Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Reduction of Electron-Rich Nitro Heteroarenes; A Comprehensive Review

Author(s): Gopal Vengatesh and Pandurangan Nanjan*

Volume 26, Issue 17, 2022

Published on: 19 December, 2022

Page: [1626 - 1637] Pages: 12

DOI: 10.2174/1385272827666221128113437

Price: $65

conference banner
Abstract

Amino heterocycles are important in drug design due to their unique intrinsic and physicochemical properties. Though these molecules look simple, their selective reduction is challenging because of their rich electron density in the ring. Additionally, reducing nitro groups in heterocycles is crucial in designing different materials. With this in view, several reduction methods have been developed and applied to various heterocyclic compounds. However, there is no dedicated report on these special types of compounds. With careful analysis, the studies are systematically summarized from conventional methods to advance materials based on their catalytic activity, durability, recyclability, and stability. Further, detailed insights are discussed to motivate chemists working in catalysts.

Keywords: Reduction reactions, electron-rich compounds, nitro, heteroarenes, amino heterocycles, PEG, metal based catalysts.

Graphical Abstract
[1]
Prabukanthan, P.; Raveendiran, C.; Kumar, M.S.; Harichandran, G.; Dinakaran, K.; Al-Kahtani, A.A.; Ubaidullah, M.; Ushanandhini, G.; Pandit, B. Synthesis, crystal elucidation, spectroscopic analysis, DFT, NLO and biological studies of N-(1H-benzimidazol-2-yl)benzamide heterocyclic compounds. Optik (Stuttg.), 2022, 270, 170014.
[http://dx.doi.org/10.1016/j.ijleo.2022.170014]
[2]
Vengatesh, G.; Sundaravadivelu, M. Quantum chemical, experimental, theoretical spectral (FT-IR and NMR) studies and molecular docking investigation of 4,8,9,10-tetraaryl-1,3-diazaadamantan-6-ones. Res. Chem. Intermed., 2019, 45(9), 4395-4415.
[http://dx.doi.org/10.1007/s11164-019-03838-9]
[3]
Goel, P.; Alam, O.; Naim, M.J.; Nawaz, F.; Iqbal, M.; Alam, M.I. Recent advancement of piperidine moiety in treatment of cancer- A review. Eur. J. Med. Chem., 2018, 157, 480-502.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.017] [PMID: 30114660]
[4]
Sadowski, B.; Hassanein, K.; Ventura, B.; Gryko, D.T. Tetraphenylethylenepyrrolo[3,2-b]pyrrole hybrids as solid-state emitters: the role of substitution pattern. Org. Lett., 2018, 20(11), 3183-3186.
[http://dx.doi.org/10.1021/acs.orglett.8b01011] [PMID: 29790766]
[5]
Vengatesh, G.; Sundaravadivelu, M.; Muthusubramanian, S. Iodine mediated rearrangement of tetraarylpiperidin-4-ones: Synthesis, structure analysis and biological studies of 5-aryl-2-methoxy-2,4-diphenyl-1H-pyrrole-3-ones. J. Mol. Struct., 2020, 1199, 126980.
[http://dx.doi.org/10.1016/j.molstruc.2019.126980]
[6]
Dak, M.; Šlachtová, V.; Šebela, M.; Bazgier, V.; Berka, K.; Smiejkowska, N.; Oorts, L.; Cappoen, D.; Brulíková, L. Novel heterocyclic hydroxamates as inhibitors of the mycobacterial zinc metalloprotease Zmp1 to probe its mechanism of function. Eur. J. Med. Chem., 2022, 244, 114831.
[http://dx.doi.org/10.1016/j.ejmech.2022.114831] [PMID: 36242986]
[7]
Dowing, R.S.; Kunkeler, P.J.; Van Bekkum, H. Catalytic syntheses of aromatic amines. Catal. Today, 1997, 37, 121.
[http://dx.doi.org/10.1016/S0920-5861(97)00005-9]
[8]
Booth, G. Encyclopedia of Industrial Chemistry; WileyVCH: Weinheim, 2012.
[9]
Ibrahim, N.A.; El-Kaed, S.A.; Rizk, S.A.; Ali, A.K. Regioselective synthesis, spectroscopic characterization, and computational chemical study of spiro[indoline-3,4′-pyrazolo[3,4-b] pyridine derivatives as agrochemical agents. Polycycl. Aromat. Compd., 2022, 42(8), 5567-5584.
[http://dx.doi.org/10.1080/10406638.2021.1942083]
[10]
Orlandi, M.; Brenna, D.; Harms, R.; Jost, S.; Benaglia, M. Recent developments in the reduction of aromatic and aliphatic nitro compounds to amines. Org. Process Res. Dev., 2018, 22(4), 430-445.
[http://dx.doi.org/10.1021/acs.oprd.6b00205]
[11]
Danchuk, A.I.; Komova, N.S.; Mobarez, S.N.; Doronin, S.Y.; Burmistrova, N.A.; Markin, A.V.; Duerkop, A. Optical sensors for determination of biogenic amines in food. Anal. Bioanal. Chem., 2020, 412(17), 4023-4036.
[http://dx.doi.org/10.1007/s00216-020-02675-9] [PMID: 32382967]
[12]
Kaur, N.; Chopra, S.; Singh, G.; Raj, P.; Bhasin, A.; Sahoo, S.K.; Kuwar, A.; Singh, N. Chemosensors for biogenic amines and biothiols. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(30), 4872-4902.
[http://dx.doi.org/10.1039/C8TB00732B] [PMID: 32255063]
[13]
Gupta, A. Aggregation-induced emission: A tool for sensitive detection of amines. ChemistrySelect, 2019, 4(44), 12848-12860.
[http://dx.doi.org/10.1002/slct.201903248]
[14]
Fu, Y.; Xu, W.; He, Q.; Cheng, J. Recent progress in thin film fluorescent probe for organic amine vapour. Sci. China Chem., 2016, 59(1), 3-15.
[http://dx.doi.org/10.1007/s11426-015-5498-3]
[15]
Li, Z.; Kelkar, S.; Raycraft, L.; Garedew, M.; Jackson, J.E.; Miller, D.J.; Saffron, C.M. A mild approach for bio-oil stabilization and upgrading: electrocatalytic hydrogenation using ruthenium supported on activated carbon cloth. Green Chem., 2014, 16(2), 844-852.
[http://dx.doi.org/10.1039/C3GC42303D]
[16]
Rueping, M.; Dufour, J.; Schoepke, F.R. Advances in catalytic metal-free reductions: from bio-inspired concepts to applications in the organocatalytic synthesis of pharmaceuticals and natural products. Green Chem., 2011, 13(5), 1084-1105.
[http://dx.doi.org/10.1039/c1gc15027h]
[17]
Xu, D.Z.; Li, H.; Wang, Y. Highly enantioselective Biginelli reaction catalyzed by a simple chiral primary amine catalyst: asymmetric synthesis of dihydropyrimidines. Tetrahedron, 2012, 68(38), 7867-7872.
[http://dx.doi.org/10.1016/j.tet.2012.07.027]
[18]
Wellington, K.W.; Kolesnikova, N.I. A laccase-catalysed one-pot synthesis of aminonaphthoquinones and their anticancer activity. Bioorg. Med. Chem., 2012, 20(14), 4472-4481.
[http://dx.doi.org/10.1016/j.bmc.2012.05.028] [PMID: 22682920]
[19]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.; Roma-Rodrigues, C.; Baptista, P.; Fernandes, A. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s toolbox. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[20]
Nishanth Rao, R.; Jena, S.; Mukherjee, M.; Maiti, B.; Chanda, K. Green synthesis of biologically active heterocycles of medicinal importance: a review. Environ. Chem. Lett., 2021, 19(4), 3315-3358.
[http://dx.doi.org/10.1007/s10311-021-01232-9]
[21]
Yin, Z.; Hu, W.; Zhang, W.; Konno, H.; Moriwaki, H.; Izawa, K.; Han, J.; Soloshonok, V.A. Tailor-made amino acid-derived pharmaceuticals approved by the FDA in 2019. Amino Acids, 2020, 52(9), 1227-1261.
[http://dx.doi.org/10.1007/s00726-020-02887-4] [PMID: 32880009]
[22]
Hill, S.A.; Steinfort, R.; Hartmann, L. Progress, challenges and future directions of heterocycles as building blocks in iterative methodologies towards sequence-defined oligomers and polymers. Polym. Chem., 2021, 12(31), 4439-4450.
[http://dx.doi.org/10.1039/D1PY00425E]
[23]
Han, T.; Deng, H.; Qiu, Z.; Zhao, Z.; Zhang, H.; Zou, H.; Leung, N.L.C.; Shan, G.; Elsegood, M.R.J.; Lam, J.W.Y.; Tang, B.Z. Multicomponent polymerizations toward unconventional luminescent polymers with readily openable small heterocycles. J. Am. Chem. Soc., 2018, 140(16), 5588-5598.
[http://dx.doi.org/10.1021/jacs.8b01991] [PMID: 29630372]
[24]
Saigal, S.S.; Shareef, S.; Rahman, H.; Khan, M.M. Aminocoumarins: A privileged precursor for the synthesis of fused heterocycles. Curr. Org. Chem., 2019, 23(9), 1045-1075.
[http://dx.doi.org/10.2174/1385272823666190514073610]
[25]
Goksu, H.; Sert, H.; Kilbas, B.; Sen, F. Recent advances in the reduction of nitro compounds by heterogenous Catalysts. Curr. Org. Chem., 2017, 21(9), 794-820.
[http://dx.doi.org/10.2174/1385272820666160525123907]
[26]
Graves, P.R.; Kwiek, J.J.; Fadden, P.; Ray, R.; Hardeman, K.; Coley, A.M.; Foley, M.; Haystead, T.A.J. Discovery of novel targets of quinoline drugs in the human purine binding proteome. Mol. Pharmacol., 2002, 62(6), 1364-1372.
[http://dx.doi.org/10.1124/mol.62.6.1364] [PMID: 12435804]
[27]
Nayyar, A.; Monga, V.; Malde, A.; Coutinho, E.; Jain, R. Synthesis, anti-tuberculosis activity, and 3D-QSAR study of 4-(adamantan-1-yl)-2-substituted quinolines. Bioorg. Med. Chem., 2007, 15(2), 626-640.
[http://dx.doi.org/10.1016/j.bmc.2006.10.064] [PMID: 17107805]
[28]
Hamama, W.S.; Ibrahim, M.E.; Gooda, A.A.; Zoorob, H.H. Efficient synthesis, antimicrobial, antioxidant assessments and geometric optimization calculations of azoles- incorporating quinoline moiety. J. Heterocycl. Chem., 2018, 55(11), 2623-2634.
[http://dx.doi.org/10.1002/jhet.3322]
[29]
Vitorino, G.P.; Becerra, M.C.; Barrera, G.D.; Caira, M.R.; Mazzieri, M.R. Cooperative Behavior of Fluoroquinolone Combinations against Escherichia coli and Staphylococcus aureus. Biol. Pharm. Bull., 2017, 40(6), 758-764.
[http://dx.doi.org/10.1248/bpb.b16-00616] [PMID: 28566620]
[30]
Quintero, B.; Miranda, M. Mechanisms of photosensitization induced by drugs: A general survey. Ars Pharm., 2000, 41, 27.
[31]
Domagala, J.M. Structure-activity and structure-side-effect relationships for the quinolone antibacterials. J. Antimicrob. Chemother., 1994, 33(4), 685-706.
[http://dx.doi.org/10.1093/jac/33.4.685] [PMID: 8056688]
[32]
Nawaz, S.; Bodla, R.; Kant, R.; Singh, S.P.; Bhutani, R.; Kapoor, G. Fluoroquinolone as antimicrobial agent: A Review. Int. J. Pharm. Sci. Res., 2017, 2, 57.
[33]
Gutierrez, A.; Stokes, J.; Matic, I. Our evolving understanding of the mechanism of quinolones. Antibiotics (Basel), 2018, 7(2), 32.
[http://dx.doi.org/10.3390/antibiotics7020032] [PMID: 29642475]
[34]
López-Rojas, P.; Janeczko, M.; Kubiński, K.; Amesty, Á.; Masłyk, M.; Estévez-Braun, A. Synthesis and antimicrobial activity of 4-substituted 1, 2, 3-triazole-coumarin derivatives. Molecules, 2018, 23(1), 199.
[http://dx.doi.org/10.3390/molecules23010199] [PMID: 29346325]
[35]
Singh, S.K.; Singh, M.K.; Kulkarni, P.P.; Sonkar, V.K.; Grácio, J.J.A.; Dash, D. Amine-modified graphene: Thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano, 2012, 6(3), 2731-2740.
[http://dx.doi.org/10.1021/nn300172t] [PMID: 22376049]
[36]
Zarafu, I.; Turcu, I.; Culiță, D.; Petrescu, S.; Popa, M.; Chifiriuc, M.; Limban, C.; Telehoiu, A.; Ioniță, P. Antimicrobial features of organic functionalized graphene-oxide with selected amines. Materials (Basel), 2018, 11(9), 1704.
[http://dx.doi.org/10.3390/ma11091704] [PMID: 30217002]
[37]
Weeks, C.A.; Aden, B.; Kilbey, S.M., II; Janorkar, A.V. Synthesis and characterization of an array of elastin-like polypeptide–polyelectrolyte conjugates with varying chemistries and amine content for biomedical applications. ACS Biomater. Sci. Eng., 2016, 2(12), 2196-2206.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00398] [PMID: 33465895]
[38]
Ganesh, S.D.; Saha, N.; Zandraa, O.; Zuckermann, R.N.; Sáha, P. Peptoids and polypeptoids: Biomimetic and bioinspired materials for biomedical applications. Polym. Bull., 2017, 74(8), 3455-3466.
[http://dx.doi.org/10.1007/s00289-016-1902-1]
[39]
Sadeh, T.; Davis, M.A.; Gil, R.; Zoller, U. The preparation of selenium-containing aromatic and heterocyclic C -substituted α-amino acetic acid derivatives of potential biomedical application. J. Heterocycl. Chem., 1981, 18(8), 1605-1607.
[http://dx.doi.org/10.1002/jhet.5570180824]
[40]
Buffa, R.; Odstrčilová, L.; Šedová, P.; Basarabová, I.; Novotný, J.; Velebný, V. Conjugates of modified hyaluronic acid with amino compounds for biomedical applications. Carbohydr. Polym., 2018, 189, 273-279.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.048] [PMID: 29580409]
[41]
Sun, H.; Xue, Q.; Zhang, C.; Wu, H.; Feng, P. Derivatization based on tetrazine scaffolds: synthesis of tetrazine derivatives and their biomedical applications. Org. Chem. Front., 2022, 9(2), 481-498.
[http://dx.doi.org/10.1039/D1QO01324F]
[42]
Roy, D.; Panda, G. Benzhydryl Amines: Synthesis and their biological perspective. ACS Omega, 2020, 5(1), 19-30.
[http://dx.doi.org/10.1021/acsomega.9b03090] [PMID: 31956747]
[43]
Sitkowska, K.; Hoes, M.F.; Lerch, M.M.; Lameijer, L.N.; van der Meer, P.; Szymański, W.; Feringa, B.L. Red-light-sensitive BODIPY photoprotecting groups for amines and their biological application in controlling heart rhythm. Chem. Commun. (Camb.), 2020, 56(41), 5480-5483.
[http://dx.doi.org/10.1039/D0CC02178D] [PMID: 32342077]
[44]
Kermannezhad, K.; Najafi Chermahini, A.; Momeni, M.M.; Rezaei, B. Application of amine-functionalized MCM-41 as pH-sensitive nano container for controlled release of 2-mercaptobenzoxazole corrosion inhibitor. Chem. Eng. J., 2016, 306, 849-857.
[http://dx.doi.org/10.1016/j.cej.2016.08.004]
[45]
Miecznikowski, J.R.; Crabtree, R.H. Transfer hydrogenation reduction of ketones, aldehydes and imines using chelated iridium(III) N-heterocyclic bis-carbene complexes. Polyhedron, 2004, 23(17), 2857-2872.
[http://dx.doi.org/10.1016/j.poly.2004.07.001]
[46]
Cabrita, I.; Fernandes, A.C. A novel efficient and chemoselective method for the reduction of nitriles using the system silane/oxo-rhenium complexes. Tetrahedron, 2011, 67(42), 8183-8186.
[http://dx.doi.org/10.1016/j.tet.2011.08.015]
[47]
Tsipis, C.A.; Kefalidis, C.E. How efficient are the hydrido-bridged diplatinum catalysts in the hydrosilylation, hydrocyanation, and hydroamination of alkynes: A theoretical analysis of the catalytic cycles employing electronic structure calculation methods. Organometallics, 2006, 25(7), 1696-1706.
[http://dx.doi.org/10.1021/om0509342]
[48]
Ogo, S.; Uehara, K.; Abura, T.; Fukuzumi, S. pH-Dependent chemoselective synthesis of alpha-amino acids. Reductive amination of alpha-keto acids with ammonia catalyzed by acid-stable iridium hydride complexes in water. J. Am. Chem. Soc., 2004, 126(10), 3020-3021.
[http://dx.doi.org/10.1021/ja031633r] [PMID: 15012110]
[49]
Ma, B.; Lee, W.C. A modified Curtius reaction: An efficient and simple method for direct isolation of free amine. Tetrahedron Lett., 2010, 51(2), 385-386.
[http://dx.doi.org/10.1016/j.tetlet.2009.11.038]
[50]
Kadam, H.K.; Tilve, S.G. Advancement in methodologies for reduction of nitroarenes. RSC Advances, 2015, 5(101), 83391-83407.
[http://dx.doi.org/10.1039/C5RA10076C]
[51]
Mohapatra, S.K.; Sonavane, S.U.; Jayaram, R.V.; Selvam, P. Heterogeneous catalytic transfer hydrogenation of aromatic nitro and carbonyl compounds over cobalt(II) substituted hexagonal mesoporous aluminophosphate molecular sieves. Tetrahedron Lett., 2002, 43(47), 8527-8529.
[http://dx.doi.org/10.1016/S0040-4039(02)02080-4]
[52]
Dyson, R.M.; Hazenkamp, M.; Kaufmann, K.; Maeder, M.; Studer, M.; Zilian, A. Modern tools for reaction monitoring: hard and soft modelling of? non-ideal? on-line acquired spectra. J. Chemometr., 2000, 14(5-6), 737-750.
[http://dx.doi.org/10.1002/1099-128X(200009/12)14:5/6<737:AID-CEM610>3.0.CO;2-4]
[53]
Sharma, U.; Kumar, N.; Verma, P.K.; Kumar, V.; Singh, B. Iron phthalocyanine as an efficient and versatile catalyst for N-alkylation of heterocyclic amines with alcohols: One-pot synthesis of 2-substituted benzimidazoles, benzothiazoles and benzoxazoles. Green Chem., 2012, 14, 2289-2293.
[http://dx.doi.org/10.1039/c2gc35452g]
[54]
Genc, H. Efficient reductions of various nitroarenes with scrap automobile catalyst and NaBH4. Catal. Commun., 2015, 67, 64-67.
[http://dx.doi.org/10.1016/j.catcom.2015.04.008]
[55]
Wu, Z.; Chen, J.; Di, Q.; Zhang, M. Size-controlled synthesis of a supported Ni nanoparticle catalyst for selective hydrogenation of p-nitrophenol to p-aminophenol. Catal. Commun., 2012, 18, 55-59.
[http://dx.doi.org/10.1016/j.catcom.2011.11.015]
[56]
Gawande, M.B.; Guo, H.; Rathi, A.K.; Branco, P.S.; Chen, Y.; Varma, R.S.; Peng, D.L. First application of core-shell Ag@Ni magnetic nanocatalyst for transfer hydrogenation reactions of aromatic nitro and carbonyl compounds. RSC Advances, 2013, 3(4), 1050-1054.
[http://dx.doi.org/10.1039/C2RA22143H]
[57]
Corma, A.; González-Arellano, C.; Iglesias, M.; Sánchez, F. Gold complexes as catalysts: Chemoselective hydrogenation of nitroarenes. Appl. Catal. A Gen., 2009, 356(1), 99-102.
[http://dx.doi.org/10.1016/j.apcata.2008.12.026]
[58]
Mdleleni, M.; Rinker, R.G.; Ford, P.C. Reduction of aromatic nitro compounds as catalyzed by rhodium trichloride under water–gas shift reaction conditions. J. Mol. Catal. Chem., 2003, 204-205, 125-131.
[http://dx.doi.org/10.1016/S1381-1169(03)00291-7]
[59]
Sundberg, R.J.; Pitts, W.J. Synthesis of cycloprop[c]indol-5-ones from 4-diazo-3-[n-(2-propenyl)amido]cyclohexadien-1-ones. Exploration of copper(I) and copper(II) complexes as catalysts. J. Org. Chem., 1991, 56(9), 3048-3054.
[http://dx.doi.org/10.1021/jo00009a023]
[60]
Clarke, H.T.; Hartman, W.W. Organic Synthesis, 2nd ed; Wiley & Sons: New York, 1941.
[61]
Ponticello, G.S.; Baldwin, J.J. On the use of the O-methylmandelate ester for establishment of absolute configuration of secondary alcohols. J. Org. Chem., 1979, 44, 4003-4007.
[http://dx.doi.org/10.1021/jo01336a065]
[62]
Bellamy, F.D.; Ou, K. Selective reduction of aromatic nitro compounds with stannous chloride in non acidic and non aqueous medium. Tetrahedron Lett., 1984, 25(8), 839-842.
[http://dx.doi.org/10.1016/S0040-4039(01)80041-1]
[63]
Zheng, Y.F.; Gu, X.N.; Witte, F. Biodegradable metals. Mater. Sci. Eng., 2014, R 77, 1, 34.
[http://dx.doi.org/10.1016/j.mser.2014.01.001]
[64]
Wang, Q.; Yang, Z.; Chai, B.; Cheng, S.; Lu, X.; Bai, X. Heterogeneous catalytic ozonation of natural organic matter with goethite, cerium oxide and magnesium oxide. RSC Advances, 2016, 6(18), 14730-14740.
[http://dx.doi.org/10.1039/C5RA21674E]
[65]
Magario, I.; García Einschlag, F.S.; Rueda, E.H.; Zygadlo, J.; Ferreira, M.L. Mechanisms of radical generation in the removal of phenol derivatives and pigments using different Fe-based catalytic systems. J. Mol. Catal. Chem., 2012, 352, 1-20.
[http://dx.doi.org/10.1016/j.molcata.2011.10.006]
[66]
Bokare, A.D.; Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater., 2014, 275, 121-135.
[http://dx.doi.org/10.1016/j.jhazmat.2014.04.054] [PMID: 24857896]
[67]
He, J.; Yang, X.; Men, B.; Wang, D. Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review. J. Environ. Sci. (China), 2016, 39, 97-109.
[http://dx.doi.org/10.1016/j.jes.2015.12.003] [PMID: 26899649]
[68]
Zhu, M.; Wachs, I.E. Iron-based catalysts for the high-temperature water-gas shift (HT-WGS) reaction: a review. ACS Catal., 2016, 6(2), 722-732.
[http://dx.doi.org/10.1021/acscatal.5b02594]
[69]
Jack, R.S.; Ayoko, G.A.; Adebajo, M.O.; Frost, R.L. A review of iron species for visible-light photocatalytic water purification. Environ. Sci. Pollut. Res. Int., 2015, 22(10), 7439-7449.
[http://dx.doi.org/10.1007/s11356-015-4346-5] [PMID: 25821036]
[70]
Guo, P.; Liao, S.; Wang, S.; Shi, J.; Tong, X. Highly efficient and selectivity-controllable aerobic oxidative cleavage of C-C bond over heterogeneous Fe-based catalysts. J. Catal., 2021, 395, 399-403.
[http://dx.doi.org/10.1016/j.jcat.2021.01.029]
[71]
Luo, H.; Wang, L.; Shang, S.; Niu, J.; Gao, S. Aerobic oxidative cleavage of 1,2-diols catalyzed by atomic-scale cobalt-based heterogeneous catalyst. Commun. Chem., 2019, 2(1), 17.
[http://dx.doi.org/10.1038/s42004-019-0116-5]
[72]
Nie, R.; Chen, M.; Pei, Y.; Zhang, B.; Qi, L.; Chen, J.; Goh, T.W.; Qi, Z.; Zhang, Z.; Huang, W. Room-temperature tandem condensation-hydrogenation catalyzed by porous C 3 N 4 nanosheet-supported Pd nanoparticles. ACS Sustain. Chem.& Eng., 2019, 7(3), 3356-3363.
[http://dx.doi.org/10.1021/acssuschemeng.8b05531]
[73]
Baindur, N.; Chadha, N.; Player, M.R. Solution-phase synthesis of a library of 3,5,7-trisubstituted 3H-[1,2,3]triazolo[4,5-d]pyrimidines. J. Comb. Chem., 2003, 5(5), 653-659.
[http://dx.doi.org/10.1021/cc020110x]
[74]
Liu, Y.; Lu, Y.; Prashad, M.; Repic, O.; Blacklock, T.J. A practical and chemo-selective reduction of nitroarenes to anilines using activated iron. Adv. Synth. Catal., 2005, 347, 217-219.
[http://dx.doi.org/10.1002/adsc.200404236]
[75]
Gamble, A.B.; Garner, J.; Gordon, C.P.; O’Conner, S.M.J.; Keller, P.A. O’Conner; Paul, A.K. Aryl nitro reduction with iron powder or stannous chloride under ultrasonic irradiation. Synth. Commun., 2007, 37(16), 2777-2786.
[http://dx.doi.org/10.1080/00397910701481195]
[76]
Walker, M.D.; Andrews, B.I.; Burton, A.J.; Humphreys, L.D.; Kelly, G.; Schilling, M.B.; Scott, P.W. The development of a new manufacturing route to the novel anticonvulsant, SB-406725A. Org. Process Res. Dev., 2010, 14(1), 108-113.
[http://dx.doi.org/10.1021/op9002054]
[77]
Chandrappa, S.; Vinaya, K.; Ramakrishnappa, T.; Rangappa, K.S. An efficient method for aryl nitro reduction and cleavage of azo compounds using iron powder/calcium chloride. Synlett, 2010, 20, 3019-3022.
[78]
Datta, K.J.; Rathi, A.K.; Gawande, M.B.; Ranc, V.; Zoppellaro, G.; Varma, R.S.; Zboril, R. Base-free transfer hydrogenation of nitroarenes catalyzed by micro-mesoporous iron oxide. ChemCatChem, 2016, 8(14), 2351-2355.
[http://dx.doi.org/10.1002/cctc.201600296]
[79]
Sohail, M.; Tahir, N.; Rubab, A.; Beller, M.; Sharif, M. Facile synthesis of iron-titanate nanocomposite as a sustainable material for selective amination of substituted nitro-arenes. Catalysts, 2020, 10(8), 871.
[http://dx.doi.org/10.3390/catal10080871]
[80]
Gallagher, W.P.; Marlatt, M.; Livingston, R.; Kiau, S.; Muslehiddinoglu, J. The development of a scalable, chemo-selective nitro reduction. Org. Process Res. Dev., 2012, 16(10), 1665-1668.
[http://dx.doi.org/10.1021/op3002239]
[81]
Rani, P.; Singh, K.N.; Kaur, A. Synthesis, characterization, and application of easily accessible resin-encapsulated nickel nanocatalyst for efficient reduction of functionalized nitroarenes under mild conditions. J. Chem. Sci., 2018, 130(12), 160.
[http://dx.doi.org/10.1007/s12039-018-1548-7]
[82]
Westerhaus, F.A.; Jagadeesh, R.V.; Wienhöfer, G.; Pohl, M.M.; Radnik, J.; Surkus, A.E.; Rabeah, J.; Junge, K.; Junge, H.; Nielsen, M.; Brückner, A.; Beller, M. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem., 2013, 5(6), 537-543.
[http://dx.doi.org/10.1038/nchem.1645] [PMID: 23695637]
[83]
Yadav, S.; Kumar, S.; Gupta, R. Cobalt complexes of pyrrolecarboxamide ligands as catalysts in nitro reduction reactions: influence of electronic substituents on catalysis and mechanistic insights. Inorg. Chem. Front., 2017, 4(2), 324-335.
[http://dx.doi.org/10.1039/C6QI00389C]
[84]
Murugesan, K.; Senthamarai, T.; Sohail, M.; Alshammari, A.S.; Pohl, M.M.; Beller, M.; Jagadeesh, R.V. Cobalt-based nanoparticles prepared from MOF–carbon templates as efficient hydrogenation catalysts. Chem. Sci. (Camb.), 2018, 9(45), 8553-8560.
[http://dx.doi.org/10.1039/C8SC02807A] [PMID: 30568779]
[85]
Sharma, U.; Kumar, N.; Verma, P.K.; Kumar, V.; Singh, B. Zinc phthalocyanine with PEG-400 as a recyclable catalytic system for selective reduction of aromatic nitro compounds. Green Chem., 2012, 14(8), 2289-2293.
[http://dx.doi.org/10.1039/c2gc35452g]
[86]
Zhang, W.; Sheng, G.; Wu, X.; Cai, X. Cooperation of a reductant and an oxidant in one pot to synthesize amides from nitroarenes and aldehydes. Synthesis, 2015, 47(7), 949-954.
[http://dx.doi.org/10.1055/s-0034-1380111]
[87]
Saranya, S.; Rohit, K.R.; Radhika, S.; Anilkumar, G. Palladium-catalyzed multicomponent reactions: An overview. Org. Biomol. Chem., 2019, 17(35), 8048-8061.
[http://dx.doi.org/10.1039/C9OB01538H] [PMID: 31410440]
[88]
De Jong, R.L.; Davidson, J.G.; Dozeman, G.J.; Fiore, P.J.; Giri, P.; Kelly, M.E.; Puls, T.P.; Seamans, R.E. The chemical development of CI-972 and CI-1000: A continuous nitration, a MgCl2/Et3N-mediated C-alkylation of a chloronitropyrimidine, A catalytic protodediazotization of a diazonium salt, and an air oxidation of an amine. Org. Process Res. Dev., 2001, 5(3), 216-225.
[http://dx.doi.org/10.1021/op000298d]
[89]
Kislyi, V.P.; Tolkacheva, L.N.; Semenov, V.V. Hydrogenation on granular palladium-containing catalysts: II. Hydrogenation of nitroheterocyclic compounds. Russ. J. Org. Chem., 2002, 38(2), 269-271.
[http://dx.doi.org/10.1023/A:1015586205191]
[90]
Rahaim, R.J., Jr; Maleczka, R.E., Jr Pd-catalyzed silicon hydride reductions of aromatic and aliphatic nitro groups. Org. Lett., 2005, 7(22), 5087-5090.
[http://dx.doi.org/10.1021/ol052120n] [PMID: 16235964]
[91]
Quinn, J.F.; Bryant, C.E.; Golden, K.C.; Gregg, B.T. Rapid reduction of heteroaromatic nitro groups using catalytic transfer hydrogenation with microwave heating. Tetrahedron Lett., 2010, 51(5), 786-789.
[http://dx.doi.org/10.1016/j.tetlet.2009.12.005]
[92]
Li, H.; Li, F.; Frett, B. Selective reduction of halogenated nitroarenes with hydrazine hydrate in the presence of Pd/C. Synlett, 2014, 25(10), 1403-1408.
[http://dx.doi.org/10.1055/s-0033-1339025] [PMID: 26843785]
[93]
Watson, T.J.N.; Horgan, S.W.; Shah, R.S.; Farr, R.A.; Schnettler, R.A.; Nevill, C.R.; Weiberth, F.J.; Huber, E.W.; Baron, B.M.; Webster, M.E.; Mishra, R.K.; Harrison, B.L.; Nyce, P.L.; Rand, C.L.; Goralski, C.T. Chemical development of MDL 103371: An N -Methyl- D -Aspartate-Type glycine receptor antagonist for the treatment of stroke. Org. Process Res. Dev., 2000, 4(6), 477-487.
[http://dx.doi.org/10.1021/op000286s]
[94]
Farkas, M.E.; Rodriguez, E.; Longo, M.C.; Monasterios, M.; Ortega, C.; Rivas, A.B.; Pardey, A.J.; Lopez, R.; Moya, S.A. Reduction of 5-nitrofuran compounds catalysed by a rhodium complex immobilized on poly(4-vinylpyridine): A relationship with antibacterial activity. J. Chil. Chem. Soc., 2006, 51, 1-9.
[95]
de Noronha, R.G.; Romão, C.C.; Fernandes, A.C. Highly chemo- and regioselective reduction of aromatic nitro compounds using the system silane/oxo-rhenium complexes. J. Org. Chem., 2009, 74(18), 6960-6964.
[http://dx.doi.org/10.1021/jo9008657] [PMID: 19685891]
[96]
Sharma, U.; Kumar, P.; Kumar, N.; Kumar, V.; Singh, B. Highly chemo- and regio-selective reduction of aromatic nitro compounds catalysed by recyclable copper (II) as well as cobalt (II) phthalocyanines. Adv. Synth. Catal., 2010, 352(11-12), 1834-1840.
[http://dx.doi.org/10.1002/adsc.201000191]
[97]
García, N.; García-García, P.; Fernández-Rodríguez, M.A.; Rubio, R.; Pedrosa, M.R.; Arnáiz, F.J.; Sanz, R. Pinacol as a new green reducing agent: molybdenum- catalyzed chemo-selective reduction of sulfoxides and nitroaromatics. Adv. Synth. Catal., 2012, 354(2-3), 321-327.
[http://dx.doi.org/10.1002/adsc.201100877]
[98]
Zubar, V.; Dewanji, A.; Rueping, M. Chemo-selective hydrogenation of nitroarenes using an air-stable base-metal catalyst. Org. Lett., 2021, 23(7), 2742-2747.
[http://dx.doi.org/10.1021/acs.orglett.1c00659] [PMID: 33754743]
[99]
Todorov, A.R.; Aikonen, S.; Muuronen, M.; Helaja, J. Visible-light-photocatalyzed reductions of N-heterocyclic nitroaryls to anilines utilizing ascorbic acid reductant. Org. Lett., 2019, 21(10), 3764-3768.
[http://dx.doi.org/10.1021/acs.orglett.9b01205] [PMID: 31066563]
[100]
Gholinejad, M.; Esmailoghli, H.; Sansano, J.M. Human hair catalyzed selective reduction of nitroarenes to amines. Can. J. Chem., 2020, 98(5), 244-249.
[http://dx.doi.org/10.1139/cjc-2019-0444]
[101]
Sharma, S.; Kumar, M.; Kumar, V.; Kumar, N. Metal-free transfer hydrogenation of nitroarenes in water with vasicine: revelation of organocatalytic facet of an abundant alkaloid. J. Org. Chem., 2014, 79(19), 9433-9439.
[http://dx.doi.org/10.1021/jo5019415] [PMID: 25215900]
[102]
Rajendran, K.; Pandurangan, N.; Vinod, C.P.; Khan, T.S.; Gupta, S.M.; Haider, A.; Jagadeesan, D. CuO as a reactive and reusable reagent for the hydrogenation of nitroarenes. Appl. Catal. B, 2021, 297, 120417.
[http://dx.doi.org/10.1016/j.apcatb.2021.120417]
[103]
Rajendran, K.; Shanmughan, A.; Nanjan, P.; Balaji, D.K.; Shanmugaraju, S.; Jagadeesan, D. CuO/CaO mediated synthesis of amino-1,8-naphthalimides from the nitro analogues. Results in Chemistry, 2022, 4, 100430.
[http://dx.doi.org/10.1016/j.rechem.2022.100430]
[104]
Rajendran, K.; Akash, S.; Roshni, M.; Pandurangan, N.; Jagadeesan, D. CuO/CaO as a solid reducing reagent for nitroarenes: combined effect of oxygen vacancies and surface basicity. Proc. Indian Nat. Sci. Acad., 2022, 88, 369-378.
[http://dx.doi.org/10.1007/s43538-022-00095-0]
[105]
Kothandapani, J.; Ganesan, S.S. Concise review on the applications of magnetically separable brønsted acidic catalysts. Curr. Org. Chem., 2019, 23(3), 313-334.
[http://dx.doi.org/10.2174/1385272823666190312152209]
[106]
Saeideh, E.; Farnaz, B.; Shahrzad, A.; Rahman, N.K.; Esmail, V. Recent advances in the application of nanometal catalysts for glaser coupling. Curr. Org. Chem., 2019, 23, 2489-2503.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy