Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Montelukast Inhibits Lung Cancer Cell Migration by Suppressing Cysteinyl Leukotriene Receptor 1 Expression In vitro

Author(s): Yisheng Chen, Jinye Zhang and Shuo Wei*

Volume 24, Issue 10, 2023

Published on: 27 December, 2022

Page: [1335 - 1342] Pages: 8

DOI: 10.2174/1389201024666221207143513

open access plus

Open Access Journals Promotions 2
Abstract

Background: Lung cancer is a major threat to public health and remains difficult to treat. Repositioning of existing drugs has emerged as a therapeutic strategy in lung cancer. Clinically, low-dose montelukast has been used to treat asthma.

Objective: We evaluated the potential of using montelukast to treat lung cancer.

Methods: Migration was detected using wound-healing and Transwell assays, the expression of CysLT1 using western blotting, and subcellular localization of CysLT1 using immunofluorescence. CRISPR/Cas9 technology was used to further investigate the function of CysLT1.

Results: Subcellular localization staining showed that the CysLT1 distribution varied in murine and human lung cancer cell lines. Furthermore, montelukast suppressed CysLT1 expression in lung cancer cells. The treated cells also showed weaker migration ability compared with control cells. Knockout of CysLT1 using CRISPR/Cas9 editing in A549 cells further impaired the cell migration ability.

Conclusion: Montelukast inhibits the migration of lung cancer cells by suppressing CysLT1 expression, demonstrating the potential of using CysLT1 as a therapeutic target in lung cancer.

Keywords: Lung cancer, montelukast, CRISPR/Cas9, CysLT1, migration, drug repositioning.

« Previous
Graphical Abstract
[1]
Gao, S.; Li, N.; Wang, S.; Zhang, F.; Wei, W.; Li, N.; Bi, N.; Wang, Z.; He, J. Lung cancer in people’s Republic of China. J. Thorac. Oncol., 2020, 15(10), 1567-1576.
[http://dx.doi.org/10.1016/j.jtho.2020.04.028] [PMID: 32981600]
[2]
Hosonaga, M.; Saya, H.; Arima, Y. Molecular and cellular mechanisms underlying brain metastasis of breast cancer. Cancer Metastasis Rev., 2020, 39(3), 711-720.
[http://dx.doi.org/10.1007/s10555-020-09881-y] [PMID: 32399646]
[3]
Boire, A.; Brastianos, P.K.; Garzia, L.; Valiente, M. Brain metastasis. Nat. Rev. Cancer, 2020, 20(1), 4-11.
[http://dx.doi.org/10.1038/s41568-019-0220-y] [PMID: 31780784]
[4]
Yousefi, M.; Bahrami, T.; Salmaninejad, A.; Nosrati, R.; Ghaffari, P.; Ghaffari, S.H. Lung cancer-associated brain metastasis: Molecular mechanisms and therapeutic options. Cell. Oncol., 2017, 40(5), 419-441.
[http://dx.doi.org/10.1007/s13402-017-0345-5] [PMID: 28921309]
[5]
Page, S.; Milner-Watts, C.; Perna, M.; Janzic, U.; Vidal, N.; Kaudeer, N.; Ahmed, M.; McDonald, F.; Locke, I.; Minchom, A.; Bhosle, J.; Welsh, L.; O’Brien, M. Systemic treatment of brain metastases in non-small cell lung cancer. Eur. J. Cancer, 2020, 132, 187-198.
[http://dx.doi.org/10.1016/j.ejca.2020.03.006] [PMID: 32380429]
[6]
Du, W.; Zhu, J.; Zeng, Y.; Liu, T.; Zhang, Y.; Cai, T.; Fu, Y.; Zhang, W.; Zhang, R.; Liu, Z.; Huang, J. KPNB1-mediated nuclear transloca-tion of PD-L1 promotes non-small cell lung cancer cell proliferation via the Gas6/MerTK signaling pathway. Cell Death Differ., 2021, 28(4), 1284-1300.
[http://dx.doi.org/10.1038/s41418-020-00651-5] [PMID: 33139930]
[7]
Ramalingam, S.S.; Vansteenkiste, J.; Planchard, D.; Cho, B.C.; Gray, J.E.; Ohe, Y.; Zhou, C.; Reungwetwattana, T.; Cheng, Y.; Che-waskulyong, B.; Shah, R.; Cobo, M.; Lee, K.H.; Cheema, P.; Tiseo, M.; John, T.; Lin, M.C.; Imamura, F.; Kurata, T.; Todd, A.; Hodge, R.; Saggese, M.; Rukazenkov, Y.; Soria, J.C. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N. Engl. J. Med., 2020, 382(1), 41-50.
[http://dx.doi.org/10.1056/NEJMoa1913662] [PMID: 31751012]
[8]
Todoric, J.; Antonucci, L.; Karin, M. Targeting inflammation in cancer prevention and therapy. Cancer Prev. Res., 2016, 9(12), 895-905.
[http://dx.doi.org/10.1158/1940-6207.CAPR-16-0209] [PMID: 27913448]
[9]
Cavanagh, M.M.; Weyand, C.M.; Goronzy, J.J. Chronic inflammation and aging: DNA damage tips the balance. Curr. Opin. Immunol., 2012, 24(4), 488-493.
[http://dx.doi.org/10.1016/j.coi.2012.04.003] [PMID: 22565047]
[10]
Kawanishi, S.; Ohnishi, S.; Ma, N.; Hiraku, Y.; Murata, M. Crosstalk between DNA damage and inflammation in the multiple steps of carcinogenesis. Int. J. Mol. Sci., 2017, 18(8), 1808.
[http://dx.doi.org/10.3390/ijms18081808] [PMID: 28825631]
[11]
Gomes, M.; Teixeira, A.L.; Coelho, A.; Araújo, A.; Medeiros, R. The role of inflammation in lung cancer. Adv. Exp. Med. Biol., 2014, 816, 1-23.
[http://dx.doi.org/10.1007/978-3-0348-0837-8_1] [PMID: 24818717]
[12]
Horn, V.; Triantafyllopoulou, A. DNA damage signaling and polyploid macrophages in chronic inflammation. Curr. Opin. Immunol., 2018, 50, 55-63.
[http://dx.doi.org/10.1016/j.coi.2017.11.002] [PMID: 29202328]
[13]
Tian, W.; Jiang, X.; Kim, D.; Guan, T.; Nicolls, M.R.; Rockson, S.G. Leukotrienes in tumor-associated inflammation. Front. Pharmacol., 2020, 11, 1289.
[http://dx.doi.org/10.3389/fphar.2020.01289] [PMID: 32973519]
[14]
Yamamoto, T.; Miyata, J.; Arita, M.; Fukunaga, K.; Kawana, A. Current state and future prospect of the therapeutic strategy targeting cys-teinyl leukotriene metabolism in asthma. Respir. Investig., 2019, 57(6), 534-543.
[http://dx.doi.org/10.1016/j.resinv.2019.08.003] [PMID: 31591069]
[15]
Lukic, A.; Wahlund, C.J.E.; Gómez, C.; Brodin, D.; Samuelsson, B.; Wheelock, C.E.; Gabrielsson, S.; Rådmark, O. Exosomes and cells from lung cancer pleural exudates transform LTC4 to LTD4, promoting cell migration and survival via CysLT1. Cancer Lett., 2019, 444, 1-8.
[http://dx.doi.org/10.1016/j.canlet.2018.11.033] [PMID: 30508568]
[16]
Yokomizo, T.; Nakamura, M.; Shimizu, T. Leukotriene receptors as potential therapeutic targets. J. Clin. Invest., 2018, 128(7), 2691-2701.
[http://dx.doi.org/10.1172/JCI97946] [PMID: 29757196]
[17]
Wendell, S.G.; Fan, H.; Zhang, C. G protein-coupled receptors in asthma therapy: Pharmacology and drug action. Pharmacol. Rev., 2020, 72(1), 1-49.
[http://dx.doi.org/10.1124/pr.118.016899] [PMID: 31767622]
[18]
Piromkraipak, P.; Sangpairoj, K.; Tirakotai, W.; Chaithirayanon, K.; Unchern, S.; Supavilai, P.; Power, C.; Vivithanaporn, P. Cysteinyl leukotriene receptor antagonists inhibit migration, invasion, and expression of MMP-2/9 in human glioblastoma. Cell. Mol. Neurobiol., 2018, 38(2), 559-573.
[http://dx.doi.org/10.1007/s10571-017-0507-z] [PMID: 28600709]
[19]
Tsai, M.J.; Chang, W.A.; Tsai, P.H.; Wu, C.Y.; Ho, Y.W.; Yen, M.C.; Lin, Y.S.; Kuo, P.L.; Hsu, Y.L. Montelukast induces apoptosis-inducing factor-mediated cell death of lung cancer cells. Int. J. Mol. Sci., 2017, 18(7), 1353.
[http://dx.doi.org/10.3390/ijms18071353] [PMID: 28672809]
[20]
Zhu, L.; Maruvada, R.; Sapirstein, A.; Peters-Golden, M.; Kim, K.S. Cysteinyl leukotrienes as novel host factors facilitating Cryptococcus neoformans penetration into the brain. Cell. Microbiol., 2017, 19(3)e12661
[http://dx.doi.org/10.1111/cmi.12661] [PMID: 27573789]
[21]
Landskron, G.; De la Fuente, M.; Thuwajit, P.; Thuwajit, C.; Hermoso, M.A. Chronic inflammation and cytokines in the tumor microenvi-ronment. J. Immunol. Res., 2014, 2014, 1-19.
[http://dx.doi.org/10.1155/2014/149185] [PMID: 24901008]
[22]
Tsai, M.J.; Wu, P.H.; Sheu, C.C.; Hsu, Y.L.; Chang, W.A.; Hung, J.Y.; Yang, C.J.; Yang, Y.H.; Kuo, P.L.; Huang, M.S. Cysteinyl leukotri-ene receptor antagonists decrease cancer risk in asthma patients. Sci. Rep., 2016, 6(1), 23979.
[http://dx.doi.org/10.1038/srep23979] [PMID: 27052782]
[23]
Nozaki, M.; Yoshikawa, M.; Ishitani, K.; Kobayashi, H.; Houkin, K.; Imai, K.; Ito, Y.; Muraki, T. Cysteinyl leukotriene receptor antago-nists inhibit tumor metastasis by inhibiting capillary permeability. Keio J. Med., 2010, 59(1), 10-18.
[http://dx.doi.org/10.2302/kjm.59.10] [PMID: 20375653]
[24]
Salim, T.; Sand-Dejmek, J.; Sjölander, A. The inflammatory mediator leukotriene D4 induces subcellular β-catenin translocation and mi-gration of colon cancer cells. Exp. Cell Res., 2014, 321(2), 255-266.
[http://dx.doi.org/10.1016/j.yexcr.2013.10.021] [PMID: 24211746]
[25]
Matsuyama, M.; Hayama, T.; Funao, K.; Kawahito, Y.; Sano, H.; Takemoto, Y.; Nakatani, T.; Yoshimura, R. Overexpression of cysteinyl LT1 receptor in prostate cancer and CysLT1R antagonist inhibits prostate cancer cell growth through apoptosis. Oncol. Rep., 2007, 18(1), 99-104.
[http://dx.doi.org/10.3892/or.18.1.99] [PMID: 17549353]
[26]
Tang, C.; Lei, H.; Zhang, J.; Liu, M.; Jin, J.; Luo, H.; Xu, H.; Wu, Y. Montelukast inhibits hypoxia inducible factor-1α translation in pros-tate cancer cells. Cancer Biol. Ther., 2018, 19(8), 715-721.
[http://dx.doi.org/10.1080/15384047.2018.1451279] [PMID: 29708817]
[27]
Eddy, C.Z.; Raposo, H.; Manchanda, A.; Wong, R.; Li, F.; Sun, B. Morphodynamics facilitate cancer cells to navigate 3D extracellular matrix. Sci. Rep., 2021, 11(1), 20434.
[http://dx.doi.org/10.1038/s41598-021-99902-9] [PMID: 34650167]

© 2024 Bentham Science Publishers | Privacy Policy