Generic placeholder image

Current Indian Science

Editor-in-Chief

ISSN (Print): 2210-299X
ISSN (Online): 2210-3007

Research Article

Exploring Human 5HT1A/2A Receptor Through Homology Modeling and Flexible Docking Studies for the Binding Hotspot of Substituted 2,4-imidazolidinedione and Oxazolidinedione Derivatives

Author(s): Meenakshi dhanawat*, Sumeet Gupta and Somdutt Mujwar

Volume 1, 2023

Published on: 03 February, 2023

Article ID: e061222211614 Pages: 18

DOI: 10.2174/2210299X02666221206091540

open_access

Abstract

Introduction: To obtain the binding site of a model of the human 5-HT1A/2A receptor, a series of substituted 2,4-imidazolidinediones and oxazolidinediones were subjected to flexible docking using GLIDE.

Methods: The docking scores that were generated are correlated with the in-vivo affinity data that had already been collected.

Results: When combined with a homology model of 5HT1A/2A, the GLIDE docking approach was based on a template for 2-adrenergic receptors.

Conclusion: A model for ligand binding in the hydrophobic portion of the binding site was proposed after discussing the impact of the structure and hydrophobic characteristics of the aryl moiety on binding affinities.

Keywords: Docking, Homology modeling, GLIDE, PRIME, Schrödinger, Receptors.

[1]
Hoyer, D.; Clarke, D.E.; Fozard, J.R.; Hartig, P.R.; Martin, G.R.; Mylecharane, E.J.; Saxena, P.R.; Humphrey, P.P. International union of pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol. Rev., 1994, 46(2), 157-203.
[PMID: 7938165]
[2]
Lanfumey, L.; Hamon, M. Central 5-HT1A receptors: Regional distribution and functional characteristics. Nucl. Med. Biol., 2000, 27(5), 429-435.
[http://dx.doi.org/10.1016/S0969-8051(00)00107-4] [PMID: 10962246]
[3]
Bronowska, A.; Chilmonczyk, Z.; Leś, A.; Edvardsen, Ø.; Østensen, R.; Sylte, I. Molecular dynamics of 5-HT1A and 5-HT2A serotonin receptors with methylated buspirone analogues. J. Comput. Aided Mol. Des., 2001, 15(11), 1005-1023.
[http://dx.doi.org/10.1023/A:1014856107486] [PMID: 11989622]
[4]
Gener, T.; Tauste, C.A.; Alemany-González, M.; Nebot, P.; Delgado-Sallent, C.; Chanovas, J.; Puig, M.V. Serotonin 5-HT1A, 5-HT2A and dopamine D2 receptors strongly influence prefronto-hippocampal neural networks in alert mice: Contribution to the actions of risperidone. Neuropharmacology, 2019, 158, 107743.
[5]
Boger, D.L.; Patterson, J.E.; Jin, Q. Structural requirements for 5-HT 2A and 5-HT 1A serotonin receptor potentiation by the biologically active lipid oleamide. Proc. Natl. Acad. Sci., 1998, 95(8), 4102-4107.
[http://dx.doi.org/10.1073/pnas.95.8.4102]
[6]
Hibert, M.F.; Gittos, M.W.; Middlemiss, D.N.; Mir, A.K.; Fozard, J.R. Graphics computer-aided receptor mapping as a predictive tool for drug design: Development of potent, selective, and stereospecific ligands for the 5-HT1A receptor. J. Med. Chem., 1988, 31(6), 1087-1093.
[http://dx.doi.org/10.1021/jm00401a007] [PMID: 3373482]
[7]
Hibert, M.; McDermott, I.; Middlemiss, D.; Mir, A.; Fozard, J. Radioligand binding study of a series of 5-HT1A receptor agonists and definition of a steric model of this site. Eur. J. Med. Chem., 1989, 24(1), 31-37.
[http://dx.doi.org/10.1016/0223-5234(89)90160-8]
[8]
Mellin, C.; Vallgaarda, J.; Nelson, D.L.; Bjoerk, L.; Yu, H.; Anden, N.E.; Csoeregh, I.; Arvidsson, L.E.; Hacksell, U. A 3 dimensional model for 5-HT1A-receptor agonists based on stereoselective methyl-substituted and conformationally restricted analogs of 8-hydroxy-2-(dipropylamino)tetralin. J. Med. Chem., 1991, 34(2), 497-510.
[http://dx.doi.org/10.1021/jm00106a004] [PMID: 1995871]
[9]
Dhanawat, M.; Banerjee, A.G.; Shrivastava, S.K. Design, synthesis, and anticonvulsant screening of some substituted piperazine and aniline derivatives of 5-phenyl-oxazolidin-2,4-diones and 5,5-diphenylimidazolidin-2,4 diones. Med. Chem. Res., 2012, 21(10), 2807-2822.
[http://dx.doi.org/10.1007/s00044-011-9805-z]
[10]
Dhanawat, M.; Das, N.; Shrivastava, S.K. Design, synthesis, anticonvulsant screening and 5HT<sub>1A/2A </sub>receptor affinity of (3)-substituted 2,4-imidazolidinediones and oxazolidinediones. Drug Discov. Ther., 2011, 5(5), 227-237.
[http://dx.doi.org/10.5582/ddt.2011.v5.5.227] [PMID: 22466369]
[11]
Shieh, F.K.; Youngblood, B.; Reich, N.O. The role of Arg165 towards base flipping, base stabilization and catalysis in M.HhaI. J. Mol. Biol., 2006, 362(3), 516-527.
[http://dx.doi.org/10.1016/j.jmb.2006.07.030] [PMID: 16926025]
[12]
Cherezov, V.; Rosenbaum, D.M.; Hanson, M.A.; Rasmussen, S.G.F.; Thian, F.S.; Kobilka, T.S.; Choi, H.J.; Kuhn, P.; Weis, W.I.; Kobilka, B.K.; Stevens, R.C. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science, 2007, 318(5854), 1258-1265.
[http://dx.doi.org/10.1126/science.1150577] [PMID: 17962520]
[13]
Rosenbaum, D.M.; Cherezov, V.; Hanson, M.A.; Rasmussen, S.G.F.; Thian, F.S.; Kobilka, T.S.; Choi, H.J.; Yao, X.J.; Weis, W.I.; Stevens, R.C.; Kobilka, B.K. GPCR engineering yields high resolution structural insights into β2-adrenergic receptor function. Science, 2007, 318(5854), 1266-1273.
[http://dx.doi.org/10.1126/science.1150609] [PMID: 17962519]
[14]
Altschul, S.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res., 1997, 25(17), 3389-3402.
[http://dx.doi.org/10.1093/nar/25.17.3389] [PMID: 9254694]
[15]
Mobarec, J.C.; Sanchez, R.; Filizola, M. Modern homology modeling of G-protein coupled receptors: Which structural template to use? J. Med. Chem., 2009, 52(16), 5207-5216.
[http://dx.doi.org/10.1021/jm9005252] [PMID: 19627087]
[16]
Ho, B.Y.; Karschin, A.; Branchek, T.; Davidson, N.; Lester, H.A. The role of conserved aspartate and serine residues in ligand binding and in function of the 5-HT 1A receptor: A site directed mutation study. FEBS Lett., 1992, 312(2-3), 259-262.
[http://dx.doi.org/10.1016/0014-5793(92)80948-G] [PMID: 1426261]
[17]
Pucadyil, T.J.; Kalipatnapu, S.; Chattopadhyay, A. The serotonin1A receptor: A representative member of the serotonin receptor family. Cell. Mol. Neurobiol., 2005, 25(3-4), 553-580.
[http://dx.doi.org/10.1007/s10571-005-3969-3] [PMID: 16075379]
[18]
Kitson, S. 5-hydroxytryptamine (5-HT) receptor ligands. Curr. Pharm. Des., 2007, 13(25), 2621-2637.
[http://dx.doi.org/10.2174/138161207781663000] [PMID: 17897004]
[19]
Passchier, J.; van Waarde, A. Visualisation of serotonin-1A (5-HT1A) receptors in the central nervous system. Eur. J. Nucl. Med., 2001, 28(1), 113-129.
[http://dx.doi.org/10.1007/s002590000394] [PMID: 11202445]
[20]
Kanagarajadurai, K.; Malini, M.; Bhattacharya, A.; Panicker, M.M.; Sowdhamini, R. Molecular modeling and docking studies of human 5-hydroxytryptamine 2A (5-HT2A) receptor for the identification of hotspots for ligand binding. Mol. Biosyst., 2009, 5(12), 1877-1888.
[http://dx.doi.org/10.1039/b906391a] [PMID: 19763327]
[21]
Sengupta, D.; Verma, D.; Naik, P.K. Docking mode of delvardine and its analogues into the p66 domain of HIV-1 reverse transcriptase: screening using molecular mechanics generalized born/surface area and absorption, distribution, metabolism and excretion properties. J. Biosci., 2007, 32(S3), 1307-1316.
[http://dx.doi.org/10.1007/s12038-007-0140-y] [PMID: 18202455]
[22]
Shiah, I.S.; Yatham, L.N.; Lam, R.W.; Zis, A.P. Effects of lamotrigine on the 5-HT1A receptor function in healthy human males. J. Affect. Disord., 1998, 49(2), 157-162.
[http://dx.doi.org/10.1016/S0165-0327(98)00008-1] [PMID: 9609681]

© 2024 Bentham Science Publishers | Privacy Policy