Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Applications of Transesterification in the Synthesis of Commercial and Noncommercial β -Ketoesters/Esters, Medicinally Important Heterocycles and Production of Biodiesel

Author(s): Anjaneyulu Bendi* and G.B. Dharma Rao

Volume 26, Issue 16, 2022

Published on: 15 December, 2022

Page: [1530 - 1551] Pages: 22

DOI: 10.2174/1385272827666221124105730

Price: $65

Abstract

Transesterification is one of the paramount chemical reactions in organic synthesis and is broadly used to synthesize the biologically and pharmacologically active heterocycles of greater medicinal importance. The transesterification reaction provides the useful synthon called β-ketoester, which bears both electrophilic and nucleophilic reactive centers, which is helpful for the construction of various complex structures with greater medicinal properties. This article discusses various methods to synthesize β-keto esters/esters via transesterification through catalysis, including nanocatalysts, and different applications of transesterification reactions in the preparation of biologically active heterocycles and production of biodiesel have also been summarized as per the available literature. The main focus of the current study is to highlight the importance of transesterification in synthesizing variety of commercial and noncommercial β - ketoesters / esters, which will be used to synthesize various biologically important heterocycles and production of biodiesel.

Keywords: Transesterification, β-ketoesters, catalysis, nanocatalysts, biodiesel and biologically active heterocycles, CALB.

Graphical Abstract
[1]
Iwasaki, T.; Maegawa, Y.; Hayashi, Y.; Ohshima, T.; Mashima, K. Transesterification of various methyl esters under mild conditions catalyzed by tetranuclear zinc cluster. J. Org. Chem., 2008, 73(13), 5147-5150.
[http://dx.doi.org/10.1021/jo800625v] [PMID: 18540677]
[2]
Otera, J. Transesterification. Chem. Rev., 1993, 93(4), 1449-1470.
[http://dx.doi.org/10.1021/cr00020a004]
[3]
Darnoko, D.; Cheryan, M. Kinetics of palm oil transesterification in a batch reactor. J. Am. Oil Chem. Soc., 2000, 77(12), 1263-1267.
[http://dx.doi.org/10.1007/s11746-000-0198-y]
[4]
Bandgar, B.P.; Uppalla, L.S.; Sadavarte, V.S. Envirocat EPZG and natural clay as efficient catalysts for transesterification of β-keto esters. Green Chem., 2001, 3(1), 39-41.
[http://dx.doi.org/10.1039/b006946i]
[5]
Chavan, S.P.; Subbarao, Y.T.; Dantale, S.W.; Sivappa, R. Transesterification of ketoesters using amberlyst -15. Synth. Commun., 2001, 31(2), 289-294.
[http://dx.doi.org/10.1081/SCC-100000212]
[6]
Córdova, A.; Janda, K.D. A highly chemo- and stereoselective synthesis of β-keto esters via a polymer-supported lipase catalyzed transesterfication. J. Org. Chem., 2001, 66(5), 1906-1909.
[http://dx.doi.org/10.1021/jo001478o] [PMID: 11262145]
[7]
Tamura, O.; Mita, N.; Okabe, T.; Yamaguchi, T.; Fukushima, C.; Yamashita, M.; Morita, Y.; Morita, N.; Ishibashi, H.; Sakamoto, M. Tandem transesterification and intramolecular cycloaddition of alpha-methoxycarbonylnitrones with chiral acyclic allyl alcohols: systematic studies on the factors affecting diastereofacial selectivity of the cycloaddition. J. Org. Chem., 2001, 66(8), 2602-2610.
[http://dx.doi.org/10.1021/jo001015i] [PMID: 11304177]
[8]
Kim, K.W.; Song, B.; Choi, M.Y.; Kim, M.J. Biocatalysis in ionic liquids: Markedly enhanced enantioselectivity of lipase. Org. Lett., 2001, 3(10), 1507-1509.
[http://dx.doi.org/10.1021/ol015824f] [PMID: 11388853]
[9]
Ramalinga, K.; Vijayalakshmi, P.; Kaimal, T.N.B. A mild and efficient method for esterification and transesterification catalyzed by iodine. Tetrahedron Lett., 2002, 43(5), 879-882.
[http://dx.doi.org/10.1016/S0040-4039(01)02235-3]
[10]
Bandgar, B.P.; Uppalla, L.S.; Sadavarte, V.S. Chemoselective transesterification of β-keto esters under neutral conditions using NBS as a catalyst. Synlett, 2001, 2001(11), 1715-1718.
[http://dx.doi.org/10.1055/s-2001-18082]
[11]
da Silva, F.C.; Ferreira, V.F.; Rianelli, R.S.; Perreira, W.C. Natural clays as efficient catalyst for transesterification of β-keto esters with carbohydrate derivatives. Tetrahedron Lett., 2002, 43(7), 1165-1168.
[http://dx.doi.org/10.1016/S0040-4039(01)02388-7]
[12]
Jin, T.; Zhang, S.; Li, T. Transesterification of β-ketoesters with alcohols catalyzed by montmorillonite K-10. Green Chem., 2002, 4(1), 32-34.
[http://dx.doi.org/10.1039/b109439b]
[13]
Bo, W.; Ming, Y.L.; Shuan, S.J. Ionic liquid-regulated sulfamic acid: chemoselective catalyst for the transesterification of β-ketoesters. Tetrahedron Lett., 2003, 44(27), 5037-5039.
[http://dx.doi.org/10.1016/S0040-4039(03)01187-0]
[14]
Carr, J.A.; Bisht, K.S. Enzyme-catalyzed regioselective transesterification of peracylated sophorolipids. Tetrahedron, 2003, 59(39), 7713-7724.
[http://dx.doi.org/10.1016/S0040-4020(03)01213-4]
[15]
Coşkun, N.; Er, M. Efficient and chemoselective alkyl bromoacetate-Zn mediated transesterification method. Tetrahedron, 2003, 59(19), 3481-3485.
[http://dx.doi.org/10.1016/S0040-4020(03)00472-1]
[16]
McCabe, R.W.; Taylor, A. Mechanistic studies on the enzymatic transesterification of polyesters. Tetrahedron, 2004, 60(3), 765-770.
[http://dx.doi.org/10.1016/j.tet.2003.10.104]
[17]
Madje, B.R.; Patil, P.T.; Shindalkar, S.S.; Benjamin, S.B.; Shingare, M.S.; Dongare, M.K. Facile transesterification of β-ketoesters under solvent-free condition using borate zirconia solid acid catalyst. Catal. Commun., 2004, 5(7), 353-357.
[http://dx.doi.org/10.1016/j.catcom.2004.04.004]
[18]
Chen, C.T.; Kuo, J.H.; Ku, C.H.; Weng, S.S.; Liu, C.Y. Nucleophilic acyl substitutions of esters with protic nucleophiles mediated by amphoteric, oxotitanium, and vanadyl species. J. Org. Chem., 2005, 70(4), 1328-1339.
[http://dx.doi.org/10.1021/jo0484878] [PMID: 15704967]
[19]
Grasa, G.B.; Singh, R.; Nolan, S.P. Transesterification/acylation reactions catalyzed by molecular catalysts. Synthesis, 2004, 7, 971-985.
[20]
Hao, X.; Yoshida, A.; Nishikido, J. Recyclable and selective Lewis acid catalysts for transesterification and direct esterification in a fluorous biphase system: tin(IV) and hafnium(IV) bis(perfluorooctanesulfonyl)amide complexes. Tetrahedron Lett., 2004, 45(4), 781-785.
[http://dx.doi.org/10.1016/j.tetlet.2003.11.035]
[21]
Dauvergne, J.; Wellington, K.; Chibale, K. Unprecedented observation of sulfonamides in the transesterification of N-unsubstituted carbamates with sulfonyl chlorides. Tetrahedron Lett., 2004, 45(1), 43-47.
[http://dx.doi.org/10.1016/j.tetlet.2003.10.139]
[22]
Hatzakis, N.S.; Smonou, I. Enantioselectivity and diastereoselectivity in the transesterification of secondary alcohols mediated by feruloyl esterase from Humicola insolens. Tetrahedron Lett., 2004, 45(13), 2755-2757.
[http://dx.doi.org/10.1016/j.tetlet.2004.02.034]
[23]
Pennington, T.E.; Kardiman, C.; Hutton, C.A. Deprotection of pinacolyl boronate esters by transesterification with polystyrene-boronic acid. Tetrahedron Lett., 2004, 45(35), 6657-6660.
[http://dx.doi.org/10.1016/j.tetlet.2004.07.014]
[24]
Sasidharan, M.; Kumar, R. Transesterification over various zeolites under liquid-phase conditions. J. Mol. Catal. Chem., 2004, 210(1-2), 93-98.
[http://dx.doi.org/10.1016/j.molcata.2003.08.031]
[25]
Palaniappan, S.; Chandra Shekhar, R. Transesterification of ketoesters with alcohols using polyaniline salts as catalysts. Polym. Adv. Technol., 2004, 15(3), 140-143.
[http://dx.doi.org/10.1002/pat.419]
[26]
Shirae, Y.; Mino, T.; Hasegawa, T.; Sakamoto, M.; Fujita, T. Transesterification of various alcohols with vinyl acetate under mild conditions catalyzed by diethylzinc using N-substituted diethanolamine as a ligand. Tetrahedron Lett., 2005, 46(35), 5877-5879.
[http://dx.doi.org/10.1016/j.tetlet.2005.06.129]
[27]
Chavan, S.P.; Pasupathy, K.; Shengule, S. Catalytic transesterification of β -ketoesters with zeolite H-FER under solvent free conditions. ARKIVO, 2005, xiii, 162-168.
[http://dx.doi.org/10.3998/ark.5550190.0006.d14]
[28]
Lai, C.L.; Lee, H.M.; Hu, C.H. Theoretical study on the mechanism of N-heterocyclic carbene catalyzed transesterification reactions. Tetrahedron Lett., 2005, 46(37), 6265-6270.
[http://dx.doi.org/10.1016/j.tetlet.2005.07.046]
[29]
Goswami, A.; Goswami, J. DMSO-triggered enhancement of enantioselectivity in Novozyme[435]-catalyzed transesterification of chiral 1-phenylethanols. Tetrahedron Lett., 2005, 46(25), 4411-4413.
[http://dx.doi.org/10.1016/j.tetlet.2005.03.147]
[30]
Sarabia, F.; García-Castro, M.; Chammaa, S. Synthesis of [13]-membered macrocyclic stevastelins via a transesterification reaction as the key step: total synthesis of stevastelin C3. Tetrahedron Lett., 2005, 46(45), 7695-7699.
[http://dx.doi.org/10.1016/j.tetlet.2005.09.037]
[31]
de Sairre, M.I.; Bronze-Uhle, É.S.; Donate, P.M.; Ine, M. Niobium(V) oxide: A new and efficient catalyst for the transesterification of β-keto esters. Tetrahedron Lett., 2005, 46(15), 2705-2708.
[http://dx.doi.org/10.1016/j.tetlet.2005.01.158]
[32]
Tale, R.; Sagar, A.; Santan, H.; Adude, R. 3-nitrobenzeneboronic acid as an efficient and environmentally benign catalyst for the selective transesterification of β-keto esters. Synlett, 2006, 2006(3), 0415-0418.
[http://dx.doi.org/10.1055/s-2006-932454]
[33]
Bazi, F.; El Badaoui, H.; Sokori, S.; Tamani, S.; Hamza, M.; Boulaajaj, S.; Sebti, S. Transesterification of methylbenzoate with alcohols catalyzed by natural phosphate. Synth. Commun., 2006, 36(11), 1585-1592.
[http://dx.doi.org/10.1080/00397910600591508]
[34]
Tanaka, K.; Osaka, T.; Noguchi, K.; Hirano, M. Rhodium-catalyzed asymmetric one-pot transesterification and [2 + 2 + 2] cycloaddition leading to enantioenriched 3,3-disubstituted phthalides. Org. Lett., 2007, 9(7), 1307-1310.
[http://dx.doi.org/10.1021/ol070179j] [PMID: 17338538]
[35]
Magens, S.; Ertelt, M.; Jatsch, A.; Plietker, B. A nucleophilic Fe catalyst for transesterifications under neutral conditions. Org. Lett., 2008, 10(1), 53-56.
[http://dx.doi.org/10.1021/ol702580a] [PMID: 18052184]
[36]
Mori, T.; Wada, T.; Inoue, Y. Perfect switching of photoreactivity by acid: photochemical decarboxylation versus transesterification of mesityl cyclohexanecarboxylate. Org. Lett., 2000, 2(21), 3401-3404.
[http://dx.doi.org/10.1021/ol0065266] [PMID: 11029221]
[37]
Sua’rez- Castillo. O.R.S.; Montiel-ortega, L.A.; Fragoso-Va’zquez, M.J.; Sa’nchez-Zavala, M. Transesterifications mediated by T -BuNH2. Tetrahedron Lett., 2008, 49, 996-999.
[38]
Wakasugi, K.; Misaki, T.; Yamada, K.; Tanabe, Y. Diphenylammonium triflate (DPAT): efficient catalyst for esterification of carboxylic acids and for transesterification of carboxylic esters with nearly equimolar amounts of alcohols. Tetrahedron Lett., 2000, 41(27), 5249-5252.
[http://dx.doi.org/10.1016/S0040-4039(00)00821-2]
[39]
Yadav, J.S.; Reddy, B.V.S.; Krishna, A.D.; Reddy, C.S.; Narsaiah, A.V. Triphenylphosphine: An efficient catalyst for transesterification of β-ketoesters. J. Mol. Catal. Chem., 2007, 261(1), 93-97.
[http://dx.doi.org/10.1016/j.molcata.2006.07.060]
[40]
Koval, L.I.; Dzyuba, V.I.; Ilnitska, O.L.; Pekhnyo, V.I. Efficient transesterification of ethyl acetoacetate with higher alcohols without catalysts. Tetrahedron Lett., 2008, 49(10), 1645-1647.
[http://dx.doi.org/10.1016/j.tetlet.2008.01.018]
[41]
Singh, M.; Singh, S.; Singh, R.S.; Chisti, Y.; Banerjee, U.C. Transesterification of primary and secondary alcohols using Pseudomonas aeruginosa lipase. Bioresour. Technol., 2008, 99(7), 2116-2120.
[http://dx.doi.org/10.1016/j.biortech.2007.05.041] [PMID: 17616461]
[42]
Kondaiah, G.C.M.; Reddy, L.A.; Babu, K.S.; Gurav, V.M.; Huge, K.G.; Bandichhor, R.; Reddy, P.P.; Bhattacharya, A.; Anand, R.V. Boric acid: An efficient and environmentally benign catalyst for transesterification of ethyl acetoacetate. Tetrahedron Lett., 2008, 49(1), 106-109.
[http://dx.doi.org/10.1016/j.tetlet.2007.11.008]
[43]
Ishihara, K.; Niwa, M.; Kosugi, Y. Zwitterionic salts as mild organocatalysts for transesterification. Org. Lett., 2008, 10(11), 2187-2190.
[http://dx.doi.org/10.1021/ol8005979] [PMID: 18442240]
[44]
Lherbet, C.; Castonguay, R.; Keillor, J.W. Transesterification of trialkyl phosphates from alkyl bromides. Tetrahedron Lett., 2005, 46(20), 3565-3567.
[http://dx.doi.org/10.1016/j.tetlet.2005.03.065]
[45]
Umetsu, K.; Asao, N. Gold-catalyzed transesterification of ortho-alkynylbenzoic acid esters: a novel protecting group for alcohols and phenols. Tetrahedron Lett., 2008, 49(49), 7046-7049.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.146]
[46]
Pignataro, L.; Papalia, T.; Slawin, A.M.Z.; Goldup, S.M. Unusual mechanistic course of some NHC-mediated transesterifications. Org. Lett., 2009, 11(7), 1643-1646.
[http://dx.doi.org/10.1021/ol900257t] [PMID: 19320507]
[47]
Magens, S.; Plietker, B. Nucleophilic iron catalysis in transesterifications: scope and limitations. J. Org. Chem., 2010, 75(11), 3715-3721.
[http://dx.doi.org/10.1021/jo1004636] [PMID: 20462205]
[48]
Yang, Z.Z.; He, L.N.; Dou, X.Y.; Chanfreau, S. Dimethyl carbonate synthesis catalyzed by DABCO-derived basic ionic liquids via transesterification of ethylene carbonate with methanol. Tetrahedron Lett., 2010, 51(21), 2931-2934.
[http://dx.doi.org/10.1016/j.tetlet.2010.03.114]
[49]
Hatano, M.; Kamiya, S.; Moriyama, K.; Ishihara, K. Lanthanum(III) isopropoxide catalyzed chemoselective transesterification of dimethyl carbonate and methyl carbamates. Org. Lett., 2011, 13(3), 430-433.
[http://dx.doi.org/10.1021/ol102754y] [PMID: 21175159]
[50]
Yang, J.; Ji, C.; Zhao, Y.; Li, Y.; Jiang, S.; Zhang, Z.; Ji, Y.; Liu, W. BF 3 ·OEt 2: An efficient catalyst for transesterification of β -ketoesters. Synth. Commun., 2010, 40(7), 957-963.
[http://dx.doi.org/10.1080/00397910903029842]
[51]
Ren, Y.; Cai, C. Molecular iodine in ionic liquid: A green catalytic system for esterification and transesterification. Synth. Commun., 2010, 40(11), 1670-1676.
[http://dx.doi.org/10.1080/00397910903161660]
[52]
Yue, H.; Yu, H.; Liu, S.; Xu, C. Ag-Cu nanoparticles as efficient catalysts for transesterification of β-keto esters under acid/base-free conditions. RSC Advances, 2016, 6(23), 19041-19051.
[http://dx.doi.org/10.1039/C6RA00467A]
[53]
Bandgar, B.P.; Sadavarte, V.S.; Uppalla, L.S. Metal salts as novel catalysts for efficient transesterification of β-ketoesters. Synth. Commun., 2001, 31(13), 2063-2066.
[http://dx.doi.org/10.1081/SCC-100104427]
[54]
Hatano, M.; Furuya, Y.; Shimmura, T.; Moriyama, K.; Kamiya, S.; Maki, T.; Ishihara, K. Ligand-assisted rate acceleration in lanthanum(III) isopropoxide catalyzed transesterification of carboxylic esters. Org. Lett., 2011, 13(3), 426-429.
[http://dx.doi.org/10.1021/ol102753n] [PMID: 21175157]
[55]
Sultan, N.; Thomas, C.; Blanco, L.; Deloisy, S. Preparation of unsymmetrical dialkyl acetylenedicarboxylates and related esters by enzymatic transesterification. Tetrahedron Lett., 2011, 52(27), 3443-3446.
[http://dx.doi.org/10.1016/j.tetlet.2011.04.103]
[56]
Chintareddy, V.R.; Ho, H.A.; Sadow, A.D.; Verkade, J.G. Polymer-mounted N3P(MeNCH2CH2)3N: a green, efficient and recyclable catalyst for room-temperature transesterifications and amidations of unactivated esters. Tetrahedron Lett., 2011, 52(49), 6523-6529.
[http://dx.doi.org/10.1016/j.tetlet.2011.09.102]
[57]
Weng, S.S.; Ke, C.S.; Chen, F.K.; Lyu, Y.F.; Lin, G.Y. Transesterification catalyzed by iron(III) β-diketonate species. Tetrahedron, 2011, 67(9), 1640-1648.
[http://dx.doi.org/10.1016/j.tet.2011.01.009]
[58]
Krishnaiah, G.; Sandeep, B.; Kondhare, D.; Rajanna, K.C.; Narendar Reddy, J.; Rajeshwar Rao, Y.; Zhubaidha, P.K. Manganese(II) salts as efficient catalysts for chemo selective transesterification of β-keto esters under non-conventional conditions. Tetrahedron Lett., 2013, 54(7), 703-706.
[http://dx.doi.org/10.1016/j.tetlet.2012.12.030]
[59]
Romanski, J.; Nowak, P.; Kosinski, K.; Jurczak, J. High-pressure transesterification of sterically hindered esters. Tetrahedron Lett., 2012, 53(39), 5287-5289.
[http://dx.doi.org/10.1016/j.tetlet.2012.07.094]
[60]
Chatterjee, T.; Saha, D.; Ranu, B.C. Solvent-free transesterification in a ball-mill over alumina surface. Tetrahedron Lett., 2012, 53(32), 4142-4144.
[http://dx.doi.org/10.1016/j.tetlet.2012.05.127]
[61]
Hoang, H.N.; Matsuda, T. Liquid carbon dioxide as an effective solvent for immobilized Candida antarctica lipase B catalyzed transesterification. Tetrahedron Lett., 2015, 56(4), 639-641.
[http://dx.doi.org/10.1016/j.tetlet.2014.12.080]
[62]
Blümel, M.; Noy, J.M.; Enders, D.; Stenzel, M.H.; Nguyen, T.V. Development and applications of transesterification reactions catalyzed by n-heterocyclic olefins. Org. Lett., 2016, 18(9), 2208-2211.
[http://dx.doi.org/10.1021/acs.orglett.6b00835] [PMID: 27115463]
[63]
Isaksson, R. Kumpiņa, I.; Larhed, M.; Wannberg, J. Rapid and straightforward transesterification of sulfonyl carbamates. Tetrahedron Lett., 2016, 57(13), 1476-1478.
[http://dx.doi.org/10.1016/j.tetlet.2016.02.071]
[64]
Oshimura, M.; Oda, Y.; Kondoh, K.; Hirano, T.; Ute, K. Efficient acylation and transesterification catalyzed by dilithium tetra- tert -butylzincate at low temperatures. Tetrahedron Lett., 2016, 57(19), 2070-2073.
[http://dx.doi.org/10.1016/j.tetlet.2016.03.096]
[65]
Liu, J.; Fu, J.; Li, W.; Zou, Y.; Huang, Z.; Xu, J.; Peng, S.; Zhang, Y. Utilization of the inherent nucleophile for regioselective O-acylation of polyphenols via an intermolecular cooperative transesterification. Tetrahedron, 2016, 72(27-28), 4103-4110.
[http://dx.doi.org/10.1016/j.tet.2016.05.048] [PMID: 27773949]
[66]
Kakuchi, R.; Ito, R.; Nomura, S.; Abroshan, H.; Ninomiya, K.; Ikai, T.; Maeda, K.; Kim, H.J.; Takahashi, K. A mechanistic insight into the organocatalytic properties of imidazolium-based ionic liquids and a positive co-solvent effect on cellulose modification reactions in an ionic liquid. RSC Advances, 2017, 7(16), 9423-9430.
[http://dx.doi.org/10.1039/C6RA28659C]
[67]
Kombala, C.J.; Ekanayake, D.I.; Gross, D.E. Boron trifluoride facilitated transesterification of dioxaborolanes. Tetrahedron Lett., 2017, 58(39), 3782-3786.
[http://dx.doi.org/10.1016/j.tetlet.2017.08.052]
[68]
Onwukamike, K.N.; Grelier, S.; Grau, E.; Cramail, H.; Meier, M.A.R. Sustainable transesterification of cellulose with high oleic sunflower oil in a DBU-CO 2 switchable solvent. ACS Sustain. Chem.& Eng., 2018, 6(7), 8826-8835.
[http://dx.doi.org/10.1021/acssuschemeng.8b01186]
[69]
Xin, J.; Sun, L.; Chen, S.; Wang, Y.; Xia, C. Synthesis of L-ascorbyl flurbiprofenate by lipase-catalyzed esterification and transesterification reactions. BioMed Res. Int., 2017, 2017, 5751262.
[http://dx.doi.org/10.1155/2017/5751262] [PMID: 28421196]
[70]
Chen, J.; Namila, E.; Bai, C.; Baiyin, M.; Agula, B.; Bao, Y.S. Transesterification of (hetero)aryl esters with phenols by an Earth-abundant metal catalyst. RSC Advances, 2018, 8(44), 25168-25176.
[http://dx.doi.org/10.1039/C8RA04984J] [PMID: 35542121]
[71]
Ito, D.; Ogura, Y.; Sawamoto, M.; Terashima, T. Acrylate-selective transesterification of methacrylate/acrylate copolymers: Postfunctionalization with common acrylates and alcohols. ACS Macro Lett., 2018, 7(8), 997-1002.
[http://dx.doi.org/10.1021/acsmacrolett.8b00502] [PMID: 35650952]
[72]
Newton, J.J.; Britton, R.; Friesen, C.M.; Newton, J.J.; Britton, R.; Friesen, C.M. Base-catalyzed transesterification of thionoesters. J. Org. Chem., 2018, 83(20), 12784-12792.
[http://dx.doi.org/10.1021/acs.joc.8b02260] [PMID: 30235418]
[73]
Xiang, M.; Wu, D. Transition metal-promoted hierarchical ETS-10 solid base for glycerol transesterification. RSC Advances, 2018, 8(58), 33473-33486.
[http://dx.doi.org/10.1039/C8RA06811A] [PMID: 35548135]
[74]
Dhuiège, B.; Pecastaings, G.; Sèbe, G. Sustainable approach for the direct functionalization of cellulose nanocrystals dispersed in water by transesterification of vinyl acetate. ACS Sustain. Chem.& Eng., 2019, 7(1), 187-196.
[http://dx.doi.org/10.1021/acssuschemeng.8b02833]
[75]
Song, Z.; Subramaniam, B.; Chaudhari, R.V. Transesterification of propylene carbonate with methanol using Fe-Mn double metal cyanide catalyst. ACS Sustain. Chem.& Eng., 2019, 7(6), 5698-5710.
[http://dx.doi.org/10.1021/acssuschemeng.8b04779]
[76]
Yang, H.S.; Macha, L.; Ha, H.J.; Yang, J.W. Functionalisation of esters via 1,3-chelation using NaO t Bu: mechanistic investigations and synthetic applications. Org. Chem. Front., 2021, 8(1), 53-60.
[http://dx.doi.org/10.1039/D0QO01135E]
[77]
Corsi, M.; Magnolfi, S.; Machetti, F. Transesterification of methyl 2-nitroacetate to superior esters. Eur. J. Org. Chem., 2020, 2020(11), 1720-1726.
[http://dx.doi.org/10.1002/ejoc.202000050]
[78]
Anjaneyulu, B.; Rao, G.B.D. A mini review  Biginelli reaction for the synthesis of dihydropyrimidinones. Int. J. Eng. Technol. Res., 2015, 3(6), 26-37.
[79]
Rovnyak, G.C.; Atwal, K.S.; Hedberg, A.; Kimball, S.D.; Moreland, S.; Gougoutas, J.Z.; O’Reilly, B.C.; Schwartz, J.; Malley, M.F. Dihydropyrimidine calcium channel blockers. 4. Basic 3-substituted-4-aryl-1,4-dihydropyrimidine-5-carboxylic acid esters. Potent antihypertensive agents. J. Med. Chem., 1992, 35(17), 3254-3263.
[http://dx.doi.org/10.1021/jm00095a023] [PMID: 1387168]
[80]
Phucho, I.T.; Nongpiur, A.; Tumtin, S.; Nongrum, R.; Nongkhlaw, R.L. Recent progress in the chemistry of dihydropyrimidinones. Rasayan J. Chem., 2009, 2(3), 662-676.
[81]
Mayer, T.U.; Kapoor, T.M.; Haggarty, S.J.; King, R.W.; Schreiber, S.L.; Mitchison, T.J. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science, 1999, 286(5441), 971-974.
[http://dx.doi.org/10.1126/science.286.5441.971] [PMID: 10542155]
[82]
Kappe, C.O.; Peters, K.; Peters, E.M. Dipolar cycloaddition reactions of dihydropyrimidine-fused mesomeric betaines. An approach toward conformationally restricted dihydropyrimidine derivatives. J. Org. Chem., 1997, 62(10), 3109-3118.
[http://dx.doi.org/10.1021/jo970121q] [PMID: 11671693]
[83]
Oliver Kappe, C. 100 years of the biginelli dihydropyrimidine synthesis. Tetrahedron, 1993, 49(32), 6937-6963.
[http://dx.doi.org/10.1016/S0040-4020(01)87971-0]
[84]
Bahekar, S.S.; Shinde, D.B. Synthesis and anti-inflammatory activity of some pyrimidin-5-yl] -acetic acid derivatives. Bioorg. Med. Chem. Lett., 2004, 14, 1733-1736.
[http://dx.doi.org/10.1016/j.bmcl.2004.01.039] [PMID: 15026060]
[85]
Anjaneyulu, B.; Rao, G.B.D.; Bajaj, T. Click Chemistry  In vitro evaluation of glycosyl hybrid phosphorylated/thiophosphorylated 1,2,3-triazole derivatives as irreversible acetyl cholinesterase (AChE) inhibitors. Resul. Chem., 2021, 3, 100093.
[http://dx.doi.org/10.1016/j.rechem.2020.100093]
[86]
Patil, A.D.; Kumar, N.V.; Kokke, W.C.; Bean, M.F.; Freyer, A.J.; Brosse, C.D.; Mai, S.; Truneh, A.; Carte, B.; Carte, B.; Breen, A.L.; Hertzberg, R.P.; Johnson, R.K.; Westley, J.W.; Pottstj, B.C.M. Novel alkaloids from the sponge batzella sp.: Inhibitors of HIV gp120-human CD4 binding. J. Org. Chem., 1995, 60(5), 1182-1188.
[http://dx.doi.org/10.1021/jo00110a021]
[87]
Alam, O.; Khan, S.A.; Siddiqui, N.; Ahsan, W.; Verma, S.P.; Gilani, S.J. Antihypertensive activity of newer 1,4-dihydro-5-pyrimidine carboxamides: Synthesis and pharmacological evaluation. Eur. J. Med. Chem., 2010, 45(11), 5113-5119.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.022] [PMID: 20813434]
[88]
Agbaje, O.C.; Fadeyi, O.O.; Fadeyi, S.A.; Myles, L.E.; Okoro, C.O. Synthesis and in vitro cytotoxicity evaluation of some fluorinated hexahydropyrimidine derivatives. Bioorg. Med. Chem. Lett., 2011, 21(3), 989-992.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.022] [PMID: 21216143]
[89]
Yadlapalli, R.K.; Chourasia, O.P.; Vemuri, K.; Sritharan, M.; Perali, R.S. Synthesis and in vitro anticancer and antitubercular activity of diarylpyrazole ligated dihydropyrimidines possessing lipophilic carbamoyl group. Bioorg. Med. Chem. Lett., 2012, 22(8), 2708-2711.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.101] [PMID: 22437116]
[90]
Wu, M.S.; He, P.; Zhang, X.Z. An environmentally friendly solvent-free synthesis of 3, 4-dihydropyrimidinones using a p -aminobenzene sulfonic acid catalyzed biginelli reaction. S. Afr. J. Chem., 2010, 63, 224-226.
[91]
Dharma Rao, G.B.; Acharya, B.N.; Kaushik, M.P. An efficient synthesis of β-ketoesters via transesterification and its application in Biginelli reaction under solvent-free, catalyst-free conditions. Tetrahedron Lett., 2013, 54(48), 6644-6647.
[http://dx.doi.org/10.1016/j.tetlet.2013.09.130]
[92]
Dharma Rao, G.B.; Anjaneyulu, B.; Kaushik, M.P. A facile one-pot five-component synthesis of glycoside annulated dihydropyrimidinone derivatives with 1,2,3-triazol linkage via transesterification/Biginelli/click reactions in aqueous medium. Tetrahedron Lett., 2014, 55(1), 19-22.
[http://dx.doi.org/10.1016/j.tetlet.2013.09.023]
[93]
Chen, L.; Chen, B.; Zhao, F.; Li, Y.; Li, B.; Zhang, M. Task-specific acidic ionic liquid-catalyzed efficient synthesis of β-enaminolactones from alkynoates and β-amino alcohols. RSC Advances, 2017, 7(48), 30376-30379.
[http://dx.doi.org/10.1039/C7RA04028H]
[94]
Mirabdolbaghi, R.; Dudding, T. An indium-mediated allylative/transesterification DFT-directed approach to chiral C(3)-functionalized phthalides. Org. Lett., 2012, 14(14), 3748-3751.
[http://dx.doi.org/10.1021/ol301566f] [PMID: 22784384]
[95]
Venkata Rao, K.; Balakumar, C.; Lakshmi Narayana, B.; Pran Kishore, D.; Rajwinder, K.; Raghuram Rao, A. Transesterification of trimethyl orthoacetate: an efficient protocol for the synthesis of 4-alkoxy-2-aminothiophene-3-carbonitriles. Tetrahedron Lett., 2013, 54(10), 1274-1278.
[http://dx.doi.org/10.1016/j.tetlet.2012.12.090]
[96]
Yang, S.; Liao, D.; Tian, X.; Lei, X. Access to the 2 H -Tetrahydro-4,6-dioxo-1,2-oxazine Ring System from Nitrone via a Tandem Nucleophilic Addition and Transesterification Reaction. Org. Lett., 2016, 18(3), 376-379.
[http://dx.doi.org/10.1021/acs.orglett.5b03374] [PMID: 26849452]
[97]
Patil, D.R.; Deshmukh, M.B.; Salunkhe, S.M.; Anbhule, P.V. A simple synthesis of trisubstituted quinolines through transesterification. J. Heterocycl. Chem., 2011, 48(6), 1342-1346.
[http://dx.doi.org/10.1002/jhet.711]
[98]
Srivastava, A.; Prasad, R. Triglycerides-based diesel fuels. Renew. Sustain. Energy Rev., 2000, 4(2), 111-133.
[http://dx.doi.org/10.1016/S1364-0321(99)00013-1]
[99]
Huang, D.; Zhou, H.; Lin, L. Biodiesel: An alternative to conventional fuel. Energy Procedia, 2012, 16, 1874-1885.
[http://dx.doi.org/10.1016/j.egypro.2012.01.287]
[100]
Chen, J.; Li, J.; Zhang, X.; Tyagi, R.D.; Dong, W. Ultra-sonication application in biodiesel production from heterotrophic oleaginous microorganisms. Crit. Rev. Biotechnol., 2018, 38(6), 902-917.
[http://dx.doi.org/10.1080/07388551.2017.1418733] [PMID: 29510650]
[101]
Singh, B.; Guldhe, A.; Rawat, I.; Bux, F. Towards a sustainable approach for development of biodiesel from plant and microalgae. Renew. Sustain. Energy Rev., 2014, 29, 216-245.
[http://dx.doi.org/10.1016/j.rser.2013.08.067]
[102]
Atabani, A.E.; Silitonga, A.S.; Ong, H.C.; Mahlia, T.M.I.; Masjuki, H.H.; Badruddin, I.A.; Fayaz, H. Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew. Sustain. Energy Rev., 2013, 18, 211-245.
[http://dx.doi.org/10.1016/j.rser.2012.10.013]
[103]
Stamenković O.S.; Veličković A.V.; Veljković V.B. The production of biodiesel from vegetable oils by ethanolysis: Current state and perspectives. Fuel, 2011, 90(11), 3141-3155.
[http://dx.doi.org/10.1016/j.fuel.2011.06.049]
[104]
Bušić A.; Kundas, S.; Morzak, G.; Belskaya, H.; Marđetko, N.; Ivančić Šantek, M.; Komes, D.; Novak, S.; Šantek, B. Recent trends in biodiesel and biogas production. Food Technol. Biotechnol., 2018, 56(2), 152-173.
[http://dx.doi.org/10.17113/ftb.56.02.18.5547] [PMID: 30228791]
[105]
Aransiola, E.F.; Ojumu, T.V.; Oyekola, O.O.; Madzimbamuto, T.F.; Ikhu-Omoregbe, D.I.O. A review of current technology for biodiesel production: State of the art. Biomass Bioenergy, 2014, 61, 276-297.
[http://dx.doi.org/10.1016/j.biombioe.2013.11.014]
[106]
Bharathiraja, B.; Chakravarthy, M.; Kumar, R.R.; Yuvaraj, D.; Jayamuthunagai, J.; Kumar, R.P.; Palani, S. Biodiesel production using chemical and biological methods - A review of process, catalyst, acyl acceptor, source and process variables. Renew. Sustain. Energy Rev., 2014, 38, 368-382.
[http://dx.doi.org/10.1016/j.rser.2014.05.084]
[107]
Ong, H.C.; Masjuki, H.H.; Mahlia, T.M.I.; Silitonga, A.S.; Chong, W.T.; Yusaf, T. Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine. Energy, 2014, 69, 427-445.
[http://dx.doi.org/10.1016/j.energy.2014.03.035]
[108]
Silitonga, A.S.; Ong, H.C.; Masjuki, H.H.; Mahlia, T.M.I.; Chong, W.T.; Yusaf, T.F. Production of biodiesel from Sterculia foetida and its process optimization. Fuel, 2013, 111, 478-484.
[http://dx.doi.org/10.1016/j.fuel.2013.03.051]
[109]
Taufiq-Yap, Y.H.; Lee, H.V.; Yunus, R.; Juan, J.C. Transesterification of non-edible Jatropha curcas oil to biodiesel using binary Ca-Mg mixed oxide catalyst: Effect of stoichiometric composition. Chem. Eng. J., 2011, 178, 342-347.
[http://dx.doi.org/10.1016/j.cej.2011.10.019]
[110]
Patle, D.S.; Sharma, S.; Gadhamsetti, A.P.; Balinge, K.R.; Bhagat, P.R.; Pandit, S.; Kumar, S. Ultrasonication-assisted and benzimidazolium-based brønsted acid ionic liquid-catalyzed transesterification of castor oil. ACS Omega, 2018, 3(11), 15455-15463.
[http://dx.doi.org/10.1021/acsomega.8b02021] [PMID: 31458201]
[111]
Saravanan, N.; Puhan, S.; Nagarajan, G.; Vedaraman, N. An experimental comparison of transesterification process with different alcohols using acid catalysts. Biomass Bioenergy, 2010, 34(7), 999-1005.
[http://dx.doi.org/10.1016/j.biombioe.2010.02.008]
[112]
Liu, Y.; Lotero, E.; Goodwin, J., Jr; Lu, C. Transesterification of triacetin using solid Brønsted bases. J. Catal., 2007, 246(2), 428-433.
[http://dx.doi.org/10.1016/j.jcat.2007.01.006]
[113]
Gusniah, A.; Veny, H.; Hamzah, F. Ultrasonic assisted enzymatic transesterification for biodiesel production. Ind. Eng. Chem. Res., 2019, 58(2), 581-589.
[http://dx.doi.org/10.1021/acs.iecr.8b03570]
[114]
Majewski, M.W.; Pollack, S.A.; Curtis-Palmer, V.A.; Me, Ã.I. Diphenylammonium salt catalysts for microwave assisted triglyceride transesterification of corn and soybean oil for biodiesel production. Tetrahedron Lett., 2009, 50(37), 5175-5177.
[http://dx.doi.org/10.1016/j.tetlet.2009.06.135]
[115]
Patil, P.D.; Gude, V.G.; Mannarswamy, A.; Cooke, P.; Munson-McGee, S.; Nirmalakhandan, N.; Lammers, P.; Deng, S. Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology. Bioresour. Technol., 2011, 102(2), 1399-1405.
[http://dx.doi.org/10.1016/j.biortech.2010.09.046] [PMID: 20933395]
[116]
Kalla, R.M.N.; Kim, M-R.; Kim, I. Sulfonic acid-functionalized, hyper-cross-linked porous polyphenols as recyclable solid acid catalysts for esterification and transesterification reactions. Ind. Eng. Chem. Res., 2018, 57(34), 11583-11591.
[http://dx.doi.org/10.1021/acs.iecr.8b02418]
[117]
Christopher, L.P. Hemanathan Kumar; Zambare, V.P. Enzymatic biodiesel: Challenges and opportunities. Appl. Energy, 2014, 119, 497-520.
[http://dx.doi.org/10.1016/j.apenergy.2014.01.017]
[118]
Niza, N.M.; Hamzah, M.H. Influence of seed particle sizes on extraction and reactive extraction for biodiesel production from cotton and palm kernel seeds. IEEE Symposium on Humanities, Science and Engineering Research, 2012, 251-254.
[http://dx.doi.org/10.1109/SHUSER.2012.6268858]
[119]
Wall, J.; Van Gerpen, J.; Thompson, J. Soap and glycerin removal from biodiesel using waterless processes. Am. Soc. Agric. Biol. Eng., 2011, 54(2), 535-541.
[120]
Fjerbaek, L.; Christensen, K.V.; Norddahl, B. A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol. Bioeng., 2009, 102(5), 1298-1315.
[http://dx.doi.org/10.1002/bit.22256] [PMID: 19215031]
[121]
Modi, M.K.; Reddy, J.R.C.; Rao, B.V.S.K.; Prasad, R.B.N. Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. Bioresour. Technol., 2007, 98(6), 1260-1264.
[http://dx.doi.org/10.1016/j.biortech.2006.05.006] [PMID: 16822671]
[122]
Dufek, E.J.; Butterfield, R.O.; Frankel, E.N. Esterification and transesterification of 9(10)-carboxystearic acid and its methyl esters. Kinetic studies. J. Am. Oil Chem. Soc., 1972, 49(5), 302-306.
[http://dx.doi.org/10.1007/BF02637579]
[123]
Freedman, B.; Butterfield, R.O.; Pryde, E.H.; Prevot, A.; Timms, R.E.; Freedman, B.; Regional, N. Transesterification kinetics of soybean oil 1. J. Am. Oil Chem. Soc., 1986, 63(10), 1375-1380.
[http://dx.doi.org/10.1007/BF02679606]
[124]
Alcantara, R.; Amores, J.; Canoira, L.; Fidalgo, E.; Franco, M.J.; Navarro, A. Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow. Biomass Bioenergy, 2000, 18(6), 515-527.
[http://dx.doi.org/10.1016/S0961-9534(00)00014-3]
[125]
Linko, Y.Y.; Lämsä, M.; Wu, X.; Uosukainen, E.; Seppälä, J.; Linko, P. Biodegradable products by lipase biocatalysis. J. Biotechnol., 1998, 66(1), 41-50.
[http://dx.doi.org/10.1016/S0168-1656(98)00155-2] [PMID: 9866859]
[126]
De, B.K.; Bhattacharyya, D.K.; Bandhu, C. Enzymatic synthesis of fatty alcohol esters by alcoholysis. J. Am. Oil Chem. Soc., 1999, 76(4), 451-453.
[http://dx.doi.org/10.1007/s11746-999-0023-5]
[127]
Selmi, B.; Thomas, D. Immobilized lipase-catalyzed ethanolysis of sunflower oil in a solvent-free medium. J. Am. Oil Chem. Soc., 1998, 75(6), 691-695.
[http://dx.doi.org/10.1007/s11746-998-0207-4]
[128]
Breivik, H.; Haraldsson, G.G.; Kristinsson, B. Preparation of highly purified concentrates of eicosapentaenoic acid and docosahexaenoic acid. J. Am. Oil Chem. Soc., 1997, 74(11), 1425-1429.
[http://dx.doi.org/10.1007/s11746-997-0248-0]
[129]
Wu, W.H.; Foglia, T.A.; Marmer, W.N.; Phillips, J.G. Optimizing production of ethyl esters of grease using 95% ethanol by response surface methodology. J. Am. Oil Chem. Soc., 1999, 76(4), 517-521.
[http://dx.doi.org/10.1007/s11746-999-0034-2]
[130]
Verma, S.; Kuila, A. Involvement of green technology in microalgal biodiesel production. Rev. Environ. Health, 2020, 35(2), 173-188.
[http://dx.doi.org/10.1515/reveh-2019-0061] [PMID: 32134737]
[131]
Abigor, R.D.; Uadia, P.O.; Foglia, T.A.; Haas, M.J.; Jones, K.C.; Okpefa, E.; Obibuzor, J.U.; Bafor, M.E. Lipase-catalysed production of biodiesel fuel from some Nigerian lauric oils. Biochem. Soc. Trans., 2000, 28(6), 979-981.
[http://dx.doi.org/10.1042/bst0280979] [PMID: 11171279]
[132]
Samukawa, T.; Kaieda, M.; Matsumoto, T.; Ban, K.; Kondo, A.; Shimada, Y.; Noda, H.; Fukuda, H. Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from plant oil. J. Biosci. Bioeng., 2000, 90(2), 180-183.
[http://dx.doi.org/10.1016/S1389-1723(00)80107-3] [PMID: 16232839]
[133]
Kondo, A.; Liu, Y.; Furuta, M.; Fujita, Y.; Matsumoto, T.; Fukuda, H. Preparation of high activity whole cell biocatalyst by permeabilization of recombinant flocculent yeast with alcohol. Enzyme Microb. Technol., 2000, 27(10), 806-811.
[http://dx.doi.org/10.1016/S0141-0229(00)00304-5] [PMID: 11118590]
[134]
Liu, Y.; Hama, H.; Fujita, Y.; Kondo, A.; Inoue, Y.; Kimura, A.; Fukuda, H. Production ofS-lactoylglutathione by high activity whole cell biocatalysts prepared by permeabilization of recombinant Saccharomyces cerevisiae with alcohols. Biotechnol. Bioeng., 1999, 64(1), 54-60.
[http://dx.doi.org/10.1002/(SICI)1097-0290(19990705)64:1<54:AID-BIT6>3.0.CO;2-B] [PMID: 10397839]
[135]
Liu, Y.; Fujita, Y.; Kondo, A.; Fukuda, H. Preparation of high-activity whole cell biocatalysts by permeabilization of recombinant yeasts with alcohol. J. Biosci. Bioeng., 2000, 89(6), 554-558.
[http://dx.doi.org/10.1016/S1389-1723(00)80056-0] [PMID: 16232797]
[136]
Atkinson, B.; Black, G.M.; Lewis, P.J.S.; Pinches, A. Biological particles of given size, shape, and density for use in biological reactors. Biotechnol. Bioeng., 1979, 21(2), 193-200.
[http://dx.doi.org/10.1002/bit.260210206]
[137]
Liu, H.; Wang, W.; Deng, L.; Wang, F.; Tan, T. High production of fumaric acid from xylose by newly selected strain rhizopus arrhizus RH 7-13-9. Bioresour. Technol., 2015, 186, 348-350.
[http://dx.doi.org/10.1016/j.biortech.2015.03.109] [PMID: 25862014]
[138]
Ziomek, E.; Kirkpatrick, N.; Reid, I. Effect of polydimethylsiloxane oxygen carriers on the biological bleaching of hardwood kraft pulp by Trametes versicolor. Appl. Microbiol. Biotechnol., 1991, 35(5), 669-673.
[http://dx.doi.org/10.1007/BF00169635]
[139]
Ftuysman, P.; Van Meenen, P.; Van Assche, P. Factors affecting the colonization of non porus and porus packing materialsin model upflow methane reactors. J. Manuf. Syst., 1981, 1982(1), 173-203.
[140]
Xing, X.H.; Honda, H.; Shiragami, N.; Unno, H. A model analysis of microbial retainment process in porous support particles in a fluidized-bed wastewater treatment reactor. J. Chem. Eng. of Jpn, 1992, 25(1), 89-95.
[http://dx.doi.org/10.1252/jcej.25.89]
[141]
Kautola, H.; Rymowicz, W.; Linko, Y.Y.; Linko, P. Itaconic acid production by immobilized Aspergillus terreus with varied metal additions. Appl. Microbiol. Biotechnol., 1991, 35(2), 154-158.
[http://dx.doi.org/10.1007/BF00184679]
[142]
Morikawa, H.F.H. Enhancement of γ-linolenic acid production by mucor ambiyuus with non ionic surfactants. Appl. Microbiol. Biotechnol., 1990, 116, 1-6.
[http://dx.doi.org/10.1007/BF00257247]
[143]
Webb, C.; Fukuda, H.; Atkinson, B. The production of cellulase in a spouted bed fermentor using cells immobilized in biomass support particles. Biotechnol. Bioeng., 1986, 28(1), 41-50.
[http://dx.doi.org/10.1002/bit.260280107] [PMID: 18553840]
[144]
Liu, Y.; Kondo, A.; Ohkawa, H.; Shiota, N.; Fukuda, H. Bioconversion using immobilized recombinant flocculent yeast cells carrying a fused enzyme gene in an ‘intelligent’ bioreactor. Biochem. Eng. J., 1998, 2(3), 229-235.
[http://dx.doi.org/10.1016/S1369-703X(98)00033-3]
[145]
Kobayashi, T.; Tachi, K.; Nagamune, T.; Endo, I. Production of penicillin in a fluidized-bed bioreactor using urethane foams as carriers. J. Chem. Eng. of Jpn, 1990, 23(4), 408-413.
[http://dx.doi.org/10.1252/jcej.23.408]
[146]
Fukuda, H.; Turugida, Y.; Nakajima, T.; Nomura, E.; Kondo, A.; Phospholipase, D. Phospholipase D production using immobilized cells of Streptoverticillium cinnamoneum. Biotechnol. Lett., 1996, 18(8), 951-956.
[http://dx.doi.org/10.1007/BF00154628]
[147]
Fukuzaki, S.; Nishio, N.; Nagai, S. The use of polyurethane foam for microbial retention in methanogenic fermentation of propionate. Appl. Microbiol. Biotechnol., 1990, 34(3), 408-413.
[http://dx.doi.org/10.1007/BF00170070]
[148]
Rankin, G.H.F.S.W. Methhanogenesis by methhanogen species immobilised on reticulated foam biomass support particles inhibition of methane production at high substrate concentrations. Biotechnol. Lett., 1987, 9(1), 67-90.
[http://dx.doi.org/10.1007/BF01043397]
[149]
Akubude, V.C.; Nwaigwe, K.N.; Dintwa, E. Production of biodiesel from microalgae via nanocatalyzed transesterification process: A review. Mater. Sci. Energy Technol., 2019, 2(2), 216-225.
[http://dx.doi.org/10.1016/j.mset.2018.12.006]
[150]
Zhang, Y.; Dubé, M.A.; McLean, D.D.; Kates, M. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour. Technol., 2003, 90(3), 229-240.
[http://dx.doi.org/10.1016/S0960-8524(03)00150-0] [PMID: 14575945]
[151]
Sharma, Y.C.; Singh, B.; Upadhyay, S.N. Advancements in development and characterization of biodiesel: A review. Fuel, 2008, 87(12), 2355-2373.
[http://dx.doi.org/10.1016/j.fuel.2008.01.014]
[152]
Wen, Z.; Yu, X.; Tu, S.T.; Yan, J.; Dahlquist, E. Synthesis of biodiesel from vegetable oil with methanol catalyzed by Li-doped magnesium oxide catalysts. Appl. Energy, 2010, 87(3), 743-748.
[http://dx.doi.org/10.1016/j.apenergy.2009.09.013]
[153]
Feng, Y.; He, B.; Cao, Y.; Li, J.; Liu, M.; Yan, F.; Liang, X. Biodiesel production using cation-exchange resin as heterogeneous catalyst. Bioresour. Technol., 2010, 101(5), 1518-1521.
[http://dx.doi.org/10.1016/j.biortech.2009.07.084] [PMID: 19699089]
[154]
Suppes, G.; Dasari, M.A.; Doskocil, E.J.; Mankidy, P.J.; Goff, M.J. Transesterification of soybean oil with zeolite and metal catalysts. Appl. Catal. A Gen., 2004, 257(2), 213-223.
[http://dx.doi.org/10.1016/j.apcata.2003.07.010]
[155]
Wilson, K.; Hardacre, C.; Lee, A.F.; Montero, J.M.; Shellard, L. The application of calcined natural dolomitic rock as a solid base catalyst in triglyceride transesterification for biodiesel synthesis. Green Chem., 2008, 10(6), 654-665.
[http://dx.doi.org/10.1039/b800455b]
[156]
Gao, L.; Teng, G.; Lv, J.; Xiao, G. Biodiesel synthesis catalyzed by the KF/Ca−Mg−Al hydrotalcite base catalyst. Energy Fuels, 2010, 24(1), 646-651.
[http://dx.doi.org/10.1021/ef900800d]
[157]
Kouzu, M.; Kasuno, T.; Tajika, M.; Sugimoto, Y.; Yamanaka, S.; Hidaka, J. Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel, 2008, 87(12), 2798-2806.
[http://dx.doi.org/10.1016/j.fuel.2007.10.019]
[158]
Granados, M.L.; Alonso, D.M.; Sádaba, I.; Mariscal, R.; Ocón, P. Leaching and homogeneous contribution in liquid phase reaction catalysed by solids: The case of triglycerides methanolysis using CaO. Appl. Catal. B, 2009, 89(1-2), 265-272.
[http://dx.doi.org/10.1016/j.apcatb.2009.02.014]
[159]
Alba-Rubio, A.C.; Santamaría-González, J.; Mérida-Robles, J.M.; Moreno-Tost, R.; Martín-Alonso, D.; Jiménez-López, A.; Maireles-Torres, P. Heterogeneous transesterification processes by using CaO supported on zinc oxide as basic catalysts. Catal. Today, 2010, 149(3-4), 281-287.
[http://dx.doi.org/10.1016/j.cattod.2009.06.024]
[160]
Lu, A.H.; Salabas, E.L.; Schüth, F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed., 2007, 46(8), 1222-1244.
[http://dx.doi.org/10.1002/anie.200602866] [PMID: 17278160]
[161]
Jacinto, M.J.; Santos, O.H.C.F.; Jardim, R.F.; Landers, R.; Rossi, L.M. Preparation of recoverable Ru catalysts for liquid-phase oxidation and hydrogenation reactions. Appl. Catal. A Gen., 2009, 360(2), 177-182.
[http://dx.doi.org/10.1016/j.apcata.2009.03.018]
[162]
Beydoun, D.; Amal, R.; Low, G.K-C.; McEvoy, S. Novel photocatalyst: Titania-coated magnetite. J. Phys. Chem. B, 2000, 104(18), 4387-4396.
[http://dx.doi.org/10.1021/jp992088c]
[163]
Gao, X.; Yu, K.M.K.; Tam, K.Y.; Tsang, S.C. Colloidal stable silica encapsulated nano-magnetic composite as a novel bio-catalyst carrier. Chem. Commun., 2003, 3(24), 2998-2999.
[http://dx.doi.org/10.1039/B310435D]
[164]
Wen, M.; Qi, H.; Zhao, W.; Chen, J.; Li, L.; Wu, Q. Phase transfer catalysis: Synthesis of monodispersed FePt nanoparticles and its electrocatalytic activity. Colloids Surf. A Physicochem. Eng. Asp., 2008, 312(1), 73-78.
[http://dx.doi.org/10.1016/j.colsurfa.2007.07.001]
[165]
Obadiah, A.; Kannan, R.; Ravichandran, P.; Ramasubbu, A.; Vasanth Kumar, S. Nano hydrotalcite as a novel catalyst for biodiesel conversion. Dig. J. Nanomater. Biostruct., 2012, 7(1), 321-327.
[166]
Mguni, L.; Meijboom, R.; Jalama, K. Biodiesel production over nano-MgO supported on titania. Proc. World Acad., 2012, 5592367(4), 1155-1159.
[167]
Hu, S.; Guan, Y.; Wang, Y.; Han, H. Nano-magnetic catalyst KF/CaO-Fe3O4 for biodiesel production. Appl. Energy, 2011, 88(8), 2685-2690.
[http://dx.doi.org/10.1016/j.apenergy.2011.02.012]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy