Review Article

Histone Deacetylase Inhibitors as Cognitive Enhancers and Modifiers of Mood and Behavior

Author(s): Dilipkumar Pal*, Pooja Sahu, Abhishek K. Mishra, Albert Hagelgans and Olga Sukocheva*

Volume 24, Issue 9, 2023

Published on: 20 January, 2023

Page: [728 - 750] Pages: 23

DOI: 10.2174/1389450124666221207090108

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Epigenetic regulation of gene signalling is one of the fundamental molecular mechanisms for the generation and maintenance of cellular memory. Histone acetylation is a common epigenetic mechanism associated with increased gene transcription in the central nervous system (CNS). Stimulation of gene transcription by histone acetylation is important for the development of CNS-based long-term memory. Histone acetylation is a target for cognitive enhancement via the application of histone deacetylase (HDAC) inhibitors. The promising potential of HDAC inhibitors has been observed in the treatment of several neurodevelopmental and neurodegenerative diseases.

Objective: This study assessed the current state of HDAC inhibition as an approach to cognitive enhancement and treatment of neurodegenerative diseases. Our analysis provides insights into the mechanism of action of HDAC inhibitors, associated epigenetic priming, and describes the therapeutic success and potential complications after unsupervised use of the inhibitors.

Results and Conclusion: Several chromatin-modifying enzymes play key roles in the regulation of cognitive processes. The importance of HDAC signaling in the brain is highlighted in this review. Recent advancements in the field of cognitive epigenetics are supported by the successful development of various HDAC inhibitors, demonstrating effective treatment of mood-associated disorders. The current review discusses the therapeutic potential of HDAC inhibition and observed complications after mood and cognitive enhancement therapies.

Keywords: Histone deacetylase, HDAC inhibitors, epigenetic modification, memory, small-molecule inhibitors, epigenetic priming.

Graphical Abstract
[1]
Whittle N, Singewald N. HDAC inhibitors as cognitive enhancers in fear, anxiety and trauma therapy: where do we stand? Biochem Soc Trans 2014; 42(2): 569-81.
[http://dx.doi.org/10.1042/BST20130233] [PMID: 24646280]
[2]
Perla A, Fratini L, Cardoso PS, et al. Histone deacetylase inhibitors in pediatric brain cancers: biological activities and therapeutic potential. Front Cell Dev Biol 2020; 8: 546.
[http://dx.doi.org/10.3389/fcell.2020.00546] [PMID: 32754588]
[3]
Fischer A, Sananbenesi F, Mungenast A, Tsai LH. Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol Sci 2010; 31(12): 605-17.
[http://dx.doi.org/10.1016/j.tips.2010.09.003] [PMID: 20980063]
[4]
Meagher RB. ‘Memory and molecular turnover,’ 30 years after inception. Epigenetics Chromatin 2014; 7(1): 37.
[http://dx.doi.org/10.1186/1756-8935-7-37] [PMID: 25525471]
[5]
D’Urso A, Brickner JH. Mechanisms of epigenetic memory. Trends Genet 2014; 30(6): 230-6.
[http://dx.doi.org/10.1016/j.tig.2014.04.004] [PMID: 24780085]
[6]
Kim S, Kaang BK. Epigenetic regulation and chromatin remodeling in learning and memory. Exp Mol Med 2017; 49(1): e281.
[http://dx.doi.org/10.1038/emm.2016.140] [PMID: 28082740]
[7]
Gräff J, Tsai LH. The potential of HDAC inhibitors as cognitive enhancers. Annu Rev Pharmacol Toxicol 2013; 53(1): 311-30.
[http://dx.doi.org/10.1146/annurev-pharmtox-011112-140216] [PMID: 23294310]
[8]
Burns AM, Farinelli-Scharly M, Hugues-Ascery S, Sanchez-Mut JV, Santoni G, Gräff J. The HDAC inhibitor CI-994 acts as a molecular memory aid by facilitating synaptic and intracellular communication after learning. Proc Natl Acad Sci 2022; 119(22): e2116797119.
[http://dx.doi.org/10.1073/pnas.2116797119] [PMID: 35613054]
[9]
Badrikoohi M, Esmaeili-bandboni A, Babaei P. Simultaneous administration of bromodomain and histone deacetylase I inhibitors alleviates cognition deficit in Alzheimer’s model of rats. Brain Res Bull 2022; 179: 49-56.
[http://dx.doi.org/10.1016/j.brainresbull.2021.12.004] [PMID: 34915044]
[10]
Yang L, Hao JR, Gao Y, et al. HDAC3 of dorsal hippocampus induces postoperative cognitive dysfunction in aged mice. Behav Brain Res 2022; 433: 114002.
[http://dx.doi.org/10.1016/j.bbr.2022.114002] [PMID: 35810999]
[11]
Pal D, Nandi M. CNS activities of Celesia coromandeliane Vahl. in mice. Acta Pol Pharm 2005; 62(5): 355-61.
[PMID: 16459484]
[12]
Daśko M, de Pascual-Teresa B, Ortín I, Ramos A. HDAC inhibitors: Innovative strategies for their design and applications. Molecules 2022; 27(3): 715.
[http://dx.doi.org/10.3390/molecules27030715] [PMID: 35163980]
[13]
Ghosh B, Zhao WN, Reis SA, et al. Dissecting structure–activity-relationships of crebinostat: Brain penetrant HDAC inhibitors for neuroepigenetic regulation. Bioorg Med Chem Lett 2016; 26(4): 1265-71.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.022] [PMID: 26804233]
[14]
Didonna A, Opal P. The promise and perils of HDAC inhibitors in neurodegeneration. Ann Clin Transl Neurol 2015; 2(1): 79-101.
[http://dx.doi.org/10.1002/acn3.147] [PMID: 25642438]
[15]
Grayson DR, Kundakovic M, Sharma RP. Is there a future for histone deacetylase inhibitors in the pharmacotherapy of psychiatric disorders? Mol Pharmacol 2010; 77(2): 126-35.
[http://dx.doi.org/10.1124/mol.109.061333] [PMID: 19917878]
[16]
Gupta S, Kim SY, Artis S, et al. Histone methylation regulates memory formation. J Neurosci 2010; 30(10): 3589-99.
[http://dx.doi.org/10.1523/JNEUROSCI.3732-09.2010] [PMID: 20219993]
[17]
Chavan AV, Somani RR. HDAC inhibitors-new generation of target specific treatment. Mini Rev Med Chem 2010; 10(13): 1263-76.
[http://dx.doi.org/10.2174/13895575110091263] [PMID: 20701588]
[18]
Mondal A, Bose S, Banerjee S, Pal D. Role of γ-secretase inhibitors for the treatment of diverse disease conditions through inhibition of notch signalling pathway. Curr Drug Target 2021; 22(15): 1799-807.
[http://dx.doi.org/10.2174/1389450122666210515161312]
[19]
Bogner-Strauss JG. N-Acetylaspartate metabolism outside the brain: lipogenesis, histone acetylation, and cancer. Front Endocrinol 2017; 8: 240.
[http://dx.doi.org/10.3389/fendo.2017.00240] [PMID: 28979238]
[20]
Sun Z, Feng D, Fang B, et al. Deacetylase-independent function of HDAC3 in transcription and metabolism requires nuclear receptor corepressor. Mol Cell 2013; 52(6): 769-82.
[http://dx.doi.org/10.1016/j.molcel.2013.10.022] [PMID: 24268577]
[21]
Turner BM. Nucleosome signalling; An evolving concept. Biochim Biophys Acta Gene Regul Mech 2014; 1839(8): 623-6.
[http://dx.doi.org/10.1016/j.bbagrm.2014.01.001] [PMID: 24412235]
[22]
Pinto D, Pagé V, Fisher RP, Tanny JC. New connections between ubiquitylation and methylation in the co-transcriptional histone modification network. Curr Genet 2021; 67(5): 695-705.
[http://dx.doi.org/10.1007/s00294-021-01196-x] [PMID: 34089069]
[23]
Schneider A, Chatterjee S, Bousiges O, et al. Acetyltransferases (HATs) as targets for neurological therapeutics. Neurotherapeutics 2013; 10(4): 568-88.
[http://dx.doi.org/10.1007/s13311-013-0204-7] [PMID: 24006237]
[24]
Collins BE, Greer CB, Coleman BC, Sweatt JD. Histone H3 lysine K4 methylation and its role in learning and memory. Epigenetics Chromatin 2019; 12(1): 7.
[http://dx.doi.org/10.1186/s13072-018-0251-8] [PMID: 30616667]
[25]
Fan SJ, Sun AB, Liu L. Epigenetic modulation during hippocampal development. Biomed Rep 2018; 9(6): 463-73.
[http://dx.doi.org/10.3892/br.2018.1160] [PMID: 30546873]
[26]
Koutelou E, Farria AT, Dent SYR. Complex functions of Gcn5 and Pcaf in development and disease. Biochim Biophys Acta Gene Regul Mech 2021; 1864(2): 194609.
[http://dx.doi.org/10.1016/j.bbagrm.2020.194609] [PMID: 32730897]
[27]
Doke M, Pendyala G, Samikkannu T. Psychostimulants and opioids differentially influence the epigenetic modification of histone acetyltransferase and histone deacetylase in astrocytes. PLoS One 2021; 16(6): e0252895.
[http://dx.doi.org/10.1371/journal.pone.0252895] [PMID: 34115777]
[28]
Beaver M, Bhatnagar A, Panikker P, et al. Disruption of Tip60 HAT mediated neural histone acetylation homeostasis is an early common event in neurodegenerative diseases. Sci Rep 2020; 10(1): 18265.
[http://dx.doi.org/10.1038/s41598-020-75035-3] [PMID: 33106538]
[29]
Stolzenberg DS, Stevens JS, Rissman EF. Histone deacetylase inhibition induces long-lasting changes in maternal behavior and gene expression in female mice. Endocrinology 2014; 155(9): 3674-83.
[http://dx.doi.org/10.1210/en.2013-1946] [PMID: 24932804]
[30]
Ganai SA, Banday S, Farooq Z, Altaf M. Modulating epigenetic HAT activity for reinstating acetylation homeostasis: A promising therapeutic strategy for neurological disorders. Pharmacol Ther 2016; 166: 106-22.
[http://dx.doi.org/10.1016/j.pharmthera.2016.07.001] [PMID: 27411674]
[31]
Pal D, Mazumder UK. Isolation of compound and CNS depressant activities of Mikania scandens willd with special emphasis to brain biogenic amines in mice. Indian J Exp Biol 2014; 52(12): 1186-94.
[PMID: 25651612]
[32]
Morris MJ, Mahgoub M, Na ES, Pranav H, Monteggia LM. Loss of histone deacetylase 2 improves working memory and accelerates extinction learning. J Neurosci 2013; 33(15): 6401-11.
[http://dx.doi.org/10.1523/JNEUROSCI.1001-12.2013] [PMID: 23575838]
[33]
Gräff J, Kim D, Dobbin MM, Tsai LH. Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiol Rev 2011; 91(2): 603-49.
[http://dx.doi.org/10.1152/physrev.00012.2010] [PMID: 21527733]
[34]
Roth TL, Roth ED, Sweatt JD. Epigenetic regulation of genes in learning and memory. Essays Biochem 2010; 48(1): 263-74.
[http://dx.doi.org/10.1042/bse0480263] [PMID: 20822498]
[35]
Rudenko A, Tsai LH. Epigenetic regulation in memory and cognitive disorders. Neuroscience 2014; 264: 51-63.
[http://dx.doi.org/10.1016/j.neuroscience.2012.12.034] [PMID: 23291453]
[36]
Gräff J, Mansuy IM. Epigenetic codes in cognition and behaviour. Behav Brain Res 2008; 192(1): 70-87.
[http://dx.doi.org/10.1016/j.bbr.2008.01.021] [PMID: 18353453]
[37]
Pal D, Mukherjee S, Song IH, Nimse SB. GSK-3 inhibitors: a new class of drugs for alzheimer’s disease treatment. Curr Drug Targets 2021; 22(15): 1725-37.
[http://dx.doi.org/10.2174/1389450122666210114095307] [PMID: 33459229]
[38]
Wagner FF, Zhang YL, Fass DM, et al. Kinetically selective inhibitors of histone deacetylase 2 (HDAC2) as cognition enhancers. Chem Sci (Camb) 2015; 6(1): 804-15.
[http://dx.doi.org/10.1039/C4SC02130D] [PMID: 25642316]
[39]
Park HS, Kim J, Ahn SH, Ryu HY. Epigenetic targeting of histone deacetylases in diagnostics and treatment of depression. Int J Mol Sci 2021; 22(10): 5398.
[http://dx.doi.org/10.3390/ijms22105398] [PMID: 34065586]
[40]
Højfeldt JW, Agger K, Helin K. Histone lysine demethylases as targets for anticancer therapy. Nat Rev Drug Discov 2013; 12(12): 917-30.
[http://dx.doi.org/10.1038/nrd4154] [PMID: 24232376]
[41]
Wang Y, He J, Liao M, et al. An overview of Sirtuins as potential therapeutic target: Structure, function and modulators. Eur J Med Chem 2019; 161: 48-77.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.028] [PMID: 30342425]
[42]
Porter NJ, Christianson DW. Structure, mechanism, and inhibition of the zinc-dependent histone deacetylases. Curr Opin Struct Biol 2019; 59: 9-18.
[http://dx.doi.org/10.1016/j.sbi.2019.01.004] [PMID: 30743180]
[43]
de Castro IJ, Amin HA, Vinciotti V, Vagnarelli P. Network of phosphatases and HDAC complexes at repressed chromatin. Cell Cycle 2017; 16(21): 2011-7.
[http://dx.doi.org/10.1080/15384101.2017.1371883] [PMID: 28910568]
[44]
Karagianni P, Wong J. HDAC3: taking the SMRT-N-CoRrect road to repression. Oncogene 2007; 26(37): 5439-49.
[http://dx.doi.org/10.1038/sj.onc.1210612] [PMID: 17694085]
[45]
Rahmani G, Sameri S, Abbasi N, Abdi M, Najafi R. The clinical significance of histone deacetylase-8 in human breast cancer. Pathol Res Pract 2021; 220: 153396.
[http://dx.doi.org/10.1016/j.prp.2021.153396] [PMID: 33691240]
[46]
Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 2009; 10(1): 32-42.
[http://dx.doi.org/10.1038/nrg2485] [PMID: 19065135]
[47]
Kazantsev AG, Thompson LM. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 2008; 7(10): 854-68.
[http://dx.doi.org/10.1038/nrd2681] [PMID: 18827828]
[48]
Zhang CL, McKinsey TA, Olson EN. Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol Cell Biol 2002; 22(20): 7302-12.
[http://dx.doi.org/10.1128/MCB.22.20.7302-7312.2002] [PMID: 12242305]
[49]
Fischle W, Dequiedt F, Hendzel MJ, et al. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell 2002; 9(1): 45-57.
[http://dx.doi.org/10.1016/S1097-2765(01)00429-4] [PMID: 11804585]
[50]
Zhang Y, Kwon S, Yamaguchi T, et al. Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol Cell Biol 2008; 28(5): 1688-701.
[http://dx.doi.org/10.1128/MCB.01154-06] [PMID: 18180281]
[51]
English K, Barton MC. HDAC6: A key link between mitochondria and development of peripheral neuropathy. Front Mol Neurosci 2021; 14: 684714.
[http://dx.doi.org/10.3389/fnmol.2021.684714] [PMID: 34531721]
[52]
Zhou S, Zeng H, Huang J, et al. Epigenetic regulation of melanogenesis. Ageing Res Rev 2021; 69: 101349.
[http://dx.doi.org/10.1016/j.arr.2021.101349] [PMID: 33984527]
[53]
Lakshmaiah KC, Jacob LA, Aparna S, Lokanatha D, Saldanha SC. Epigenetic therapy of cancer with histone deacetylase inhibitors. J Cancer Res Ther 2014; 10(3): 469-78.
[http://dx.doi.org/10.4103/0973-1482.137937] [PMID: 25313724]
[54]
Liu SS, Wu F, Jin YM, Chang WQ, Xu TM. HDAC11: a rising star in epigenetics. Biomed Pharmacother 2020; 131: 110607.
[http://dx.doi.org/10.1016/j.biopha.2020.110607] [PMID: 32841898]
[55]
Yanginlar C, Logie C. HDAC11 is a regulator of diverse immune functions. Biochim Biophys Acta Gene Regul Mech 2018; 1861(1): 54-9.
[http://dx.doi.org/10.1016/j.bbagrm.2017.12.002] [PMID: 29222071]
[56]
Yang H, Chen L, Sun Q, Yao F, Muhammad S, Sun C. The role of HDAC11 in obesity‐related metabolic disorders: A critical review. J Cell Physiol 2021; 236(8): 5582-91.
[http://dx.doi.org/10.1002/jcp.30286] [PMID: 33481312]
[57]
Chwang WB, Arthur JS, Schumacher A, Sweatt JD. The nuclear kinase mitogen- and stress-activated protein kinase 1 regulates hippocampal chromatin remodeling in memory formation. J Neurosci 2007; 27(46): 12732-42.
[http://dx.doi.org/10.1523/JNEUROSCI.2522-07.2007] [PMID: 18003853]
[58]
Takase K, Oda S, Kuroda M, Funato H. Monoaminergic and neuropeptidergic neurons have distinct expression profiles of histone deacetylases. PLoS One 2013; 8(3): e58473.
[http://dx.doi.org/10.1371/journal.pone.0058473] [PMID: 23469282]
[59]
Litke C, Bading H, Mauceri D. Histone deacetylase 4 shapes neuronal morphology via a mechanism involving regulation of expression of vascular endothelial growth factor D. J Biol Chem 2018; 293(21): 8196-207.
[http://dx.doi.org/10.1074/jbc.RA117.001613] [PMID: 29632070]
[60]
Fitzsimons HL. The Class IIa histone deacetylase HDAC4 and neuronal function: Nuclear nuisance and cytoplasmic stalwart? Neurobiol Learn Mem 2015; 123: 149-58.
[http://dx.doi.org/10.1016/j.nlm.2015.06.006] [PMID: 26074448]
[61]
McKinsey TA. Therapeutic potential for HDAC inhibitors in the heart. Annu Rev Pharmacol Toxicol 2012; 52(1): 303-19.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134712] [PMID: 21942627]
[62]
Misztak P, Pańczyszyn-Trzewik P, Nowak G, Sowa-Kućma M. Epigenetic marks and their relationship with BDNF in the brain of suicide victims. PLoS One 2020; 15(9): e0239335.
[http://dx.doi.org/10.1371/journal.pone.0239335] [PMID: 32970734]
[63]
Cuadrado-Tejedor M, Garcia-Barroso C, Sanzhez-Arias J, et al. Concomitant histone deacetylase and phosphodiesterase 5 inhibition synergistically prevents the disruption in synaptic plasticity and it reverses cognitive impairment in a mouse model of Alzheimer’s disease. Clin Epigenetics 2015; 7(1): 108.
[http://dx.doi.org/10.1186/s13148-015-0142-9] [PMID: 26457123]
[64]
Srivani G, Sharvirala R, Veerareddy PR, Pal D, Kiran G. GSK-3 inhibitors as new leads to treat type-II diabetes. Curr Drug Targets 2021; 22(13): 1555-67.
[http://dx.doi.org/10.2174/1389450122666210120144428] [PMID: 33494669]
[65]
Bogucki OE, Craner JR, Berg SL, et al. Cognitive behavioral therapy for anxiety disorders: outcomes from a multi-state, multi-site primary care practice. J Anxiety Disord 2021; 78: 102345.
[http://dx.doi.org/10.1016/j.janxdis.2020.102345] [PMID: 33395601]
[66]
Oike Y, Hata A, Mamiya T, et al. Truncated CBP protein leads to classical Rubinstein-Taybi syndrome phenotypes in mice: implications for a dominant-negative mechanism. Hum Mol Genet 1999; 8(3): 387-96.
[http://dx.doi.org/10.1093/hmg/8.3.387] [PMID: 9949198]
[67]
Swank MW, Sweatt JD. Increased histone acetyltransferase and lysine acetyltransferase activity and biphasic activation of the ERK/RSK cascade in insular cortex during novel taste learning. J Neurosci 2001; 21(10): 3383-91.
[http://dx.doi.org/10.1523/JNEUROSCI.21-10-03383.2001] [PMID: 11331368]
[68]
Bourtchouladze R, Lidge R, Catapano R, et al. A mouse model of Rubinstein-Taybi syndrome: Defective long-term memory is ameliorated by inhibitors of phosphodiesterase 4. Proc Natl Acad Sci USA 2003; 100(18): 10518-22.
[http://dx.doi.org/10.1073/pnas.1834280100] [PMID: 12930888]
[69]
Alarcón JM, Malleret G, Touzani K, et al. Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 2004; 42(6): 947-59.
[http://dx.doi.org/10.1016/j.neuron.2004.05.021] [PMID: 15207239]
[70]
Korzus E, Rosenfeld MG, Mayford M. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 2004; 42(6): 961-72.
[http://dx.doi.org/10.1016/j.neuron.2004.06.002] [PMID: 15207240]
[71]
Haettig J, Stefanko DP, Multani ML, Figueroa DX, McQuown SC, Wood MA. HDAC inhibition modulates hippocampus-dependent long-term memory for object location in a CBP-dependent manner. Learn Mem 2011; 18(2): 71-9.
[http://dx.doi.org/10.1101/lm.1986911] [PMID: 21224411]
[72]
Oliveira AMM, Wood MA, McDonough CB, Abel T. Transgenic mice expressing an inhibitory truncated form of p300 exhibit long-term memory deficits. Learn Mem 2007; 14(9): 564-72.
[http://dx.doi.org/10.1101/lm.656907] [PMID: 17761541]
[73]
Vecsey CG, Hawk JD, Lattal KM, et al. Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J Neurosci 2007; 27(23): 6128-40.
[http://dx.doi.org/10.1523/JNEUROSCI.0296-07.2007] [PMID: 17553985]
[74]
Montgomery RL, Hsieh J, Barbosa AC, Richardson JA, Olson EN. Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc Natl Acad Sci USA 2009; 106(19): 7876-81.
[http://dx.doi.org/10.1073/pnas.0902750106] [PMID: 19380719]
[75]
Hagelkruys A, Lagger S, Krahmer J, et al. A single allele of Hdac2 but not Hdac1 is sufficient for normal mouse brain development in the absence of its paralog. Development 2014; 141(3): 604-16.
[http://dx.doi.org/10.1242/dev.100487] [PMID: 24449838]
[76]
Lee SJ, Lindsey S, Graves B, Yoo S, Olson JM, Langhans SA. Sonic hedgehog-induced histone deacetylase activation is required for cerebellar granule precursor hyperplasia in medulloblastoma. PLoS One 2013; 8(8): e71455.
[http://dx.doi.org/10.1371/journal.pone.0071455] [PMID: 23951168]
[77]
Grimes JA, Nielsen SJ, Battaglioli E, et al. The co-repressor mSin3A is a functional component of the REST-CoREST repressor complex. J Biol Chem 2000; 275(13): 9461-7.
[http://dx.doi.org/10.1074/jbc.275.13.9461] [PMID: 10734093]
[78]
Gräff J, Rei D, Guan JS, et al. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 2012; 483(7388): 222-6.
[http://dx.doi.org/10.1038/nature10849] [PMID: 22388814]
[79]
Uchida S, Hara K, Kobayashi A, et al. Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron 2011; 69(2): 359-72.
[http://dx.doi.org/10.1016/j.neuron.2010.12.023] [PMID: 21262472]
[80]
Walsh DM, Selkoe DJ. Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 2004; 44(1): 181-93.
[http://dx.doi.org/10.1016/j.neuron.2004.09.010] [PMID: 15450169]
[81]
Bredy TW, Wu H, Crego C, Zellhoefer J, Sun YE, Barad M. Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn Mem 2007; 14(4): 268-76.
[http://dx.doi.org/10.1101/lm.500907] [PMID: 17522015]
[82]
Lubin FD, Roth TL, Sweatt JD. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci 2008; 28(42): 10576-86.
[http://dx.doi.org/10.1523/JNEUROSCI.1786-08.2008] [PMID: 18923034]
[83]
Wang Y, Jia A, Ma W. Dexmedetomidine attenuates the toxicity of β amyloid on neurons and astrocytes by increasing BDNF production under the regulation of HDAC2 and HDAC5. Mol Med Rep 2018; 19(1): 533-40.
[http://dx.doi.org/10.3892/mmr.2018.9694] [PMID: 30483749]
[84]
Cieślik K, Sowa-Kućma M, Ossowska G, et al. Chronic unpredictable stress-induced reduction in the hippocampal brain-derived neurotrophic factor (BDNF) gene expression is antagonized by zinc treatment. Pharmacol Rep 2011; 63(2): 537-43.
[http://dx.doi.org/10.1016/S1734-1140(11)70520-5] [PMID: 21602609]
[85]
Chen KW, Chen L. Epigenetic regulation of BDNF gene during development and diseases. Int J Mol Sci 2017; 18(3): 571.
[http://dx.doi.org/10.3390/ijms18030571] [PMID: 28272318]
[86]
Chen WG, Chang Q, Lin Y, et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 2003; 302(5646): 885-9.
[http://dx.doi.org/10.1126/science.1086446] [PMID: 14593183]
[87]
Wang BY, Zhong Y, Zhao Z, Miao Y. Epigenetic suppression of hippocampal BDNF mediates the memory deficiency induced by amyloid fibrils. Pharmacol Biochem Behav 2014; 126: 83-9.
[http://dx.doi.org/10.1016/j.pbb.2014.09.009] [PMID: 25242807]
[88]
Hendrickx A, Pierrot N, Tasiaux B, et al. Epigenetic regulations of immediate early genes expression involved in memory formation by the amyloid precursor protein of Alzheimer disease. PLoS One 2014; 9(6): e99467.
[http://dx.doi.org/10.1371/journal.pone.0099467] [PMID: 24919190]
[89]
Ishimaru N, Fukuchi M, Hirai A, et al. Differential epigenetic regulation of BDNF and NT-3 genes by trichostatin A and 5-aza-2′-deoxycytidine in Neuro-2a cells. Biochem Biophys Res Commun 2010; 394(1): 173-7.
[http://dx.doi.org/10.1016/j.bbrc.2010.02.139] [PMID: 20188708]
[90]
Koppel I, Timmusk T. Differential regulation of Bdnf expression in cortical neurons by class-selective histone deacetylase inhibitors. Neuropharmacology 2013; 75: 106-15.
[http://dx.doi.org/10.1016/j.neuropharm.2013.07.015] [PMID: 23916482]
[91]
Zuccato C, Belyaev N, Conforti P, et al. Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington’s disease. J Neurosci 2007; 27(26): 6972-83.
[http://dx.doi.org/10.1523/JNEUROSCI.4278-06.2007] [PMID: 17596446]
[92]
Gräff J, Joseph NF, Horn ME, et al. Epigenetic priming of memory updating during reconsolidation to attenuate remote fear memories. Cell 2014; 156(1-2): 261-76.
[http://dx.doi.org/10.1016/j.cell.2013.12.020] [PMID: 24439381]
[93]
Ljubenkov PA, Edwards L, Iaccarino L, et al. Effect of the histone deacetylase inhibitor FRM-0334 on progranulin levels in patients with progranulin gene haploinsufficiency. JAMA Netw Open 2021; 4(9): e2125584.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.25584] [PMID: 34559230]
[94]
Finnin MS, Donigian JR, Cohen A, et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 1999; 401(6749): 188-93.
[http://dx.doi.org/10.1038/43710] [PMID: 10490031]
[95]
Gao J, Wang WY, Mao YW, et al. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 2010; 466(7310): 1105-9.
[http://dx.doi.org/10.1038/nature09271] [PMID: 20622856]
[96]
Kim D, Nguyen MD, Dobbin MM, et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 2007; 26(13): 3169-79.
[http://dx.doi.org/10.1038/sj.emboj.7601758] [PMID: 17581637]
[97]
Guidotti A, Auta J, Chen Y, et al. Epigenetic GABAergic targets in schizophrenia and bipolar disorder. Neuropharmacology 2011; 60(7-8): 1007-16.
[http://dx.doi.org/10.1016/j.neuropharm.2010.10.021] [PMID: 21074545]
[98]
Kilgore M, Miller CA, Fass DM, et al. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 2010; 35(4): 870-80.
[http://dx.doi.org/10.1038/npp.2009.197] [PMID: 20010553]
[99]
Ricobaraza A, Cuadrado-Tejedor M, Pérez-Mediavilla A, Frechilla D, Del Río J, García-Osta A. Phenylbutyrate ameliorates cognitive deficit and reduces tau pathology in an Alzheimer’s disease mouse model. Neuropsychopharmacology 2009; 34(7): 1721-32.
[http://dx.doi.org/10.1038/npp.2008.229] [PMID: 19145227]
[100]
Murphy KJ, Fox GB, Foley AG, et al. Pentyl-4-ynvalproic acid enhances both spatial and avoidance learning, and attenuates age-related NCAM-mediated neuroplastic decline within the rat medial temporal lobe. J Neurochem 2001; 78: 704-14.
[101]
O’Loinsigh ED, Gherardini LM, Gallagher HC, Foley AG, Murphy KJ, Regan CM. Differential enantioselective effects of pentyl-4-yn-valproate on spatial learning in the rat, and neurite outgrowth and cyclin D3 expression in vitro. J Neurochem 2004; 88(2): 370-9.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02158.x] [PMID: 14690525]
[102]
Han W, Guan W. Valproic acid: a promising therapeutic agent in glioma treatment. Front Oncol 2021; 11: 687362.
[http://dx.doi.org/10.3389/fonc.2021.687362] [PMID: 34568018]
[103]
Cappellacci L, Perinelli DR, Maggi F, Grifantini M, Petrelli R. Recent progress in histone deacetylase inhibitors as anticancer agents. Curr Med Chem 2020; 27(15): 2449-93.
[http://dx.doi.org/10.2174/0929867325666181016163110] [PMID: 30332940]
[104]
Wang XX, Wan RZ, Liu ZP. Recent advances in the discovery of potent and selective HDAC6 inhibitors. Eur J Med Chem 2018; 143: 1406-18.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.040] [PMID: 29133060]
[105]
Kwon P, Hsu M, Cohen D, Atadja P. HDAC inhibitors. Histone Deacetylases. E Verdin 2006; pp. 315-32.
[http://dx.doi.org/10.1385/1-59745-024-3:315]
[106]
Salminen A, Tapiola T, Korhonen P, Suuronen T. Neuronal apoptosis induced by histone deacetylase inhibitors. Brain Res Mol Brain Res 1998; 61(1-2): 203-6.
[http://dx.doi.org/10.1016/S0169-328X(98)00210-1] [PMID: 9795219]
[107]
Fujita Y, Morinobu S, Takei S, et al. Vorinostat, a histone deacetylase inhibitor, facilitates fear extinction and enhances expression of the hippocampal NR2B-containing NMDA receptor gene. J Psychiatr Res 2012; 46(5): 635-43.
[http://dx.doi.org/10.1016/j.jpsychires.2012.01.026] [PMID: 22364833]
[108]
Newmark HL, Lupton JR, Young CW. Butyrate as a differentiating agent: pharmacokinetics, analogues and current status. Cancer Lett 1994; 78(1-3): 1-5.
[http://dx.doi.org/10.1016/0304-3835(94)90023-X] [PMID: 8180951]
[109]
Tsuji N, Kobayashi M, Nagashima K, Wakisaka Y, Koizumi K. A new antifungal antibiotic, trichostatin. J Antibiot (Tokyo) 1976; 29(1): 1-6.
[http://dx.doi.org/10.7164/antibiotics.29.1] [PMID: 931784]
[110]
Yoshida M, Kijima M, Akita M, Beppu T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 1990; 265(28): 17174-9.
[http://dx.doi.org/10.1016/S0021-9258(17)44885-X] [PMID: 2211619]
[111]
Richon VM, Emiliani S, Verdin E, et al. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci USA 1998; 95(6): 3003-7.
[http://dx.doi.org/10.1073/pnas.95.6.3003] [PMID: 9501205]
[112]
Guan JS, Haggarty SJ, Giacometti E, et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 2009; 459(7243): 55-60.
[http://dx.doi.org/10.1038/nature07925] [PMID: 19424149]
[113]
McQuown SC, Barrett RM, Matheos DP, et al. HDAC3 is a critical negative regulator of long-term memory formation. J Neurosci 2011; 31(2): 764-74.
[http://dx.doi.org/10.1523/JNEUROSCI.5052-10.2011] [PMID: 21228185]
[114]
Hawk JD, Florian C, Abel T. Post-training intrahippocampal inhibition of class I histone deacetylases enhances long-term object-location memory. Learn Mem 2011; 18(6): 367-70.
[http://dx.doi.org/10.1101/lm.2097411] [PMID: 21576516]
[115]
Furumai R, Matsuyama A, Kobashi N, et al. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res 2002; 62(17): 4916-21.
[PMID: 12208741]
[116]
Aron JL, Parthun MR, Marcucci G, et al. Depsipeptide (FR901228) induces histone acetylation and inhibition of histone deacetylase in chronic lymphocytic leukemia cells concurrent with activation of caspase 8–mediated apoptosis and down-regulation of c-FLIP protein. Blood 2003; 102(2): 652-8.
[http://dx.doi.org/10.1182/blood-2002-12-3794] [PMID: 12649137]
[117]
Watkins CJ, Romero MR, Maria R, Ritchie J, Finn PW, Kalvinsh I. PCT Int. Appl.WO 03 82, 288. Chem Abstr 2003; 139: 307794q.
[118]
Rose SPR. ‘Smart Drugs’: do they work? Are they ethical? Will they be legal? Nat Rev Neurosci 2002; 3(12): 975-9.
[http://dx.doi.org/10.1038/nrn984] [PMID: 12461554]
[119]
Piekarz RL, Frye R, Turner M, et al. Phase II trial of romidepsin, FK228, in cutaneous and peripheral T-cell lymphoma: clinical activity and molecular markers. Blood 2006; 108(11): 2469.
[http://dx.doi.org/10.1182/blood.V108.11.2469.2469]
[120]
Fontán-Lozano Á, Romero-Granados R, Troncoso J, Múnera A, Delgado-García JM, Carrión ÁM. Histone deacetylase inhibitors improve learning consolidation in young and in KA-induced-neurodegeneration and SAMP-8-mutant mice. Mol Cell Neurosci 2008; 39(2): 193-201.
[http://dx.doi.org/10.1016/j.mcn.2008.06.009] [PMID: 18638560]
[121]
Li W, Sun Z. mechanism of action for hdac inhibitors-insights from omics approaches. Int J Mol Sci 2019; 20(7): 1616.
[http://dx.doi.org/10.3390/ijms20071616] [PMID: 30939743]
[122]
Shein NA, Shohami E. Histone deacetylase inhibitors as therapeutic agents for acute central nervous system injuries. Mol Med 2011; 17(5-6): 448-56.
[http://dx.doi.org/10.2119/molmed.2011.00038] [PMID: 21274503]
[123]
Rumbaugh G, Sillivan SE, Ozkan ED, et al. Pharmacological Selectivity Within Class I Histone Deacetylases Predicts Effects on Synaptic Function and Memory Rescue. Neuropsychopharmacology 2015; 40(10): 2307-16.
[http://dx.doi.org/10.1038/npp.2015.93] [PMID: 25837283]
[124]
Roche J, Bertrand P. Inside HDACs with more selective HDAC inhibitors. Eur J Med Chem 2016; 121(4): 451-83.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.047] [PMID: 27318122]
[125]
Jarome TJ, Lubin FD. Epigenetic mechanisms of memory formation and reconsolidation. Neurobiol Learn Mem 2014; 115: 116-27.
[http://dx.doi.org/10.1016/j.nlm.2014.08.002] [PMID: 25130533]
[126]
Vashishta A, Hetman M. Inhibitors of histone deacetylases enhance neurotoxicity of DNA damage. Neuromolecular Med 2014; 16(4): 727-41.
[http://dx.doi.org/10.1007/s12017-014-8322-x] [PMID: 25063076]
[127]
Bots M, Johnstone RW. Rational combinations using HDAC inhibitors. Clin Cancer Res 2009; 15(12): 3970-7.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2786] [PMID: 19509171]
[128]
Bi G, Jiang G. The molecular mechanism of HDAC inhibitors in anticancer effects. Cell Mol Immunol 2006; 3(4): 285-90.
[PMID: 16978537]
[129]
Frank CL, Manandhar D, Gordân R, Crawford GE. HDAC inhibitors cause site-specific chromatin remodeling at PU.1-bound enhancers in K562 cells. Epigenetics Chromatin 2016; 9(1): 15.
[http://dx.doi.org/10.1186/s13072-016-0065-5] [PMID: 27087856]
[130]
Ho TCS, Chan AHY, Ganesan A. Thirty years of HDAC inhibitors: 2020 insight and hindsight. J Med Chem 2020; 63(21): 12460-84.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00830] [PMID: 32608981]
[131]
Barbieri SS, Sandrini L, Musazzi L, Popoli M, Ieraci A. Apocynin prevents anxiety-like behavior and histone deacetylases overexpression induced by sub-chronic stress in mice. Biomolecules 2021; 11(6): 885.
[http://dx.doi.org/10.3390/biom11060885] [PMID: 34203655]
[132]
Levenson JM, O’Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD. Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem 2004; 279(39): 40545-59.
[http://dx.doi.org/10.1074/jbc.M402229200] [PMID: 15273246]
[133]
Wu J, Dong L, Zhang M, et al. Class I histone deacetylase inhibitor valproic acid reverses cognitive deficits in a mouse model of septic encephalopathy. Neurochem Res 2013; 38(11): 2440-9.
[http://dx.doi.org/10.1007/s11064-013-1159-0] [PMID: 24072674]
[134]
Gore SD, Baylin S, Sugar E, et al. Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res 2006; 66(12): 6361-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0080] [PMID: 16778214]
[135]
West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 2014; 124(1): 30-9.
[http://dx.doi.org/10.1172/JCI69738] [PMID: 24382387]
[136]
Bertrand P. Inside HDAC with HDAC inhibitors. Eur J Med Chem 2010; 45(6): 2095-116.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.030] [PMID: 20223566]
[137]
Bozorgi AH, Bagheri M, Aslebagh R, Rajabi MS. A structure–activity relationship survey of histone deacetylase (HDAC) inhibitors. Chemom Intell Lab Syst 2013; 125(15): 132-8.
[http://dx.doi.org/10.1016/j.chemolab.2013.04.001]
[138]
Freitas MF, Cuendet M, Bertrand P. HDAC inhibitors: a 2013–2017 patent survey. Expert Opin Ther Patents 2018; 28(5): 365-81.
[http://dx.doi.org/10.1080/13543776.2018.1459568]
[139]
Fuchikami M, Yamamoto S, Morinobu S, Okada S, Yamawaki Y, Yamawaki S. The potential use of histone deacetylase inhibitors in the treatment of depression. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64: 320-4.
[http://dx.doi.org/10.1016/j.pnpbp.2015.03.010] [PMID: 25818247]
[140]
Di Giorgio E, Gagliostro E, Brancolini C. Selective class IIa HDAC inhibitors: myth or reality. Cell Mol Life Sci 2015; 72(1): 73-86.
[http://dx.doi.org/10.1007/s00018-014-1727-8] [PMID: 25189628]
[141]
Glaser KB. HDAC inhibitors: Clinical update and mechanism-based potential. Biochem Pharmacol 2007; 74(5): 659-71.
[http://dx.doi.org/10.1016/j.bcp.2007.04.007] [PMID: 17498667]
[142]
Stimson L, La Thangue NB. Biomarkers for predicting clinical responses to HDAC inhibitors. Cancer Lett 2009; 280(2): 177-83.
[http://dx.doi.org/10.1016/j.canlet.2009.03.016] [PMID: 19362413]
[143]
Olzscha H, Bekheet ME, Sheikh S, La Thangue NB. HDAC Inhibitors. Hist Deacetyl 2016; pp. 281-303.
[http://dx.doi.org/10.1007/978-1-4939-3667-0_19]
[144]
Shukla S, Tekwani BL. Histone deacetylases inhibitors in neurodegenerative diseases, neuroprotection and neuronal differentiation. Front Pharmacol 2020; 11: 537.
[http://dx.doi.org/10.3389/fphar.2020.00537] [PMID: 32390854]
[145]
Mello MLS. Sodium Valproate-induced chromatin remodeling. Front Cell Dev Biol 2021; 9: 645518.
[http://dx.doi.org/10.3389/fcell.2021.645518] [PMID: 33959607]
[146]
Gurvich N, Tsygankova OM, Meinkoth JL, Klein PS. Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res 2004; 64(3): 1079-86.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-0799] [PMID: 14871841]
[147]
Sun Z, Guo SS, Fässler R. Integrin-mediated mechanotransduction. J Cell Biol 2016; 215(4): 445-56.
[http://dx.doi.org/10.1083/jcb.201609037] [PMID: 27872252]
[148]
Kopp R, Fichter M, Assert R, Pfeiffer AF, Classen S. Butyrate-induced alterations of phosphoinositide metabolism, protein kinase C activity and reduced CD44 variant expression in HT-29 colon cancer cells. Int J Mol Med 2009; 23(5): 639-49.
[http://dx.doi.org/10.3892/ijmm_00000175] [PMID: 19360323]
[149]
Duenas-Gonzalez A, Candelaria M, Perez-Plascencia C, Perez-Cardenas E, de la Cruz-Hernandez E, Herrera LA. Valproic acid as epigenetic cancer drug: Preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat Rev 2008; 34(3): 206-22.
[http://dx.doi.org/10.1016/j.ctrv.2007.11.003] [PMID: 18226465]
[150]
Göttlicher M, Minucci S, Zhu P, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 2001; 20(24): 6969-78.
[http://dx.doi.org/10.1093/emboj/20.24.6969] [PMID: 11742974]
[151]
Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 2001; 276(39): 36734-41.
[http://dx.doi.org/10.1074/jbc.M101287200] [PMID: 11473107]
[152]
Blaheta RA, Cinatl J Jr. Anti-tumor mechanisms of valproate: A novel role for an old drug. Med Res Rev 2002; 22(5): 492-511.
[http://dx.doi.org/10.1002/med.10017] [PMID: 12210556]
[153]
Saxena A, Scaini G, Bavaresco DV, et al. Role of protein kinase C in bipolar disorder: a review of the current literature. Complex Psychiatry 2017; 3(2): 108-24.
[http://dx.doi.org/10.1159/000480349] [PMID: 29230399]
[154]
Yi L, Wu Q, Chen N, et al. Valproate plays a protective role against migraine by inhibiting protein kinase C signalling in nitroglycerin-treated mice. Basic Clin Pharmacol Toxicol 2018; 122(3): 310-6.
[http://dx.doi.org/10.1111/bcpt.12915] [PMID: 28990289]
[155]
Nayak R, Rosh I, Kustanovich I, Stern S. Mood stabilizers in psychiatric disorders and mechanisms learnt from in vitro model systems. Int J Mol Sci 2021; 22(17): 9315.
[http://dx.doi.org/10.3390/ijms22179315] [PMID: 34502224]
[156]
Simonini MV, Camargo LM, Dong E, et al. The benzamide MS-275 is a potent, long-lasting brain region-selective inhibitor of histone deacetylases. Proc Natl Acad Sci USA 2006; 103(5): 1587-92.
[http://dx.doi.org/10.1073/pnas.0510341103] [PMID: 16432198]
[157]
Kundakovic M, Chen Y, Guidotti A, Grayson DR. The reelin and GAD67 promoters are activated by epigenetic drugs that facilitate the disruption of local repressor complexes. Mol Pharmacol 2009; 75(2): 342-54.
[http://dx.doi.org/10.1124/mol.108.051763] [PMID: 19029285]
[158]
Haddad PM, Das A, Ashfaq M, Wieck A. A review of valproate in psychiatric practice. Expert Opin Drug Metab Toxicol 2009; 5(5): 539-51.
[http://dx.doi.org/10.1517/17425250902911455] [PMID: 19409030]
[159]
Bowden CL, Janicak PG, Orsulak P, et al. Relation of serum valproate concentration to response in mania. Am J Psychiatry 1996; 153(6): 765-70.
[http://dx.doi.org/10.1176/ajp.153.6.765] [PMID: 8633687]
[160]
Fass DM, Reis SA, Ghosh B, et al. Crebinostat: A novel cognitive enhancer that inhibits histone deacetylase activity and modulates chromatin-mediated neuroplasticity. Neuropharmacology 2013; 64: 81-96.
[http://dx.doi.org/10.1016/j.neuropharm.2012.06.043] [PMID: 22771460]
[161]
Acharya MR, Sparreboom A, Venitz J, Figg WD. Rational development of histone deacetylase inhibitors as anticancer agents: a review. Mol Pharmacol 2005; 68(4): 917-32.
[http://dx.doi.org/10.1124/mol.105.014167] [PMID: 15955865]
[162]
Crimi E, Benincasa G, Cirri S, Mutesi R, Faenza M, Napoli C. Clinical epigenetics and multidrug-resistant bacterial infections: host remodelling in critical illness. Epigenetics 2020; 15(10): 1021-34.
[http://dx.doi.org/10.1080/15592294.2020.1748918] [PMID: 32290755]
[163]
Saito A, Yamashita T, Mariko Y, et al. A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci USA 1999; 96(8): 4592-7.
[http://dx.doi.org/10.1073/pnas.96.8.4592] [PMID: 10200307]
[164]
Grant S, Easley C, Kirkpatrick P. Vorinostat. Nat Rev Drug Discov 2007; 6(1): 21-2.
[http://dx.doi.org/10.1038/nrd2227] [PMID: 17269160]
[165]
Bieliauskas AV, Weerasinghe SVW, Pflum MKH. Structural requirements of HDAC inhibitors: SAHA analogs functionalized adjacent to the hydroxamic acid. Bioorg Med Chem Lett 2007; 17(8): 2216-9.
[http://dx.doi.org/10.1016/j.bmcl.2007.01.117] [PMID: 17307359]
[166]
Villar-Garea A, Esteller M. Histone deacetylase inhibitors: Understanding a new wave of anticancer agents. Int J Cancer 2004; 112(2): 171-8.
[http://dx.doi.org/10.1002/ijc.20372] [PMID: 15352027]
[167]
Lin HY, Chen CS, Lin SP, Weng JR, Chen CS. Targeting histone deacetylase in cancer therapy. Med Res Rev 2006; 26(4): 397-413.
[http://dx.doi.org/10.1002/med.20056] [PMID: 16450343]
[168]
Teknos TN, Grecula J, Agrawal A, et al. A phase 1 trial of Vorinostat in combination with concurrent chemoradiation therapy in the treatment of advanced staged head and neck squamous cell carcinoma. Invest New Drugs 2019; 37(4): 702-10.
[http://dx.doi.org/10.1007/s10637-018-0696-4] [PMID: 30569244]
[169]
Puduvalli VK, Wu J, Yuan Y, et al. A Bayesian adaptive randomized phase II multicenter trial of bevacizumab with or without vorinostat in adults with recurrent glioblastoma. Neuro-oncol 2020; 22(10): 1505-15.
[http://dx.doi.org/10.1093/neuonc/noaa062] [PMID: 32166308]
[170]
Athira KV, Sadanandan P, Chakravarty S. Repurposing vorinostat for the treatment of disorders affecting brain. Neuromol Med 2021.
[http://dx.doi.org/10.1007/s12017-021-08660-4]
[171]
Rompicharla SVK, Trivedi P, Kumari P, et al. Evaluation of anti-tumor efficacy of vorinostat encapsulated self-assembled polymeric micelles in solid tumors. AAPS PharmSciTech 2018; 19(7): 3141-51.
[http://dx.doi.org/10.1208/s12249-018-1149-2] [PMID: 30132129]
[172]
Meka A, Jenkins L, Dàvalos-Salas M, et al. Enhanced solubility, permeability and anticancer activity of vorinostat using tailored mesoporous silica nanoparticles. Pharmaceutics 2018; 10(4): 283.
[http://dx.doi.org/10.3390/pharmaceutics10040283] [PMID: 30562958]
[173]
Hoodin F, LaLonde L, Errickson J, et al. Cognitive function and quality of life in vorinostat-treated patients after matched unrelated donor myeloablative conditioning hematopoietic cell transplantation. Biol Blood Marrow Transplant 2019; 25(2): 343-53.
[http://dx.doi.org/10.1016/j.bbmt.2018.09.015] [PMID: 30244099]
[174]
Azad NS, el-Khoueiry A, Yin J, et al. Combination epigenetic therapy in metastatic colorectal cancer (mCRC) with subcutaneous 5-azacitidine and entinostat: a phase 2 consortium/stand Up 2 cancer study. Oncotarget 2017; 8(21): 35326-38.
[http://dx.doi.org/10.18632/oncotarget.15108] [PMID: 28186961]
[175]
Lim B, Murthy RK, Lee J, et al. A phase Ib study of entinostat plus lapatinib with or without trastuzumab in patients with HER2-positive metastatic breast cancer that progressed during trastuzumab treatment. Br J Cancer 2019; 120(12): 1105-12.
[http://dx.doi.org/10.1038/s41416-019-0473-y] [PMID: 31097774]
[176]
Connolly RM, Zhao F, Miller KD, et al. E2112: Randomized phase III Trial of Endocrine therapy plus entinostat or placebo in hormone receptor-positive advanced breast cancer. A trial of the ECOG-ACRIN Cancer Research Group. J Clin Oncol 202 39(28): 3171-81.
[http://dx.doi.org/10.1200/JCO.21.00944]
[177]
Batlevi CL, Kasamon Y, Bociek RG, et al. ENGAGE- 501: phase II study of entinostat (SNDX-275) in relapsed and refractory Hodgkin lymphoma. Haematologica 2016; 101(8): 968-75.
[http://dx.doi.org/10.3324/haematol.2016.142406] [PMID: 27151994]
[178]
Bangert A, Häcker S, Cristofanon S, Debatin KM, Fulda S. Chemosensitization of glioblastoma cells by the histone deacetylase inhibitor MS275. Anticancer Drugs 2011; 22(6): 494-9.
[http://dx.doi.org/10.1097/CAD.0b013e32834631e0] [PMID: 21566522]
[179]
Prévot T, Sibille E. Altered GABA-mediated information processing and cognitive dysfunctions in depression and other brain disorders. Mol Psychiatry 2021; 26(1): 151-67.
[http://dx.doi.org/10.1038/s41380-020-0727-3] [PMID: 32346158]
[180]
Kim HJ, Rowe M, Ren M, Hong JS, Chen PS, Chuang DM. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 2007; 321(3): 892-901.
[http://dx.doi.org/10.1124/jpet.107.120188] [PMID: 17371805]
[181]
Guidotti A, Grayson DR, Caruncho HJ. Epigenetic RELN dysfunction in schizophrenia and related neuropsychiatric disorders. Front Cell Neurosci 2016; 10: 89.
[http://dx.doi.org/10.3389/fncel.2016.00089] [PMID: 27092053]
[182]
Costa E, Grayson DR, Mitchell CP, Tremolizzo L, Veldic M, Guidotti A. GABAergic cortical neuron chromatin as a putative target to treat schizophrenia vulnerability. Crit Rev Neurobiol 2003; 15(2): 121-42.
[http://dx.doi.org/10.1615/CritRevNeurobiol.v15.i2.20] [PMID: 14977367]
[183]
Jung HY, Kwon HJ, Kim W, et al. Role of pyridoxine in GABA synthesis and degradation in the hippocampus. Tissue Cell 2019; 61: 72-8.
[http://dx.doi.org/10.1016/j.tice.2019.09.005] [PMID: 31759410]
[184]
Bharadwaj R, Jiang Y, Mao W, et al. Conserved chromosome 2q31 conformations are associated with transcriptional regulation of GAD1 GABA synthesis enzyme and altered in prefrontal cortex of subjects with schizophrenia. J Neurosci 2013; 33(29): 11839-51.
[http://dx.doi.org/10.1523/JNEUROSCI.1252-13.2013] [PMID: 23864674]
[185]
Rajarajan P, Jiang Y, Kassim BS, Akbarian S. Chromosomal conformations and epigenomic regulation in schizophrenia. Prog Mol Biol Transl Sci 2018; 157: 21-40.
[http://dx.doi.org/10.1016/bs.pmbts.2017.11.022] [PMID: 29933951]
[186]
Lieberman-Aiden E, van Berkum NL, Williams L, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 2009; 326(5950): 289-93.
[http://dx.doi.org/10.1126/science.1181369] [PMID: 19815776]
[187]
Satoh A, Toyota M, Itoh F, et al. DNA methylation and histone deacetylation associated with silencing DAP kinase gene expression in colorectal and gastric cancers. Br J Cancer 2002; 86(11): 1817-23.
[http://dx.doi.org/10.1038/sj.bjc.6600319] [PMID: 12087472]
[188]
Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet 2001; 10(7): 687-92.
[http://dx.doi.org/10.1093/hmg/10.7.687] [PMID: 11257100]
[189]
Nguyen CT, Gonzales FA, Jones PA. Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Res 2001; 29(22): 4598-606.
[http://dx.doi.org/10.1093/nar/29.22.4598] [PMID: 11713309]
[190]
Cameron EE, Bachman KE, Myöhänen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 1999; 21(1): 103-7.
[http://dx.doi.org/10.1038/5047] [PMID: 9916800]
[191]
Nott A, Watson PM, Robinson JD, Crepaldi L, Riccio A. Snitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature 2008; 455(7211): 411-5.
[http://dx.doi.org/10.1038/nature07238] [PMID: 18754010]
[192]
Sen N. Epigenetic regulation of memory by acetylation and methylation of chromatin: implications in neurological disorders, aging, and addiction. Neuromolecular Med 2015; 17(2): 97-110.
[http://dx.doi.org/10.1007/s12017-014-8306-x] [PMID: 24777294]
[193]
Levenson JM. DNA (cytosine-5) methyltransferase inhibitors: a potential therapeutic agent for schizophrenia. Mol Pharmacol 2007; 71(3): 635-7.
[http://dx.doi.org/10.1124/mol.106.033266] [PMID: 17179443]
[194]
Lauria F, Bernabò P, Tebaldi T, et al. SMN-primed ribosomes modulate the translation of transcripts related to spinal muscular atrophy. Nat Cell Biol 2020; 22(10): 1239-51.
[http://dx.doi.org/10.1038/s41556-020-00577-7] [PMID: 32958857]
[195]
Lai JI, Leman LJ, Ku S, et al. Cyclic tetrapeptide HDAC inhibitors as potential therapeutics for spinal muscular atrophy: Screening with iPSC-derived neuronal cells. Bioorg Med Chem Lett 2017; 27(15): 3289-93.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.027] [PMID: 28648462]
[196]
Wood MA, Hawk JD, Abel T. Combinatorial chromatin modifications and memory storage: A code for memory?: Figure 1. Learn Mem 2006; 13(3): 241-4.
[http://dx.doi.org/10.1101/lm.278206] [PMID: 16741277]
[197]
Covington HE III, Maze I, LaPlant QC, et al. Antidepressant actions of histone deacetylase inhibitors. J Neurosci 2009; 29(37): 11451-60.
[http://dx.doi.org/10.1523/JNEUROSCI.1758-09.2009] [PMID: 19759294]
[198]
Konstantinopoulos PA, Vandoros GP, Papavassiliou AG. FK228 (depsipeptide): a HDAC inhibitor with pleiotropic antitumor activities. Cancer Chemother Pharmacol 2006; 58(5): 711-5.
[http://dx.doi.org/10.1007/s00280-005-0182-5] [PMID: 16435156]
[199]
Liu X, Currens GC, Xue L, Cheng YQ. Origin and bioactivities of thiosulfinated FK228. MedChemComm 2019; 10(4): 538-42.
[http://dx.doi.org/10.1039/C9MD00060G] [PMID: 31057733]
[200]
Lattal KM, Barrett RM, Wood MA. Systemic or intrahippocampal delivery of histone deacetylase inhibitors facilitates fear extinction. Behav Neurosci 2007; 121(5): 1125-31.
[http://dx.doi.org/10.1037/0735-7044.121.5.1125] [PMID: 17907845]
[201]
Roychowdhury S, Baiocchi RA, Vourganti S, et al. Selective efficacy of depsipeptide in a xenograft model of Epstein-Barr virus-positive lymphoproliferative disorder. J Natl Cancer Inst 2004; 96(19): 1447-57.
[http://dx.doi.org/10.1093/jnci/djh271] [PMID: 15467034]
[202]
Yamamura K, Ohishi K, Katayama N, et al. Pleiotropic role of histone deacetylases in the regulation of human adult erythropoiesis. Br J Haematol 2006; 135(2): 242-53.
[http://dx.doi.org/10.1111/j.1365-2141.2006.06275.x] [PMID: 16939493]
[203]
Mai A, Rotili D, Valente S, Kazantsev A. Histone deacetylase inhibitors and neurodegenerative disorders: holding the promise. Curr Pharm Des 2009; 15(34): 3940-57.
[http://dx.doi.org/10.2174/138161209789649349] [PMID: 19751207]
[204]
Abel T, Zukin R. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol 2008; 8(1): 57-64.
[http://dx.doi.org/10.1016/j.coph.2007.12.002] [PMID: 18206423]
[205]
Narahashi T, Moriguchi S, Zhao X, Marszalec W, Yeh JZ. Mechanisms of action of cognitive enhancers on neuroreceptors. Biol Pharm Bull 2004; 27(11): 1701-6.
[http://dx.doi.org/10.1248/bpb.27.1701] [PMID: 15516710]
[206]
Sharif S, Guirguis A, Fergus S, Schifano F. The Use and Impact of Cognitive Enhancers among University Students: A Systematic Review. Brain Sci 2021; 11(3): 355.
[http://dx.doi.org/10.3390/brainsci11030355] [PMID: 33802176]
[207]
Penney J, Tsai LH. Histone deacetylases in memory and cognition. Sci Signal 2014; 7(355): re12.
[http://dx.doi.org/10.1126/scisignal.aaa0069] [PMID: 25492968]
[208]
Morris MJ, Karra AS, Monteggia LM. Histone deacetylases govern cellular mechanisms underlying behavioral and synaptic plasticity in the developing and adult brain. Behav Pharmacol 2010; 21(5-6): 409-19.
[http://dx.doi.org/10.1097/FBP.0b013e32833c20c0] [PMID: 20555253]
[209]
Rouaux C, Jokic N, Mbebi C, Boutillier S, Loeffler JP, Boutillier AL. Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration. EMBO J 2003; 22(24): 6537-49.
[http://dx.doi.org/10.1093/emboj/cdg615] [PMID: 14657026]
[210]
Ahmad Ganai S, Ramadoss M, Mahadevan V. Histone Deacetylase (HDAC) Inhibitors - emerging roles in neuronal memory, learning, synaptic plasticity and neural regeneration. Curr Neuropharmacol 2016; 14(1): 55-71.
[http://dx.doi.org/10.2174/1570159X13666151021111609] [PMID: 26487502]
[211]
Erburu M, Muñoz-Cobo I, Domínguez-Andrés J, et al. Chronic stress and antidepressant induced changes in Hdac5 and Sirt2 affect synaptic plasticity. Eur Neuropsychopharmacol 2015; 25(11): 2036-48.
[http://dx.doi.org/10.1016/j.euroneuro.2015.08.016] [PMID: 26433268]
[212]
Perry S, Kiragasi B, Dickman D, Ray A. The role of histone deacetylase 6 in synaptic plasticity and memory. Cell Rep 2017; 18(6): 1337-45.
[http://dx.doi.org/10.1016/j.celrep.2017.01.028] [PMID: 28178513]
[213]
Citraro R, Leo A, Santoro M, D’agostino G, Constanti A, Russo E. Role of histone deacetylases (HDACs) in epilepsy and epileptogenesis. Curr Pharm Des 2018; 23(37): 5546-62.
[http://dx.doi.org/10.2174/1381612823666171024130001] [PMID: 29076408]
[214]
Penas C, Navarro X. Epigenetic modifications associated to neuroinflammation and neuropathic pain after neural trauma. Front Cell Neurosci 2018; 12: 158.
[http://dx.doi.org/10.3389/fncel.2018.00158] [PMID: 29930500]
[215]
Wang J, Gong B, Zhao W, et al. Epigenetic mechanisms linking diabetes and synaptic impairments. Diabetes 2014; 63(2): 645-54.
[http://dx.doi.org/10.2337/db13-1063] [PMID: 24154559]
[216]
Xu K, Dai XL, Huang HC, Jiang ZF. Targeting HDACs: a promising therapy for Alzheimer’s disease. Oxid Med Cell Longev 2011; 2011: 1-5.
[http://dx.doi.org/10.1155/2011/143269] [PMID: 21941604]
[217]
Mielcarek M, Zielonka D, Carnemolla A, Marcinkowski JT, Guidez F. HDAC4 as a potential therapeutic target in neurodegenerative diseases: a summary of recent achievements. Front Cell Neurosci 2015; 9: 42.
[http://dx.doi.org/10.3389/fncel.2015.00042] [PMID: 25759639]
[218]
Wang WH, Cheng LC, Pan FY, et al. Intracellular trafficking of histone deacetylase 4 regulates long-term memory formation. Anat Rec (Hoboken) 2011; 294(6): 1025-34.
[http://dx.doi.org/10.1002/ar.21389] [PMID: 21542139]
[219]
Roh HW, Lee DE, Lee Y, Son SJ, Hong CH. Gender differences in the effect of depression and cognitive impairment on risk of falls among community-dwelling older adults. J Affect Disord 2021; 282: 504-10.
[http://dx.doi.org/10.1016/j.jad.2020.12.170] [PMID: 33433379]
[220]
LeMoult J, Gotlib IH. Depression: A cognitive perspective. Clin Psychol Rev 2018; 69: 51-66.
[http://dx.doi.org/10.1016/j.cpr.2018.06.008] [PMID: 29961601]
[221]
Tronson NC, Taylor JR. Molecular mechanisms of memory reconsolidation. Nat Rev Neurosci 2007; 8(4): 262-75.
[http://dx.doi.org/10.1038/nrn2090] [PMID: 17342174]
[222]
Schueller E, Paiva I, Blanc F, et al. Dysregulation of histone acetylation pathways in hippocampus and frontal cortex of Alzheimer’s disease patients. Eur Neuropsychopharmacol 2020; 33: 101-16.
[http://dx.doi.org/10.1016/j.euroneuro.2020.01.015] [PMID: 32057591]
[223]
Yang CX, Bao F, Zhong J, et al. The inhibitory effects of class I histone deacetylases on hippocampal neuroinflammatory regulation in aging mice with postoperative cognitive dysfunction. Eur Rev Med Pharmacol Sci 2020; 24(19): 10194-202.
[http://dx.doi.org/10.26355/eurrev_202010_23240] [PMID: 33090427]
[224]
Yao ZG, Liu Y, Zhang L, et al. Co-location of HDAC2 and insulin signaling components in the adult mouse hippocampus. Cell Mol Neurobiol 2012; 32(8): 1337-42.
[http://dx.doi.org/10.1007/s10571-012-9859-6]
[225]
Broide RS, Redwine JM, Aftahi N, Young W, Bloom FE, Winrow CJ. Distribution of histone deacetylases 1–11 in the rat brain. J Mol Neurosci 2007; 31(1): 47-58.
[http://dx.doi.org/10.1007/BF02686117] [PMID: 17416969]
[226]
Kessler RC, Chiu WT, Demler O, Walters EE, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 2005; 62(6): 617-27.
[http://dx.doi.org/10.1001/archpsyc.62.6.617] [PMID: 15939839]
[227]
Kessler RC, Bromet EJ. The epidemiology of depression across cultures. Annu Rev Public Health 2013; 34(1): 119-38.
[http://dx.doi.org/10.1146/annurev-publhealth-031912-114409] [PMID: 23514317]
[228]
Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 2005; 62(6): 593-602.
[http://dx.doi.org/10.1001/archpsyc.62.6.593] [PMID: 15939837]
[229]
Haro JM, Arbabzadeh-Bouchez S, Brugha TS, et al. Concordance of the composite international diagnostic interview version 3.0 (CIDI 3.0) with standardized clinical assessments in the WHO World Mental Health Surveys. Int J Methods Psychiatr Res 2006; 15(4): 167-80.
[http://dx.doi.org/10.1002/mpr.196] [PMID: 17266013]
[230]
Perini G, Cotta Ramusino M, Sinforiani E, Bernini S, Petrachi R, Costa A. Cognitive impairment in depression: recent advances and novel treatments. Neuropsychiat Dis Treat 2019; 15: 1249-58.
[http://dx.doi.org/10.2147/NDT.S199746]
[231]
Steffens DC, Otey E, Alexopoulos GS, et al. Perspectives on depression, mild cognitive impairment, and cognitive decline. Arch Gen Psychiatry 2006; 63(2): 130-8.
[http://dx.doi.org/10.1001/archpsyc.63.2.130] [PMID: 16461855]
[232]
Papazacharias A, Nardini M. The relationship between depression and cognitive deficits. Psychiatr Danub 2012; 24(1) (Suppl. 1): S179-82.
[PMID: 22945218]
[233]
Pellegrino LD, Peters ME, Lyketsos CG, Marano CM. Depression in cognitive impairment. Curr Psychiatry Rep 2013; 15(9): 384.
[http://dx.doi.org/10.1007/s11920-013-0384-1] [PMID: 23933974]
[234]
Varteresian T, Lavretsky H. Natural products and supplements for geriatric depression and cognitive disorders: an evaluation of the research. Curr Psychiatry Rep 2014; 16(8): 456.
[http://dx.doi.org/10.1007/s11920-014-0456-x] [PMID: 24912606]
[235]
Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 2006; 9(4): 519-25.
[http://dx.doi.org/10.1038/nn1659] [PMID: 16501568]
[236]
Schroeder FA, Lin CL, Crusio WE, Akbarian S. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol Psychiatry 2007; 62(1): 55-64.
[http://dx.doi.org/10.1016/j.biopsych.2006.06.036] [PMID: 16945350]
[237]
Kessler RC, Ruscio AM, Shear K, Wittchen HU. Epidemiology of anxiety disorders. Behav Neurobiol Anx its Treat 2009; 21-35.
[http://dx.doi.org/10.1007/7854_2009_9]
[238]
Shirneshan E, Bailey J, Relyea G, Franklin BE, Solomon DK, Brown LM. Incremental direct medical expenditures associated with anxiety disorders for the U.S. adult population: Evidence from the Medical Expenditure Panel Survey. J Anxiet Disord 2013; 27(7): 720-7.
[239]
Olatunji BO, Cisler JM, Tolin DF. Quality of life in the anxiety disorders: A meta-analytic review. Clin Psychol Rev 2007; 27(5): 572-81.
[http://dx.doi.org/10.1016/j.cpr.2007.01.015] [PMID: 17343963]
[240]
Hendriks SM, Spijker J, Licht CMM, et al. Disability in anxiety disorders. J Affect Disord 2014; 166: 227-33.
[http://dx.doi.org/10.1016/j.jad.2014.05.006] [PMID: 25012435]
[241]
Hendriks SM, Spijker J, Licht CMM, et al. Long-term disability in anxiety disorders. BMC Psychiatry 2016; 16(1): 248.
[http://dx.doi.org/10.1186/s12888-016-0946-y] [PMID: 27431392]
[242]
Zhang A, Borhneimer LA, Weaver A, et al. Cognitive behavioral therapy for primary care depression and anxiety: a secondary meta-analytic review using robust variance estimation in meta-regression. J Behav Med 2019; 42(6): 1117-41.
[http://dx.doi.org/10.1007/s10865-019-00046-z] [PMID: 31004323]
[243]
Ferreri F, Lapp LK, Peretti CS. Current research on cognitive aspects of anxiety disorders. Curr Opin Psychiatry 2011; 24(1): 49-54.
[http://dx.doi.org/10.1097/YCO.0b013e32833f5585] [PMID: 20829693]
[244]
Schroeder FA, Lewis MC, Fass DM, et al. A selective HDAC 1/2 inhibitor modulates chromatin and gene expression in brain and alters mouse behavior in two mood-related tests. PLoS One 2013; 8(8): e71323.
[http://dx.doi.org/10.1371/journal.pone.0071323] [PMID: 23967191]
[245]
Butler RM, O’Day EB, Swee MB, Horenstein A. Cognitive behavioral therapy for social anxiety disorder: predictors of treatment outcome in a quasi-naturalistic setting. Behav Ther 2020.
[http://dx.doi.org/10.1016/j.beth.2020.06.002] [PMID: 33622514]
[246]
Clark DM. Anxiety disorders: why they persist and how to treat them. Behav Res Ther 1999; 37 (Suppl. 1): S5-S27.
[http://dx.doi.org/10.1016/S0005-7967(99)00048-0] [PMID: 10402694]
[247]
Holmes L Jr, Shutman E, Chinaka C, Deepika K, Pelaez L, Dabney KW. Aberrant epigenomic modulation of glucocorticoid receptor gene (nr3c1) in early life stress and major depressive disorder correlation: systematic review and quantitative evidence synthesis. Int J Environ Res Public Health 2019; 16(21): 4280.
[http://dx.doi.org/10.3390/ijerph16214280] [PMID: 31689998]
[248]
Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics 2008; 3(2): 97-106.
[http://dx.doi.org/10.4161/epi.3.2.6034] [PMID: 18536531]
[249]
Guidotti A, Auta J, Davis JM, et al. Toward the identification of peripheral epigenetic biomarkers of schizophrenia. J Neurogenet 2014; 28(1-2): 41-52.
[http://dx.doi.org/10.3109/01677063.2014.892485] [PMID: 24702539]
[250]
Cloutier P, Coulombe B. Regulation of molecular chaperones through post-translational modifications: Decrypting the chaperone code. Biochim Biophys Acta Gene Regul Mech 2013; 1829(5): 443-54.
[http://dx.doi.org/10.1016/j.bbagrm.2013.02.010] [PMID: 23459247]
[251]
Cuesta MJ, Peralta V. Cognitive disorders in the positive, negative, and disorganization syndromes of schizophrenia. Psychiat Res 1995; 58(3): 227-35.
[http://dx.doi.org/10.1016/0165-1781(95)02712-6]
[252]
Nuechterlein KH, Barch DM, Gold JM, Goldberg TE, Green MF, Heaton RK. Identification of separable cognitive factors in schizophrenia. Schizophr Res 2004; 72(1): 29-39.
[http://dx.doi.org/10.1016/j.schres.2004.09.007] [PMID: 15531405]
[253]
Perlta V, Cuesta MJ. A polydiagnostic approach to self-perceived cognitive disorders in schizophrenia. Psychopathology 1992; 25(5): 232-8.
[http://dx.doi.org/10.1159/000284778] [PMID: 1293622]
[254]
Panizzutti R, Hamilton SP, Vinogradov S. Genetic correlate of cognitive training response in schizophrenia. Neuropharmacology 2013; 64: 264-7.
[http://dx.doi.org/10.1016/j.neuropharm.2012.07.048] [PMID: 22992330]
[255]
Nielsen RE. Cognition in schizophrenia–a systematic review. Drug Discov Today Ther Strateg 2011; 8(1-2): 43-8.
[http://dx.doi.org/10.1016/j.ddstr.2011.09.004]
[256]
Barak S, Weiner I. Putative cognitive enhancers in preclinical models related to schizophrenia: The search for an elusive target. Pharmacol Biochem Behav 2011; 99(2): 164-89.
[http://dx.doi.org/10.1016/j.pbb.2011.03.011] [PMID: 21420999]
[257]
Karlić R, Chung HR, Lasserre J, Vlahoviček K, Vingron M. Histone modification levels are predictive for gene expression. Proc Natl Acad Sci USA 2010; 107(7): 2926-31.
[http://dx.doi.org/10.1073/pnas.0909344107] [PMID: 20133639]
[258]
Sawa A, Snyder SH. Schizophrenia: diverse approaches to a complex disease. Science 2002; 296(5568): 692-5.
[http://dx.doi.org/10.1126/science.1070532] [PMID: 11976442]
[259]
Shimomura Y, Kikuchi Y, Takefumi S, Uchida H, Mimura M, Takeuchi H. P.362 Antipsychotic treatment for the maintenance phase of schizophrenia: An updated systematic review of the guidelines and algorithms. Eur Neuropsychopharmacol 2019; 29: S258-9.
[http://dx.doi.org/10.1016/j.euroneuro.2019.09.380] [PMID: 31784340]
[260]
Chen Y, Sharma RP, Costa RH, Costa E, Grayson DR. On the epigenetic regulation of the human reelin promoter. Nucleic Acids Res 2002; 30(13): 2930-9.
[http://dx.doi.org/10.1093/nar/gkf401] [PMID: 12087179]
[261]
Dong E, Agis-Balboa RC, Simonini MV, Grayson DR, Costa E, Guidotti A. Reelin and glutamic acid decarboxylase67 promoter remodeling in an epigenetic methionine-induced mouse model of schizophrenia. Proc Natl Acad Sci USA 2005; 102(35): 12578-83.
[http://dx.doi.org/10.1073/pnas.0505394102] [PMID: 16113080]
[262]
Chan MK, Guest PC, Levin Y, et al. Converging evidence of blood-based biomarkers for schizophrenia. Int Rev Neurobiol 2011; 101: 95-144.
[http://dx.doi.org/10.1016/B978-0-12-387718-5.00005-5] [PMID: 22050850]
[263]
Grayson DR, Guidotti A. The dynamics of DNA methylation in schizophrenia and related psychiatric disorders. Neuropsychopharmacology 2013; 38(1): 138-66.
[http://dx.doi.org/10.1038/npp.2012.125] [PMID: 22948975]
[264]
Auta J, Smith RC, Dong E, et al. DNA-methylation gene network dysregulation in peripheral blood lymphocytes of schizophrenia patients. Schizophr Res 2013; 150(1): 312-8.
[http://dx.doi.org/10.1016/j.schres.2013.07.030] [PMID: 23938174]
[265]
Dempster EL, Pidsley R, Schalkwyk LC, et al. Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum Mol Genet 2011; 20(24): 4786-96.
[http://dx.doi.org/10.1093/hmg/ddr416] [PMID: 21908516]
[266]
Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet 2016; 388(10039): 86-97.
[http://dx.doi.org/10.1016/S0140-6736(15)01121-6] [PMID: 26777917]
[267]
Xu M, Wong AHC. GABAergic inhibitory neurons as therapeutic targets for cognitive impairment in schizophrenia. Acta Pharmacol Sin 2018; 39(5): 733-53.
[http://dx.doi.org/10.1038/aps.2017.172] [PMID: 29565038]
[268]
Schoonover KE, Dienel SJ, Lewis DA. Prefrontal cortical alterations of glutamate and GABA neurotransmission in schizophrenia: Insights for rational biomarker development. Biomarkers in Neuropsychiatry 2020; 3: 100015.
[http://dx.doi.org/10.1016/j.bionps.2020.100015] [PMID: 32656540]
[269]
Zhang X, Yang M, Du X, et al. Glucose disturbances, cognitive deficits and white matter abnormalities in first-episode drug-naive schizophrenia. Mol Psychiatry 2020; 25(12): 3220-30.
[http://dx.doi.org/10.1038/s41380-019-0478-1] [PMID: 31409883]
[270]
Bryll A, Skrzypek J, Krzyściak W, et al. Oxidative-antioxidant imbalance and impaired glucose metabolism in schizophrenia. Biomolecules 2020; 10(3): 384.
[http://dx.doi.org/10.3390/biom10030384] [PMID: 32121669]
[271]
Stefanko DP, Barrett RM, Ly AR, Reolon GK, Wood MA. Modulation of long-term memory for object recognition via HDAC inhibition. Proc Natl Acad Sci USA 2009; 106(23): 9447-52.
[http://dx.doi.org/10.1073/pnas.0903964106] [PMID: 19470462]
[272]
Heintzman ND, Hon GC, Hawkins RD, et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 2009; 459(7243): 108-12.
[http://dx.doi.org/10.1038/nature07829] [PMID: 19295514]
[273]
Patel TR. Environmental enrichment: aging and memory. Yale J Biol Med 2012; 85(4): 491-500.
[PMID: 23239950]
[274]
Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH. Recovery of learning and memory is associated with chromatin remodelling. Nature 2007; 447(7141): 178-82.
[http://dx.doi.org/10.1038/nature05772] [PMID: 17468743]
[275]
Koseki T, Mouri A, Mamiya T, et al. Exposure to enriched environments during adolescence prevents abnormal behaviours associated with histone deacetylation in phencyclidine treated mice. Int J Neuropsychopharmacol 2011; 1-13.
[PMID: 22093154]
[276]
Bishop NA, Guarente L. Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nat Rev Genet 2007; 8(11): 835-44.
[http://dx.doi.org/10.1038/nrg2188] [PMID: 17909538]
[277]
Witte AV, Fobker M, Gellner R, Knecht S, Flöel A. Caloric restriction improves memory in elderly humans. Proc Natl Acad Sci USA 2009; 106(4): 1255-60.
[http://dx.doi.org/10.1073/pnas.0808587106] [PMID: 19171901]
[278]
Halagappa VKM, Guo Z, Pearson M, et al. Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer’s disease. Neurobiol Dis 2007; 26(1): 212-20.
[http://dx.doi.org/10.1016/j.nbd.2006.12.019] [PMID: 17306982]
[279]
Qin W, Yang T, Ho L, et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 2006; 281(31): 21745-54.
[http://dx.doi.org/10.1074/jbc.M602909200] [PMID: 16751189]
[280]
Wang J, Ho L, Qin W, et al. Caloric restriction attenuates β‐amyloid neuropathology in a mouse model of Alzheimer’s disease. FASEB J 2005; 19(6): 1-18.
[http://dx.doi.org/10.1096/fj.04-3182fje] [PMID: 15650008]
[281]
Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 2005; 6(4): 298-305.
[http://dx.doi.org/10.1038/nrm1616] [PMID: 15768047]
[282]
Funato H, Oda S, Yokofujita J, Igarashi H, Kuroda M. Fasting and high-fat diet alter histone deacetylase expression in the medial hypothalamus. PLoS One 2011; 6(4): e18950.
[http://dx.doi.org/10.1371/journal.pone.0018950] [PMID: 21526203]
[283]
Li Y, Liu Y, Zhao N, et al. Checkpoint regulator B7x is epigenetically regulated by HDAC3 and mediates resistance to HDAC inhibitors by reprogramming the tumor immune environment in colorectal cancer. Cell Death Dis 2020; 11(9): 753.
[http://dx.doi.org/10.1038/s41419-020-02968-y] [PMID: 32934224]
[284]
Verdone L, Caserta M, Mauro ED. Role of histone acetylation in the control of gene expression. Biochem Cell Biol 2005; 83(3): 344-53.
[http://dx.doi.org/10.1139/o05-041] [PMID: 15959560]
[285]
Lawrence M, Daujat S, Schneider R. Lateral thinking: how histone modifications regulate gene expression. Trends Genet 2016; 32(1): 42-56.
[http://dx.doi.org/10.1016/j.tig.2015.10.007] [PMID: 26704082]
[286]
Sabari BR, Zhang D, Allis CD, Zhao Y. Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol 2017; 18(2): 90-101.
[http://dx.doi.org/10.1038/nrm.2016.140] [PMID: 27924077]
[287]
Kelly RDW, Chandru A, Watson PJ, et al. Histone deacetylase (HDAC) 1 and 2 complexes regulate both histone acetylation and crotonylation in vivo. Sci Rep 2018; 8(1): 14690.
[http://dx.doi.org/10.1038/s41598-018-32927-9] [PMID: 30279482]
[288]
Kuriyama K, Honma M, Koyama S, Kim Y. d-cycloserine facilitates procedural learning but not declarative learning in healthy humans: A randomized controlled trial of the effect of d-cycloserine and valproic acid on overnight properties in the performance of non-emotional memory tasks. Neurobiol Learn Mem 2011; 95(4): 505-9.
[http://dx.doi.org/10.1016/j.nlm.2011.02.017] [PMID: 21402164]
[289]
Kuriyama K, Honma M, Yoshiike T, Kim Y. Valproic acid but not d-cycloserine facilitates sleep-dependent offline learning of extinction and habituation of conditioned fear in humans. Neuropharmacology 2013; 64: 424-31.
[http://dx.doi.org/10.1016/j.neuropharm.2012.07.045] [PMID: 22992332]
[290]
Fleisher AS, Truran D, Mai JT, et al. Chronic divalproex sodium use and brain atrophy in Alzheimer disease. Neurology 2011; 77(13): 1263-71.
[http://dx.doi.org/10.1212/WNL.0b013e318230a16c] [PMID: 21917762]
[291]
Selenica ML, Benner L, Housley SB, et al. Histone deacetylase 6 inhibition improves memory and reduces total tau levels in a mouse model of tau deposition. Alzheimers Res Ther 2014; 6(1): 12.
[http://dx.doi.org/10.1186/alzrt241] [PMID: 24576665]
[292]
Guo W, Naujock M, Fumagalli L, et al. HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients. Nat Commun 2017; 8(1): 861.
[http://dx.doi.org/10.1038/s41467-017-00911-y] [PMID: 29021520]
[293]
LoPresti P. the selective hdac6 inhibitor acy-738 impacts memory and disease regulation in an animal model of multiple sclerosis. Front Neurol 2019; 10: 519.
[http://dx.doi.org/10.3389/fneur.2019.00519] [PMID: 31316445]
[294]
Taes I, Timmers M, Hersmus N, et al. Hdac6 deletion delays disease progression in the SOD1G93A mouse model of ALS. Hum Mol Genet 2013; 22(9): 1783-90.
[http://dx.doi.org/10.1093/hmg/ddt028] [PMID: 23364049]
[295]
Lee JY, Kawaguchi Y, Li M, et al. Uncoupling of Protein Aggregation and Neurodegeneration in a Mouse Amyotrophic Lateral Sclerosis Model. Neurodegener Dis 2015; 15(6): 339-49.
[http://dx.doi.org/10.1159/000437208] [PMID: 26360702]
[296]
Zhang L, Liu C, Wu J, et al. Tubastatin A/ACY-1215 improves cognition in Alzheimer’s disease transgenic mice. J Alzheimers Dis 2014; 41(4): 1193-205.
[http://dx.doi.org/10.3233/JAD-140066] [PMID: 24844691]
[297]
Chen J, Liu S, Wang X, et al. HDAC6 inhibition alleviates anesthesia and surgery-induced less medial prefrontal-dorsal hippocampus connectivity and cognitive impairment in aged rats. Mol Neurobiol 2022; 59(10): 6158-69.
[http://dx.doi.org/10.1007/s12035-022-02959-4] [PMID: 35882756]
[298]
Wang D, Wang B, Liu Y, Dong X, Su Y, Li S. Protective effects of ACY-1215 against chemotherapy-related cognitive impairment and brain damage in mice. Neurochem Res 2019; 44(11): 2460-9.
[http://dx.doi.org/10.1007/s11064-019-02882-6] [PMID: 31571096]
[299]
Hanson K, Tian N, Vickers JC, King AE. The HDAC6 inhibitor trichostatin A acetylates microtubules and protects axons from excitotoxin-induced degeneration in a compartmented culture model. Front Neurosci 2018; 12: 872.
[http://dx.doi.org/10.3389/fnins.2018.00872] [PMID: 30555293]
[300]
Guan L, Shi X, Tang Y, et al. Contribution of Amygdala Histone Acetylation in Early Life Stress-Induced Visceral Hypersensitivity and Emotional Comorbidity. Front Neurosci 2022; 16: 843396.
[http://dx.doi.org/10.3389/fnins.2022.843396] [PMID: 35600618]
[301]
Bhattacharya S, Mukherjee B, Doré JJE, Yuan Q, Harley CW, McLean JH. Histone deacetylase inhibition induces odor preference memory extension and maintains enhanced AMPA receptor expression in the rat pup model. Learn Mem 2017; 24(10): 543-51.
[http://dx.doi.org/10.1101/lm.045799.117] [PMID: 28916629]
[302]
Fan SJ, Huang FI, Liou JP, Yang CR. The novel histone de acetylase 6 inhibitor, MPT0G211, ameliorates tau phosphorylation and cognitive deficits in an Alzheimer’s disease model. Cell Death Dis 2018; 9(6): 655.
[http://dx.doi.org/10.1038/s41419-018-0688-5] [PMID: 29844403]
[303]
Ma J, Huo X, Jarpe MB, Kavelaars A, Heijnen CJ. Pharmacological inhibition of HDAC6 reverses cognitive impairment and tau pathology as a result of cisplatin treatment. Acta Neuropathol Commun 2018; 6(1): 103.
[http://dx.doi.org/10.1186/s40478-018-0604-3] [PMID: 30270813]
[304]
Kim JY, Woo SY, Hong YB, et al. HDAC6 inhibitors rescued the defective axonal mitochondrial movement in motor neurons derived from the induced pluripotent stem cells of peripheral neuropathy patients with HSPB1 Mutation. Stem Cells Int 2016; 2016: 1-14.
[http://dx.doi.org/10.1155/2016/9475981] [PMID: 28105056]
[305]
Majid T, Griffin D, Criss Z II, Jarpe M, Pautler RG. Pharmocologic treatment with histone deacetylase 6 inhibitor (ACY-738) recovers Alzheimer’s disease phenotype in amyloid precursor protein/presenilin 1 (APP/PS1) mice. Alzheimers Dement (N Y) 2015; 1(3): 170-81.
[http://dx.doi.org/10.1016/j.trci.2015.08.001] [PMID: 29854936]
[306]
Jochems J, Boulden J, Lee BG, et al. Antidepressant-like properties of novel HDAC6-selective inhibitors with improved brain bioavailability. Neuropsychopharmacology 2014; 39(2): 389-400.
[http://dx.doi.org/10.1038/npp.2013.207] [PMID: 23954848]
[307]
Whittle N, Schmuckermair C, Gunduz Cinar O, et al. Deep brain stimulation, histone deacetylase inhibitors and glutamatergic drugs rescue resistance to fear extinction in a genetic mouse model. Neuropharmacology 2013; 64: 414-23.
[http://dx.doi.org/10.1016/j.neuropharm.2012.06.001] [PMID: 22722028]
[308]
Sun J, Wang F, Hong G, et al. Antidepressant-like effects of sodium butyrate and its possible mechanisms of action in mice exposed to chronic unpredictable mild stress. Neurosci Lett 2016; 618: 159-66.
[http://dx.doi.org/10.1016/j.neulet.2016.03.003] [PMID: 26957230]
[309]
Stafford JM, Raybuck JD, Ryabinin AE, Lattal KM. Increasing histone acetylation in the hippocampus-infralimbic network enhances fear extinction. Biol Psychiatry 2012; 72(1): 25-33.
[http://dx.doi.org/10.1016/j.biopsych.2011.12.012] [PMID: 22290116]
[310]
Beresford T, Ronan PJ, Hipp D, et al. A double-blind placebo-controlled, randomized trial of divalproex sodium for posttraumatic irritability greater than 1 year after mild to moderate traumatic brain injury. J Neuropsychiatry Clin Neurosci 2022; 34(3): 224-32.
[http://dx.doi.org/10.1176/appi.neuropsych.19070159] [PMID: 35272494]
[311]
Ibrahim I, Tobar S, Fathi W, et al. Randomized controlled trial of adjunctive Valproate for cognitive remediation in early course schizophrenia. J Psychiatr Res 2019; 118: 66-72.
[http://dx.doi.org/10.1016/j.jpsychires.2019.08.011] [PMID: 31494376]
[312]
Casey DE, Daniel DG, Tamminga C, et al. Divalproex ER combined with olanzapine or risperidone for treatment of acute exacerbations of schizophrenia. Neuropsychopharmacology 2009; 34(5): 1330-8.
[http://dx.doi.org/10.1038/npp.2008.209] [PMID: 19052541]
[313]
Gavin DP, Kartan S, Chase K, Grayson DR, Sharma RP. Reduced baseline acetylated histone 3 levels, and a blunted response to HDAC inhibition in lymphocyte cultures from schizophrenia subjects. Schizophr Res 2008; 103(1-3): 330-2.
[http://dx.doi.org/10.1016/j.schres.2008.04.026] [PMID: 18539439]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy