Generic placeholder image

Current Biotechnology

Editor-in-Chief

ISSN (Print): 2211-5501
ISSN (Online): 2211-551X

Research Article

Novel Glucose Biosensor Based on Citrullus Colocynthis and Urtica Dioica

Author(s): Naimeh Mahheidari, Jamal Rashidiani, Mostafa Akbariqomi, Khadijeh Eskandari* and Aghdas Banaei*

Volume 12, Issue 1, 2023

Published on: 07 February, 2023

Page: [37 - 44] Pages: 8

DOI: 10.2174/2211550112666221219095851

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Determination of glucose is crucial in chemical, biological, and clinical samples, food processing, and fermentation. Despite 50 years of reports on biosensor technology development, it is still important to research new glucose biosensors.

Objective: The main purpose of this study is to design and build a simple and effective glucose biosensor based on Citrullus Colocynthis and Urtica Dioica.

Methods: In this study, the carbon paste electrodes of Citrullus Colocynthis and Urtica Dioica were prepared and connected to the LCR meter by copper wire, and then the glucose was injected into solution in various concentrations, and capacitance changes were recorded in the LCR meter proportional to concentration changes of glucose in electrode surface. Also, glucose was detected by other methods such as impedance, optical density reader, and UV-Vis spectroscopy.

Results: Biosensors with electrodes modified with Citrullus Colocynthis and Urtica Dioica responded rapidly and with glucose sensitivity in the linear concentration range of 1.2-11.2 μg / ml and 2.5- 15 μg / ml, respectively..

Conclusion: Citrullus Colocynthis and Urtica Dioica are good candidates for glucose detection as plant tissue. Also, producing and purifying plant extracts makes it possible to miniaturize the glucose biosensor with greater sensitivity.

Keywords: Citrullus colocynthis, Urtica dioica, LCR meter, glucose, biosensor, electrode, impedance.

Graphical Abstract
[1]
Kozitsina A, Svalova T, Malysheva N, Okhokhonin A, Vidrevich M, Brainina K. Sensors based on bio and biomimetic receptors in medical diagnostic, environment, and food analysis. Biosensors 2018; 8(2): 35.
[http://dx.doi.org/10.3390/bios8020035] [PMID: 29614784]
[2]
Farzin L, Shamsipur M, Samandari L, Sheibani S. Advances in the design of nanomaterial-based electrochemical affinity and enzymatic biosensors for metabolic biomarkers: A review. Mikrochim Acta 2018; 185(5): 276.
[http://dx.doi.org/10.1007/s00604-018-2820-8] [PMID: 29721621]
[3]
Benhalima K. Cardiovascular diabetology: Clinical, metabolic and inflammatory facets. Acta Clinica Belgica 2008; 63(5): 347.
[4]
Margonis GA, Amini N, Sasaki K, et al. Perioperative hyperglycemia and postoperative outcomes in patients undergoing resection of colorectal liver metastases. J Gastrointest Surg 2017; 21(2): 228-37.
[http://dx.doi.org/10.1007/s11605-016-3278-9] [PMID: 27678503]
[5]
Yiu KH, Tse HF. Specific role of impaired glucose metabolism and diabetes mellitus in endothelial progenitor cell characteristics and function. Arterioscler Thromb Vasc Biol 2014; 34(6): 1136-43.
[http://dx.doi.org/10.1161/ATVBAHA.114.302192] [PMID: 24743430]
[6]
Salek-Maghsoudi A, Vakhshiteh F, Torabi R, et al. Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosens Bioelectron 2018; 99: 122-35.
[http://dx.doi.org/10.1016/j.bios.2017.07.047] [PMID: 28750336]
[7]
Wang Z, Li H, Wang J, et al. Transdermal colorimetric patch for hyperglycemia sensing in diabetic mice. Biomaterials 2020; 237: 119782.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119782] [PMID: 32058155]
[8]
Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): Prospective observational study. BMJ 2000; 321(7258): 405-12.
[http://dx.doi.org/10.1136/bmj.321.7258.405] [PMID: 10938048]
[9]
Nathan DM, Genuth S, Lachin J, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329(14): 977-86.
[http://dx.doi.org/10.1056/NEJM199309303291401] [PMID: 8366922]
[10]
Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008; 359(15): 1577-89.
[http://dx.doi.org/10.1056/NEJMoa0806470] [PMID: 18784090]
[11]
Jianping Y, Tingting S, Xiaozhen Q, Hanjie Z, Yali W. Screening of hypoglycemic constituents in Chinese herbal medicine based on electrochemical amperometric detection. Chin J Chem 2018; 35(7): 842.
[12]
Khadilkar K, Bandgar T, Shivane V, Lila A, Shah N. Current concepts in blood glucose monitoring. Indian J Endocrinol Metab 2013; 17(9) (Suppl. 3): 643.
[http://dx.doi.org/10.4103/2230-8210.123556] [PMID: 24910827]
[13]
Akgönüllü S, Battal D, Yalcin MS, Yavuz H, Denizli A. Rapid and sensitive detection of synthetic cannabinoids JWH-018, JWH-073 and their metabolites using molecularly imprinted polymer-coated QCM nanosensor in artificial saliva. Microchem J 2020; 153: 104454.
[http://dx.doi.org/10.1016/j.microc.2019.104454]
[14]
Yoon J, Cho HY, Shin M, Choi HK, Lee T, Choi JW. Flexible electrochemical biosensors for healthcare monitoring. J Mater Chem B Mater Biol Med 2020; 8(33): 7303-18.
[http://dx.doi.org/10.1039/D0TB01325K] [PMID: 32647855]
[15]
Same S, Samee G. Carbon nanotube biosensor for diabetes disease. Crescent J Med Biol Sci 2018; 5: 1-6.
[16]
Bahadır EB, Sezgintürk MK. Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Anal Biochem 2015; 478: 107-20.
[http://dx.doi.org/10.1016/j.ab.2015.03.011] [PMID: 25790902]
[17]
Lee H, Hong YJ, Baik S, Hyeon T, Kim DH. Enzyme-based glucose sensor: From invasive to wearable device. Adv Healthc Mater 2018; 7(8): 1701150.
[http://dx.doi.org/10.1002/adhm.201701150] [PMID: 29334198]
[18]
Sabu C, Henna TK, Raphey VR, Nivitha KP, Pramod K. Advanced biosensors for glucose and insulin. Biosens Bioelectron 2019; 141: 111201.
[http://dx.doi.org/10.1016/j.bios.2019.03.034] [PMID: 31302426]
[19]
Rodbard D. Continuous glucose monitoring: A review of successes, challenges, and opportunities. Diabetes Technol Ther 2016; 18(S2): S2-S13.
[http://dx.doi.org/10.1089/dia.2015.0417]
[20]
Oliver NS, Toumazou C, Cass AEG, Johnston DG. Glucose sensors: A review of current and emerging technology. Diabet Med 2009; 26(3): 197-210.
[http://dx.doi.org/10.1111/j.1464-5491.2008.02642.x] [PMID: 19317813]
[21]
Fatoni A, Aziz AN, Anggraeni MD. Low-cost and real-time color detector developments for glucose biosensor. Sens Bio-Sens Res 2020; 28: 100325.
[22]
Liu Y, Yuan M, Qiao L, Guo R. An efficient colorimetric biosensor for glucose based on peroxidase-like protein-Fe3O4 and glucose oxidase nanocomposites. Biosens Bioelectron 2014; 52: 391-6.
[http://dx.doi.org/10.1016/j.bios.2013.09.020] [PMID: 24090754]
[23]
Shafer-Peltier KE, Haynes CL, Glucksberg MR, Van Duyne RP. Toward a glucose biosensor based on surface-enhanced Raman scattering. J Am Chem Soc 2003; 125(2): 588-93.
[http://dx.doi.org/10.1021/ja028255v] [PMID: 12517176]
[24]
Imani S, Bandodkar AJ, Mohan AMV, et al. A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat Commun 2016; 7(1): 11650.
[http://dx.doi.org/10.1038/ncomms11650] [PMID: 27212140]
[25]
Bailey T, Bode BW, Christiansen MP, Klaff LJ, Alva S. The performance and usability of a factory-calibrated flash glucose monitoring system. Diabetes Technol Ther 2015; 17(11): 787-94.
[http://dx.doi.org/10.1089/dia.2014.0378] [PMID: 26171659]
[26]
Yin M, Huang B, Gao S, Zhang AP, Ye X. Optical fiber LPG biosensor integrated microfluidic chip for ultrasensitive glucose detection. Biomed Opt Express 2016; 7(5): 2067-77.
[http://dx.doi.org/10.1364/BOE.7.002067] [PMID: 27231643]
[27]
Jiang B, Zhou K, Wang C, et al. Label-free glucose biosensor based on enzymatic graphene oxide-functionalized tilted fiber grating. Sens Actuators B Chem 2018; 254: 1033-9.
[http://dx.doi.org/10.1016/j.snb.2017.07.109]
[28]
Lin T, Gal A, Mayzel Y, Horman K, Bahartan K. Non-invasive glucose monitoring: A review of challenges and recent advances. Curr Trends Biomed Eng Biosci 2017; 6(5): 1-8.
[http://dx.doi.org/10.19080/CTBEB.2017.06.555696]
[29]
Lamberti F, Luni C, Zambon A, Andrea Serra P, Giomo M, Elvassore N. Flow biosensing and sampling in indirect electrochemical detection. Biomicrofluidics 2012; 6(2): 024114.
[http://dx.doi.org/10.1063/1.4705368] [PMID: 22655022]
[30]
Clarke WL, Cox D, Gonder-Frederick LA, Carter W, Pohl SL. Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care 1987; 10(5): 622-8.
[http://dx.doi.org/10.2337/diacare.10.5.622] [PMID: 3677983]
[31]
Toghill KE, Compton RG. Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation. Int J Electrochem Sci 2010; 5(9): 1246-301.
[32]
Omer AE, Shaker G, Safavi-Naeini S, et al. Non-invasive real-time monitoring of glucose level using novel microwave biosensor based on triple-pole CSRR. IEEE Trans Biomed Circuits Syst 2020; 14(6): 1407-20.
[http://dx.doi.org/10.1109/TBCAS.2020.3038589] [PMID: 33201827]
[33]
Tang L, Chang SJ, Chen CJ, Liu JT. Non-invasive blood glucose monitoring technology: A review. Sensors 2020; 20(23): 6925.
[http://dx.doi.org/10.3390/s20236925] [PMID: 33291519]
[34]
Zhang R, Qu Z, Jin H, Liu S, Luo Y, Zheng Y. Noninvasive glucose measurement by microwave biosensor with accuracy enhancement. 2018 IEEE Int Symp Circuits Syst (ISCAS). May 27-30, 2018; Florence, Italy. 2018; pp. pp. 1-4.
[http://dx.doi.org/10.1109/ISCAS.2018.8351711]
[35]
Chen Y, Lu S, Zhang S, et al. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Sci Adv 2017; 3(12): e1701629.
[http://dx.doi.org/10.1126/sciadv.1701629] [PMID: 29279864]
[36]
Bae CW, Toi PT, Kim BY, et al. Fully stretchable capillary microfluidics-integrated nanoporous gold electrochemical sensor for wearable continuous glucose monitoring. ACS aACS Appl. ACS Appl Mater Interfaces 2019; 11(16): 14567-75.
[http://dx.doi.org/10.1021/acsami.9b00848] [PMID: 30942999]
[37]
Nandini S, Nalini S, Shanmugam S, Niranjana P, Melo JS, Suresh GS. Rhoeo discolor leaf extract as a novel immobilizing matrix for the fabrication of an electrochemical glucose and hydrogen peroxide biosensor. Anal Methods 2014; 6(3): 863-77.
[http://dx.doi.org/10.1039/C3AY41795F]
[38]
Sağıroglu A, Özcan HM, Hasancebi Ö. Scanning of some herbal tissues to be used with biosensors as polyphenol oxidase enzyme source. Hacettepe J Biol Chem 2009; 37(4): 303-12.
[39]
Hwang DW, Lee S, Seo M, Chung TD. Recent advances in electrochemical non-enzymatic glucose sensors – A review. Anal Chim Acta 2018; 1033: 1-34.
[http://dx.doi.org/10.1016/j.aca.2018.05.051] [PMID: 30172314]
[40]
Tripathy N, Kim DH. Metal oxide modified ZnO nanomaterials for biosensor applications. Nano Converg 2018; 5(1): 27.
[http://dx.doi.org/10.1186/s40580-018-0159-9] [PMID: 30467757]
[41]
Naresh V, Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors 2021; 21(4): 1109.
[http://dx.doi.org/10.3390/s21041109] [PMID: 33562639]
[42]
Phillips B, Ali S, Chopra M. Validation of four frequently used glucose metres and selection of freestyle freedom lite for examining the effects of animated conversation and problem solving on blood glucose concentrations following a standardised carbohydrate loading. JARCP. J Aging Res Clin Pract 2014; (1): 14-8.
[43]
Pfützner A, Mitri M, Musholt PB, et al. Clinical assessment of the accuracy of blood glucose measurement devices. Curr Med Res Opin 2012; 28(4): 525-31.
[http://dx.doi.org/10.1185/03007995.2012.673479] [PMID: 22435798]
[44]
Hollis AR, Dallap Schaer BL, Boston RC, Wilkins PA. Comparison of the Accu-Chek Aviva point-of-care glucometer with blood gas and laboratory methods of analysis of glucose measurement in equine emergency patients. J Vet Intern Med 2008; 22(5): 1189-95.
[http://dx.doi.org/10.1111/j.1939-1676.2008.0148.x] [PMID: 18638018]
[45]
Bnouham M, Merhfour FZ, Ziyyat A, Mekhfi H, Aziz M, Legssyer A. Antihyperglycemic activity of the aqueous extract of Urtica dioica. Fitoterapia 2003; 74(7-8): 677-81.
[http://dx.doi.org/10.1016/S0367-326X(03)00182-5] [PMID: 14630172]
[46]
Gülçin İ, Küfrevioǧlu Öİ, Oktay M, Büyükokuroǧlu ME. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J Ethnopharmacol 2004; 90(2-3): 205-15.
[http://dx.doi.org/10.1016/j.jep.2003.09.028] [PMID: 15013182]
[47]
Bourgeois C, Leclerc ÉA, Corbin C, et al. Nettle (Urtica dioica L.) as a source of antioxidant and anti-aging phytochemicals for cosmetic applications. C R Chim 2016; 19(9): 1090-100.
[http://dx.doi.org/10.1016/j.crci.2016.03.019]
[48]
De Vico G, Guida V, Carella F. Urtica dioica (Stinging Nettle): A neglected plant with emerging growth promoter/immunostimulant properties for farmed fish. Front Physiol 2018; 9(285): 285.
[http://dx.doi.org/10.3389/fphys.2018.00285] [PMID: 29632497]
[49]
Adhikari BM, Bajracharya A, Shrestha AK. Comparison of nutritional properties of Stinging nettle (Urtica dioica) flour with wheat and barley flours. Food Sci Nutr 2016; 4(1): 119-24.
[http://dx.doi.org/10.1002/fsn3.259] [PMID: 26788318]
[50]
Kregiel D, Pawlikowska E, Antolak H. Urtica spp.: Ordinary plants with extraordinary properties. Molecules 2018; 23(7): 1664.
[http://dx.doi.org/10.3390/molecules23071664] [PMID: 29987208]
[51]
Cao J, Li C, Zhang P, Cao X, Huang T, Bai Y, et al. Antidiabetic effect of burdock (Arctium lappa L.) root ethanolic extract on streptozotocin-induced diabetic rats. Afr J Biotechnol 2012; 11(37): 9079-85.
[52]
Mahmudzadeh M, Yari H, Ramezanzadeh B, Mahdavian M. Highly potent radical scavenging-anti-oxidant activity of biologically reduced graphene oxide using Nettle extract as a green bio-genic amines-based reductants source instead of hazardous hydrazine hydrate. J Hazard Mater 2019; 371: 609-24.
[http://dx.doi.org/10.1016/j.jhazmat.2019.03.046] [PMID: 30889458]
[53]
Khalili N, Fereydoonzadeh R, Mohtashami R, Mehrzadi S, Heydari M, Huseini HF. Silymarin, olibanum, and nettle, a mixed herbal formulation in the treatment of type II diabetes: A randomized, double-blind, placebo-controlled, clinical trial. J Evid Based Complementary Altern Med 2017; 22(4): 603-8.
[http://dx.doi.org/10.1177/2156587217696929] [PMID: 29228792]
[54]
Vengerovskii AI, Yakimova TV, Nasanova ON. Hypolipidemic action of medicinal plant extracts for experimental diabetes mellitus. Pharm Chem J 2019; 53(3): 239-42.
[http://dx.doi.org/10.1007/s11094-019-01986-1]
[55]
Hussain F, Birch DJS, Pickup JC. Glucose sensing based on the intrinsic fluorescence of sol-gel immobilized yeast hexokinase. Anal Biochem 2005; 339(1): 137-43.
[http://dx.doi.org/10.1016/j.ab.2005.01.016] [PMID: 15766720]
[56]
Ashiani D, Keihan AH, Rashidiani J, Dashtestani F, Eskandari K. Oriented T4 bacteriophage immobilization for recognition of Escherichia coli in capacitance method. IInt. J Electrochem Soc 2016; 11(12): 10087-95.
[57]
Baghayeri M, Veisi H, Ghanei-Motlagh M. Amperometric glucose biosensor based on immobilization of glucose oxidase on a magnetic glassy carbon electrode modified with a novel magnetic nanocomposite. Sens Actuators B Chem 2017; 249: 321-30.
[http://dx.doi.org/10.1016/j.snb.2017.04.100]
[58]
Jędrzak A, Rębiś T, Klapiszewski Ł, Zdarta J, Milczarek G, Jesionowski T. Carbon paste electrode based on functional GOx/silica-lignin system to prepare an amperometric glucose biosensor. Sens Actuators B Chem 2018; 256: 176-85.
[http://dx.doi.org/10.1016/j.snb.2017.10.079]
[59]
Rassas I, Braiek M, Bonhomme A, et al. Voltammetric glucose biosensor based on glucose oxidase encapsulation in a chitosan-kappa-carrageenan polyelectrolyte complex. Mater Sci Eng C 2019; 95: 152-9.
[http://dx.doi.org/10.1016/j.msec.2018.10.078] [PMID: 30573236]
[60]
Yoon J, Lee SN, Shin MK, et al. Flexible electrochemical glucose biosensor based on GOx/gold/MoS2/gold nanofilm on the polymer electrode. Biosens Bioelectron 2019; 140: 111343.
[http://dx.doi.org/10.1016/j.bios.2019.111343] [PMID: 31150985]
[61]
Al-Sagur H, Komathi S. Karakaş H, et al. A glucose biosensor based on novel Lutetium bis-phthalocyanine incorporated silica-polyaniline conducting nanobeads. Biosens Bioelectron 2018; 102: 637-45.
[http://dx.doi.org/10.1016/j.bios.2017.12.004] [PMID: 29253816]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy