, Choi JW, Yun C-O, Kim SW. Efficient lung orthotopic tumor-growth suppression of oncolytic adenovirus complexed with RGD-targeted bioreducible polymer. Gene Ther 2014; 21(5): 476-83.
[http://dx.doi.org/10.1038/gt.2014.18] [PMID: 24598892]
[25]
Guo X, Wei X, Chen Z, Zhang X, Yang G, Zhou S. Multifunctional nanoplatforms for subcellular delivery of drugs in cancer therapy. Prog Mater Sci 2020; 107: 100599.
[http://dx.doi.org/10.1016/j.pmatsci.2019.100599]
[26]
Hudson WH, Ortlund EA. The structure, function and evolution of proteins that bind DNA and RNA. Nat Rev Mol Cell Biol 2014; 15(11): 749-60.
[http://dx.doi.org/10.1038/nrm3884] [PMID: 25269475]
[27]
Cai Y, Shen H, Zhan J, et al. Supramolecular “Trojan Horse” for nuclear delivery of dual anticancer drugs. J Am Chem Soc 2017; 139(8): 2876-9.
[http://dx.doi.org/10.1021/jacs.6b12322] [PMID: 28191948]
[28]
Zhang Y, Hu Z, Qin H, et al. Cell nucleus targeting for living cell extraction of nucleic acid associated proteins with intracellular nanoprobes of magnetic carbon nanotubes. Anal Chem 2013; 85(15): 7038-43.
[http://dx.doi.org/10.1021/ac401269g] [PMID: 23815738]
[29]
Cautain B, Hill R, de Pedro N, Link W. Components and regulation of nuclear transport processes. FEBS J 2015; 282(3): 445-62.
[http://dx.doi.org/10.1111/febs.13163] [PMID: 25429850]
[30]
Jhaveri A, Torchilin V. Intracellular delivery of nanocarriers and targeting to subcellular organelles. Expert Opin Drug Deliv 2016; 13(1): 49-70.
[http://dx.doi.org/10.1517/17425247.2015.1086745] [PMID: 26358656]
[31]
Haider T, Tiwari R, Vyas SP, Soni V. Molecular determinants as therapeutic targets in cancer chemotherapy: An update. Pharmacol Ther 2019; 200: 85-109.
[http://dx.doi.org/10.1016/j.pharmthera.2019.04.011] [PMID: 31047907]
[32]
Berger CM, Gaume X, Bouvet P. The roles of nucleolin subcellular localization in cancer. Biochimie 2015; 113: 78-85.
[http://dx.doi.org/10.1016/j.biochi.2015.03.023] [PMID: 25866190]
[33]
Dvorak HF. Tumor stroma, tumor blood vessels, and antiangiogenesis therapy. Cancer J 2015; 21(4): 237-43.
[http://dx.doi.org/10.1097/PPO.0000000000000124] [PMID: 26222073]
[34]
Wolfson E, Goldenberg M, Solomon S, Frishberg A, Pinkas-Kramarski R. Nucleolin-binding by ErbB2 enhances tumorigenicity of ErbB2-positive breast cancer. Oncotarget 2016; 7(40): 65320-34.
[http://dx.doi.org/10.18632/oncotarget.11323] [PMID: 27542246]
[35]
Munisvaradass R, Kumar S, Govindasamy C, Alnumair K, Mok P. Human CD3+ T-cells with the Anti-ERBB2 chimeric antigen receptor exhibit efficient targeting and induce apoptosis in ERBB2 overexpressing breast cancer cells. Int J Mol Sci 2017; 18(9): 1797.
[http://dx.doi.org/10.3390/ijms18091797] [PMID: 28885562]
[36]
Szymańska M. Endocyticdownregulation of the oncoproteins ErbB2 and ErbB3 2015.
[37]
Hudecek M, Lupo-Stanghellini MT, Kosasih PL, et al. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin Cancer Res 2013; 19(12): 3153-64.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0330] [PMID: 23620405]
[38]
Beatty GL, Haas AR, Maus MV, et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res 2014; 2(2): 112-20.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0170] [PMID: 24579088]
[39]
Koutsioumpa M, Papadimitriou E. Cell surface nucleolin as a target for anti-cancer therapies. Recent Patents Anticancer Drug Discov 2014; 9(2): 137-52.
[http://dx.doi.org/10.2174/1574892808666131119095953] [PMID: 24251811]
[40]
Gilles ME, Maione F, Cossutta M, et al. Nucleolin targeting impairs the progression of pancreatic cancer and promotes the normalization of tumor vasculature. Cancer Res 2016; 76(24): 7181-93.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0300] [PMID: 27754848]
[41]
Tran EJ, King MC, Corbett AH. Macromolecular transport between the nucleus and the cytoplasm: Advances in mechanism and emerging links to disease. Biochim Biophys Acta Mol Cell Res 2014; 1843(11): 2784-95.
[http://dx.doi.org/10.1016/j.bbamcr.2014.08.003] [PMID: 25116306]
[42]
Guo X, Wei X, Jing Y, Zhou S. Size changeable nanocarriers with nuclear targeting for effectively overcoming multidrug resistance in cancer therapy. Adv Mater 2015; 27(41): 6450-6.
[http://dx.doi.org/10.1002/adma.201502865] [PMID: 26401989]
[43]
Cho DY, Cho H, Kwon K, et al. Triphenylphosphoniumconjugated poly (ε-caprolactone)-based self-assembled nanostructures as nanosized drugs and drug delivery carriers for mitochondriatargeting synergistic anticancer drug delivery. Adv Funct Mater 2015; 25(34): 5479-91.
[http://dx.doi.org/10.1002/adfm.201501422]
[44]
Jung HS, Han J, Lee JH, et al. Enhanced NIR radiation-triggered hyperthermia by mitochondrial targeting. J Am Chem Soc 2015; 137(8): 3017-23.
[http://dx.doi.org/10.1021/ja5122809] [PMID: 25662739]
[45]
Domenech M, Marrero-Berrios I, Torres-Lugo M, Rinaldi C. Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields. ACS Nano 2013; 7(6): 5091-101.
[http://dx.doi.org/10.1021/nn4007048] [PMID: 23705969]
[46]
Adar Y, Stark M, Bram EE, Nowak-Sliwinska P. Imidazoacridinone-dependent lysosomalphotodestruction: A pharmacological Trojan horse approach to eradicate multidrug-resistant cancers. Cell Death Dis 2012; 3.
[47]
Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409(6822): 860-921.
[48]
Smith RAJ, Hartley RC, Cochemé HM, Murphy MP. Mitochondrial pharmacology. Trends Pharmacol Sci 2012; 33(6): 341-52.
[http://dx.doi.org/10.1016/j.tips.2012.03.010] [PMID: 22521106]
[49]
Cheng G, Zielonka J, McAllister D, et al. Antiproliferative effects of mitochondria-targeted cationic antioxidants and analogs: Role of mitochondrial bioenergetics and energy-sensing mechanism. Cancer Lett 2015; 365(1): 96-106.
[http://dx.doi.org/10.1016/j.canlet.2015.05.016] [PMID: 26004344]
[50]
Eftekhari A. The application of novel mitochondria-targeted antioxidants: Current strategies and future perspectives. JACPM 2018; 1(1): 1-2.
[51]
Amorim R, Benfeito S, Teixeira J, Cagide F, Oliveira PJ, Borges F. Targeting mitochondria: The road to mitochondriotropic antioxidants and beyond. In: Mitochondrial Biology and Experimental Therapeutics. Cham: Springer 2018; pp. 333-58.
[http://dx.doi.org/10.1007/978-3-319-73344-9_16]
[52]
Hardy M, Poulhés F, Rizzato E, et al. Mitochondria-targeted spin traps: Synthesis, superoxide spin trapping, and mitochondrial uptake. Chem Res Toxicol 2014; 27(7): 1155-65.
[http://dx.doi.org/10.1021/tx500032e] [PMID: 24890552]
[53]
Shchepinova MM, Cairns AG, Prime TA, et al. MitoNeoD: A mitochondria-targeted superoxide probe. Cell Chem Biol 2017; 24(10): 1285-1298.e12.
[http://dx.doi.org/10.1016/j.chembiol.2017.08.003] [PMID: 28890317]
[54]
Han X, Wang R, Song X, Yu F, Lv C, Chen L. A mitochondrial-targeting near-infrared fluorescent probe for bioimaging and evaluating endogenous superoxide anion changes during ischemia/reperfusion injury. Biomaterials 2018; 156: 134-46.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.039] [PMID: 29195182]
[55]
Theodossiou TA, Sideratou Z, Katsarou ME, Tsiourvas D. Mitochondrial delivery of doxorubicin by triphenylphosphonium-functionalized hyperbranched nanocarriers results in rapid and severe cytotoxicity. Pharm Res 2013; 30(11): 2832-42.
[http://dx.doi.org/10.1007/s11095-013-1111-7] [PMID: 23921486]
[56]
Qiao J, Liu Z, Tian Y, Wu M, Niu Z. Multifunctional self-assembled polymeric nanoprobes for FRET-based ratiometric detection of mitochondrial H2O2 in living cells. Chem Commun 2015; 51(17): 3641-4.
[http://dx.doi.org/10.1039/C4CC09120E] [PMID: 25642908]
[57]
Marrache S, Dhar S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc Natl Acad Sci USA 2012; 109(40): 16288-93.
[http://dx.doi.org/10.1073/pnas.1210096109] [PMID: 22991470]
[58]
Khatun Z, Choi YS, Kim YG, et al. Bioreducible poly (ethylene glycol)–triphenylphosphonium conjugate as a bioactivable mitochondria-targeting nanocarrier. Biomacromolecules 2017; 18(4): 1074-85.
[http://dx.doi.org/10.1021/acs.biomac.6b01324] [PMID: 28257184]
[59]
Wang Y, Wei G, Zhang X, et al. Multistage targeting strategy using magnetic composite nanoparticles for synergism of photothermal therapy and chemotherapy. Small 2018; 14(12): 1702994.
[http://dx.doi.org/10.1002/smll.201702994] [PMID: 29205795]
[60]
Xu Y, Wang S, Chan HF, et al. Triphenylphosphonium-modified poly(ethylene glycol)-poly(ε-caprolactone) micelles for mitochondria- targeted gambogic acid delivery. Int J Pharm 2017; 522(1-2): 21-33.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.064] [PMID: 28215509]
[61]
Zhang S, Li J, Hu S, Wu F, Zhang X. Triphenylphosphonium and D-α-tocopheryl polyethylene glycol 1000 succinate-modified, tanshinone IIA-loaded lipid-polymeric nanocarriers for the targeted therapy of myocardial infarction. Int J Nanomedicine 2018; 13: 4045-57.
[http://dx.doi.org/10.2147/IJN.S165590] [PMID: 30022826]
[62]
Hu Q, Gao M, Feng G, Liu B. Mitochondria-targeted cancer therapy using a light-up probe with aggregation-induced-emission characteristics. Angew Chem Int Ed 2014; 53(51): 14225-9.
[http://dx.doi.org/10.1002/anie.201408897] [PMID: 25318447]
[63]
Yin C, Zhu H, Xie C, et al. Organic nanoprobe cocktails for multilocal and multicolor fluorescence imaging of reactive oxygen species. Adv Funct Mater 2017; 27(23): 1700493.
[http://dx.doi.org/10.1002/adfm.201700493]
[64]
Wang B, Wang Y, Wu H, et al. A mitochondria-targeted fluorescent probe based on TPP-conjugated carbon dots for both one- and two-photon fluorescence cell imaging. RSC Advances 2014; 4(91): 49960-3.
[http://dx.doi.org/10.1039/C4RA07467J]
[65]
Wu X, Sun S, Wang Y, et al. A fluorescent carbon-dots-based mitochondria-targetable nanoprobe for peroxynitrite sensing in living cells. Biosens Bioelectron 2017; 90: 501-7.
[http://dx.doi.org/10.1016/j.bios.2016.10.060] [PMID: 27825883]
[66]
Zhuang Q, Jia H, Du L, et al. Targeted surface-functionalized gold nanoclusters for mitochondrial imaging. Biosens Bioelectron 2014; 55: 76-82.
[http://dx.doi.org/10.1016/j.bios.2013.12.003] [PMID: 24362242]
[67]
Chen S, Lei Q, Qiu WX, et al. Mitochondria-targeting “Nanoheater” for enhanced photothermal/chemo-therapy. Biomaterials 2017; 117: 92-104.
[http://dx.doi.org/10.1016/j.biomaterials.2016.11.056] [PMID: 27939904]
[68]
Choi YS, Kwon K, Yoon K, Huh KM, Kang HC. Photosensitizer-mediated mitochondria-targeting nanosized drug carriers: Subcellular targeting, therapeutic, and imaging potentials. Int J Pharm 2017; 520(1-2): 195-206.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.013] [PMID: 28179191]
[69]
Yamada Y, Munechika R, Kawamura E, Sakurai Y, Sato Y, Harashima H. Mitochondrial delivery of doxorubicin using MITO-Porter kills drug-resistant renal cancer cells via mitochondrial toxicity. J Pharm Sci 2017; 106(9): 2428-37.
[http://dx.doi.org/10.1016/j.xphs.2017.04.058] [PMID: 28478130]
[70]
Yamada Y, Harashima H. Delivery of bioactive molecules to the mitochondrial genome using a membrane-fusing, liposome-based carrier, DF-MITO-Porter. Biomaterials 2012; 33(5): 1589-95.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.082] [PMID: 22105068]
[71]
Bae Y, Jung MK, Lee S, et al. Dequalinium-based functional nanosomes show increased mitochondria targeting and anticancer effect. Eur J Pharm Biopharm 2018; 124: 104-15.
[http://dx.doi.org/10.1016/j.ejpb.2017.12.013] [PMID: 29305141]
[72]
Erlich-Hadad T, Hadad R, Feldman A, Greif H, Lictenstein M, Lorberboum-Galski H. TAT-MTS-MCM fusion proteins reduce MMA levels and improve mitochondrial activity and liver function in MCM-deficient cells. J Cell Mol Med 2018; 22(3): 1601-13.
[http://dx.doi.org/10.1111/jcmm.13435] [PMID: 29265583]
[73]
Chrétien D, Bénit P, Ha HH, et al. Mitochondria are physiologically maintained at close to 50 °C. PLoS Biol 2018; 16(1): e2003992.
[http://dx.doi.org/10.1371/journal.pbio.2003992] [PMID: 29370167]
[74]
Bosc C, Selak MA, Sarry JE. Resistance is futile: Targeting mitochondrial energetics and metabolism to overcome drug resistance in cancer treatment. Cell Metab 2017; 26(5): 705-7.
[http://dx.doi.org/10.1016/j.cmet.2017.10.013] [PMID: 29117545]
[75]
Li J, He X, Zou Y, et al. Mitochondria-targeted platinum(ii) complexes: Dual inhibitory activities on tumor cell proliferation and migration/invasion via intracellular trafficking of β-catenin. Metallomics 2017; 9(6): 726-33.
[http://dx.doi.org/10.1039/C6MT00188B] [PMID: 28513634]
[76]
Wisnovsky SP, Wilson JJ, Radford RJ, et al. Targeting mitochondrial DNA with a platinum-based anticancer agent. Chem Biol 2013; 20(11): 1323-8.
[http://dx.doi.org/10.1016/j.chembiol.2013.08.010] [PMID: 24183971]
[77]
Li KY, Jiang J, Witte MD, et al. Synthesis of cyclophellitol, cyclophellitol aziridine, and their tagged derivatives. Eur J Org Chem 2014; 2014: 6030.
[http://dx.doi.org/10.1002/ejoc.201402588]
[78]
Zhao Y, Ren J, Padilla-Parra S, Fry EE, Stuart DI. Lysosome sorting of β-glucocerebrosidase by LIMP-2 is targeted by the mannose 6-phosphate receptor. Nat Commun 2014; 5(1): 4321.
[http://dx.doi.org/10.1038/ncomms5321] [PMID: 25027712]
[79]
Sillence DJ, Puri V, Marks DL, et al. Glucosylceramide modulates membrane traffic along the endocytic pathway. J Lipid Res 2002; 43(11): 1837-45.
[http://dx.doi.org/10.1194/jlr.M200232-JLR200] [PMID: 12401882]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy