Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Sustainable Synthesis of Benzylidenemalononitrile Compounds Under Microwave- Irradiation

Author(s): David E.Q. Jimenez, Lucas L. Zanin, Irlon M. Ferreira, Victor M. Deflon, Luan F. Diniz, Javier Ellena, Roberto L.A. Haiduke and André L. M. Porto*

Volume 26, Issue 16, 2022

Published on: 21 December, 2022

Page: [1552 - 1564] Pages: 13

DOI: 10.2174/1385272827666221125091631

Price: $65

Abstract

A green methodology was developed to obtain a large scope of Knoevenagel adducts with high yields (77-95%). The compounds were synthetized in 30 min, using aromatic aldehyde derivatives, malononitrile, water as a solvent, microwave irradiation as a heating source and in free-catalyst conditions. In a particular case, in the synthesis of the adduct derived from the α-methyl-trans-cinnamaldehyde, a [2+2] photochemical cycloaddition product was observed, a tetrasubstituted cyclobutane dimeric compound 3w’. Its complex structure was confirmed by X-ray diffraction (first time), nuclear magnetic resonance analysis and electronic structure calculations. Theoretical results suggest that the thermal decomposition of 3w’ back to 3w can occur by means of a biradical intermediate.

Keywords: Microwave irradiation, X-ray diffraction, knoevenagel adducts, [2+2] cycloaddition, photochemical reaction, green chemistry.

Graphical Abstract
[1]
Yang, X.; Fox, T.; Berke, H. Facile metal free regioselective transfer hydrogenation of polarized olefins with ammonia borane. Chem. Commun. (Camb.), 2011, 47(7), 2053-2055.
[http://dx.doi.org/10.1039/c0cc03163a] [PMID: 21210065]
[2]
Rasero-Almansa, A.M.; Corma, A.; Iglesias, M.; Sánchez, F. One-pot multifunctional catalysis with NNN-Pincer Zr-MOF: Zr base catalyzed condensation with Rh-catalyzed hydrogenation. ChemCatChem, 2013, 5(10), 3092-3100.
[http://dx.doi.org/10.1002/cctc.201300371]
[3]
Xu, D.Z.; Liu, Y.; Shi, S.; Wang, Y. A simple, efficient and green procedure for Knoevenagel condensation catalyzed by [C4dabco][BF4] ionic liquid in water. Green Chem., 2010, 12(3), 514-517.
[http://dx.doi.org/10.1039/b918595j]
[4]
Zanin, L.L.; Jimenez, D.E.Q.; de Jesus, M.P.; Diniz, L.F.; Ellena, J.; Porto, A.L.M. Synthesis and X-ray crystal structures of polyfunctionalized 4H-chromene derivatives via tricomponent reaction with Knoevenagel adducts as intermediates in aqueous medium. J. Mol. Struct., 2021, 1223, 129226-129236.
[http://dx.doi.org/10.1016/j.molstruc.2020.129226]
[5]
Birolli, W.G.; Zanin, L.L.; Jimenez, D.E.Q.; Porto, A.L.M. Synthesis of Knoevenagel adducts under microwave irradiation and biocatalytic ene-eeduction by the marine-derived fungus Cladosporium sp. CBMAI 1237 for the production of 2-cyano-3-phenylpropanamide derivatives. Mar. Biotechnol. (NY), 2020, 22(2), 317-330.
[http://dx.doi.org/10.1007/s10126-020-09953-8] [PMID: 32124098]
[6]
Carvalho, H.L.; Amorim, A.L.; Araujo, L.F.; Marino, B.L.B.; Jimenez, D.E.Q.; Ferreira, R.M.A.; Hage-Melim, L.I.P.; Souto, R.N.S.; Porto, A.L.M. A simple and efficient protocol for the knoevenagel reaction of benzylidenemalononitriles and the evaluation of the larvicidal activity on Aedes Aegypti. Rev. Virtual Quim, 2018, 10, 362-374.
[http://dx.doi.org/10.21577/1984-6835.20180028]
[7]
Jimenez, D.E.Q.; Barreiro, J.C.; Santos, F.M., Jr; Vasconcellos, S.P.; Porto, A.L.M.; Batista, J.M. Jr Enantioselective ene‐reduction of E ‐2‐cyano‐3‐(furan‐2‐yl) acrylamide by marine and terrestrial fungi and absolute configuration of (R)‐2‐cyano‐3‐(furan‐2‐yl) propanamide determined by calculations of electronic circular dichroism (ECD) spectra. Chirality, 2019, 31(7), 534-542.
[http://dx.doi.org/10.1002/chir.23078] [PMID: 31197903]
[8]
Gopalakrishna Panicker, R.K.; Krishnapillai, S. Synthesis of on resin poly(propylene imine) dendrimer and its use as organocatalyst. Tetrahedron Lett., 2014, 55(15), 2352-2354.
[http://dx.doi.org/10.1016/j.tetlet.2014.02.084]
[9]
Yu, Y.Q.; Wang, Z.L. A simple, efficient and green procedure for Knoevenagel condensation in water or under solvent-free conditions. J. Chin. Chem. Soc. (Taipei), 2013, 60(3), 288-292.
[http://dx.doi.org/10.1002/jccs.201200391]
[10]
Kalla, R.M.N.; Park, H.; Lee, H.R.; Suh, H.; Kim, I. Efficient, solvent-free, multicomponent method for organic-base-catalyzed synthesis of β-phosphonomalonates. ACS Comb. Sci., 2015, 17(11), 691-697.
[http://dx.doi.org/10.1021/acscombsci.5b00109] [PMID: 26434607]
[11]
Han, Y.R.; Park, J.W.; Kim, H.; Ji, H.; Lim, S.H.; Jun, C.H. A one-step co-condensation method for the synthesis of well-defined functionalized mesoporous SBA-15 using trimethallylsilanes as organosilane sources. Chem. Commun. (Camb.), 2015, 51(96), 17084-17087.
[http://dx.doi.org/10.1039/C5CC07286G] [PMID: 26451796]
[12]
Agarwal, R.A.; Mukherjee, S. Two-dimensional flexible Ni(II)-based porous coordination polymer showing single-crystal to single-crystal transformation, selective gas adsorption and catalytic properties. Polyhedron, 2016, 105, 228-237.
[http://dx.doi.org/10.1016/j.poly.2015.12.008]
[13]
Díaz, U.; García, T.; Velty, A.; Corma, A. Synthesis and catalytic properties of hybrid mesoporous materials assembled from polyhedral and bridged silsesquioxane monomers. Chemistry, 2012, 18(28), 8659-8672.
[http://dx.doi.org/10.1002/chem.201200170] [PMID: 22678926]
[14]
Trotzki, R.; Hoffmann, M.M.; Ondruschka, B. The Knoevenagel condensation at room temperature. Green Chem., 2008, 10(8), 873-878.
[http://dx.doi.org/10.1039/b808265k]
[15]
Li, G.; Xiao, J.; Zhang, W. Knoevenagel condensation catalyzed by a tertiary-amine functionalized polyacrylonitrile fiber. Green Chem., 2011, 13(7), 1828-1836.
[http://dx.doi.org/10.1039/c0gc00877j]
[16]
Kiss, N.Z.; Balint, E.; Keglevich, G. Microwave-Assisted syntheses in organic chemistry. Chem. Proc., 2021, 3(1), 108.
[http://dx.doi.org/10.1007/978-3-319-30632-2_2]
[17]
Abd El-Rahman, N.M.; El-Kateb, A.A.; Mady, M.F.; Mady, M.F. Simplified approach to the uncatalyzed Knoevenagel condensation and Michael addition reactions in water using microwave irradiation. Synth. Commun., 2007, 37(22), 3961-3970.
[http://dx.doi.org/10.1080/00397910701572696]
[18]
Chaitanya, G.D.; Cicily, A. Microwave assisted Gould-Jacob reaction: Synthesis of 4-quinolones under solvent free conditions. Indian J. Chem., 2000, 41B, 650-652.
[19]
Peng, Y.; Song, G.; Qian, X. Urotropine: An efficient catalyst precursor for the microwave-assisted Knoevenagel reaction. J. Chem. Res., 2001, 2001(5), 188-189.
[http://dx.doi.org/10.3184/030823401103169586]
[20]
Jimenez, D.E.Q.; Ferreira, I.M.; Yoshioka, S.A.; Fonseca, L.P.; Porto, A.L.M. Silk fibroin functionalized with CuSO4 on Knoevenagel condensation under microwave radiation. Curr. Microw. Chem., 2017, 4(2), 131-138.
[http://dx.doi.org/10.2174/2213335603666160809121421]
[21]
Jimenez, D.E.Q.; Ferreira, I.M.; Birolli, W.G.; Fonseca, L.P.; Porto, A.L.M. Synthesis and biocatalytic ene-reduction of Knoevenagel condensation compounds by the marine-derived fungus Penicillium citrinum CBMAI 1186. Tetrahedron, 2016, 72(46), 7317-7322.
[http://dx.doi.org/10.1016/j.tet.2016.02.014]
[22]
Zanin, L.L.; Jimenez, D.E.Q.; Fonseca, L.P.; Meleiro Porto, A.L. Knoevenagel condensation reactions of cyano malononitrile-derivatives under microwave radiation. Curr. Org. Chem., 2018, 22(6), 519-532.
[http://dx.doi.org/10.2174/1385272822666180123145819]
[23]
Jimenez, D.E.Q.; Zanin, L.L.; Diniz, L.F.; Ellena, J.; Porto, A.L.M. Green synthetic methodology of (E)-2-cyano-3-aryl selective Knoevenagel adducts under microwave irradiation. Curr. Microw. Chem., 2019, 6(1), 54-60.
[http://dx.doi.org/10.2174/2213335606666190906123431]
[24]
Trilleras, J.E.; Velasquez, K.J.; Pacheco, D.J.; Quiroga, J.; Ortíz, A. Microwave-assisted synthesis under solvent-free conditions of (E)-2-(Benzo[d]thiazol-2-yl)-3-arylacrylonitriles. J. Braz. Chem. Soc., 2011, 22(12), 2396-2402.
[http://dx.doi.org/10.1590/S0103-50532011001200022]
[25]
Sarkar, D.; Bera, N.; Ghosh, S. [2+2] Photochemical cycloaddition in organic synthesis. Eur. J. Org. Chem., 2010, 10, 1310-1326.
[26]
Poplata, S.; Tröster, A.; Zou, Y.Q.; Bach, T. Recent advances in the synthesis of cyclobutanes by olefin [2 + 2] photocycloaddition reactions. Chem. Rev., 2016, 116(17), 9748-9815.
[http://dx.doi.org/10.1021/acs.chemrev.5b00723] [PMID: 27018601]
[27]
Martelli, J.; Carrié, R. Réactions avec le diazométhane d’esters cinnamylidène maloniques ou cyanacétiques méthylés ou phénylés en γ des groupements fonctionnels et des malononitriles correspondants. Thermolyse des pyrazolines obtenues. Can. J. Chem., 1977, 55(22), 3942-3950.
[http://dx.doi.org/10.1139/v77-559]
[28]
Sirjean, B.; Glaude, P.A.; Ruiz-Lopez, M.F.; Fournet, R. Detailed kinetic study of the ring opening of cycloalkanes by CBS-QB3 calculations. J. Phys. Chem. A, 2006, 110(46), 12693-12704.
[http://dx.doi.org/10.1021/jp0651081] [PMID: 17107122]
[29]
Evans, M.G.; Polanyi, M. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc., 1935, 31, 875-894.
[http://dx.doi.org/10.1039/tf9353100875]
[30]
Agilent Technologies UK Ltd: Yarnton. 2014.
[31]
Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst., 2009, 42(2), 339-341.
[http://dx.doi.org/10.1107/S0021889808042726]
[32]
Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem., 2015, 71(1), 3-8.
[http://dx.doi.org/10.1107/S2053229614024218]
[33]
Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; Wood, P.A. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Cryst., 2020, 53(1), 226-235.
[http://dx.doi.org/10.1107/S1600576719014092] [PMID: 32047413]
[34]
Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Cryst., 2012, 45(4), 849-854.
[http://dx.doi.org/10.1107/S0021889812029111]
[35]
Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge structural database. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater., 2016, 72(2), 171-179.
[http://dx.doi.org/10.1107/S2052520616003954] [PMID: 27048719]
[36]
Becke, A.D. Density‐functional thermochemistry, III. The role of exact exchange. J. Chem. Phys., 1993, 98(7), 5648-5652.
[http://dx.doi.org/10.1063/1.464913]
[37]
Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter, 1988, 37(2), 785-789.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
[38]
Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem., 1994, 98(45), 11623-11627.
[http://dx.doi.org/10.1021/j100096a001]
[39]
Dunning, T.H., Jr Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys., 1989, 90(2), 1007-1023.
[http://dx.doi.org/10.1063/1.456153]
[40]
Gauss, J. Calculation of NMR chemical shifts at second-order many-body perturbation theory using gauge-including atomic orbitals. Chem. Phys. Lett., 1992, 191(6), 614-620.
[http://dx.doi.org/10.1016/0009-2614(92)85598-5]
[41]
Gauss, J. Effects of electron correlation in the calculation of nuclear magnetic resonance chemical shifts. J. Chem. Phys., 1993, 99(5), 3629-3643.
[http://dx.doi.org/10.1063/1.466161]
[42]
Gauss, J. Accurate calculation of NMR chemical shifts. Ber. Bunsenges. Phys. Chem, 1995, 99(8), 1001-1008.
[http://dx.doi.org/10.1002/bbpc.199500022]
[43]
Cheeseman, J.R.; Trucks, G.W.; Keith, T.A.; Frisch, M.J. A comparison of models for calculating nuclear magnetic resonance shielding tensors. J. Chem. Phys., 1996, 104(14), 5497-5509.
[http://dx.doi.org/10.1063/1.471789]
[44]
London, F. Théorie quantique des courants interatomiques dans les combinaisons aromatiques. J. Phys. Radium, 1937, 8(10), 397-409.
[http://dx.doi.org/10.1051/jphysrad:01937008010039700]
[45]
McWeeny, R. Perturbation theory for the fock-dirac density matrix. Phys. Rev., 1962, 126(3), 1028-1034.
[http://dx.doi.org/10.1103/PhysRev.126.1028]
[46]
Ditchfield, R. Self-consistent perturbation theory of diamagnetism. Mol. Phys., 1974, 27(4), 789-807.
[http://dx.doi.org/10.1080/00268977400100711]
[47]
Wolinski, K.; Hinton, J.F.; Pulay, P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem. Soc., 1990, 112(23), 8251-8260.
[http://dx.doi.org/10.1021/ja00179a005]
[48]
Zhao, Y.; Lynch, B.J.; Truhlar, D.G. Development and assessment of a new hybrid density functional model for thermochemical kinetics. J. Phys. Chem. A, 2004, 108(14), 2715-2719.
[http://dx.doi.org/10.1021/jp049908s]
[49]
Bauernschmitt, R.; Ahlrichs, R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett., 1996, 256(4-5), 454-464.
[http://dx.doi.org/10.1016/0009-2614(96)00440-X]
[50]
Casida, M.E.; Jamorski, C.; Casida, K.C.; Salahub, D.R. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys., 1998, 108(11), 4439-4449.
[http://dx.doi.org/10.1063/1.475855]
[51]
Stratmann, R.E.; Scuseria, G.E.; Frisch, M.J. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys., 1998, 109(19), 8218-8224.
[http://dx.doi.org/10.1063/1.477483]
[52]
Van Caillie, C.; Amos, R.D. Geometric derivatives of excitation energies using SCF and DFT. Chem. Phys. Lett., 1999, 308(3-4), 249-255.
[http://dx.doi.org/10.1016/S0009-2614(99)00646-6]
[53]
Van Caillie, C.; Amos, R.D. Geometric derivatives of density functional theory excitation energies using gradient-corrected functionals. Chem. Phys. Lett., 2000, 317(1-2), 159-164.
[http://dx.doi.org/10.1016/S0009-2614(99)01346-9]
[54]
Furche, F.; Ahlrichs, R. Adiabatic time-dependent density functional methods for excited state properties. J. Chem. Phys., 2002, 117(16), 7433-7447.
[http://dx.doi.org/10.1063/1.1508368]
[55]
Scalmani, G.; Frisch, M.J.; Mennucci, B.; Tomasi, J.; Cammi, R.; Barone, V. Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. J. Chem. Phys., 2006, 124(9), 094107.
[http://dx.doi.org/10.1063/1.2173258] [PMID: 16526845]
[56]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B.G.; Gomperts, R.; Mennucci, B.; Hratchian, H.P.; Ortiz, J.V.; Sonnenberg, A. Gaussian, Inc.: Wallingford, CT, 2016.
[57]
Stewart, J.J.P. MOPAC2016 Version 21.214W; Stewart Computational Chemistry: Colorado Springs, CO, USA, 2016. http://OpenMOPAC.net
[58]
Stewart, J.J.P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model., 2013, 19(1), 1-32.
[http://dx.doi.org/10.1007/s00894-012-1667-x] [PMID: 23187683]
[59]
Avogadro: An open-source molecular builder and visualization tool. Version 1.2.0. Available from: http://avogadro.cc/
[60]
Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform., 2012, 4(1), 17-50.
[http://dx.doi.org/10.1186/1758-2946-4-17] [PMID: 22889332]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy