Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Review Article Section: Biomaterials

Review on Terahertz Metamaterial Absorbers

Author(s): Haoduo Jia, Xin Tang, Ming Li, Dai Wu, Peng Li, Jianxin Wang, Xinghua Zhu and Dingyu Yang*

Volume 3, Issue 2, 2023

Published on: 29 December, 2022

Page: [96 - 105] Pages: 10

DOI: 10.2174/2210298103666221123090912

Price: $65

Open Access Journals Promotions 2
Abstract

Absorbers are devices that internally consume electromagnetic waves to partially or completely attenuate them. The basic idea is to absorb electromagnetic radiation by resonating the intended surface with the incident electromagnetic waves. This article focuses on the development of the absorber (from single-band to multi-band, narrow to broadband, non-tunable to tunable, and so on). The basic absorption principle of the current popular and excellent metamaterial graphene absorber is provided, as is the theoretical explanation of impedance matching and how to attain critical performance metrics like tunability, as well as prospects for terahertz (THz) absorber applications. Finally, numerous innovative absorbers are shown as examples, providing new ideas for future researchers.

Keywords: Terahertz, metamaterial, multiband absorber, crossband absorber, water-based absorber, electromagnetic waves, tunability.

Graphical Abstract
[1]
Cheon, H.; Yang, H.; Lee, S.H.; Kim, Y.A.; Son, J.H. Terahertz molecular resonance of cancer DNA. Sci. Rep., 2016, 6(1), 37103.
[http://dx.doi.org/10.1038/srep37103] [PMID: 27845398]
[2]
Cui, Z.; Zhu, D.; Yue, L.; Hu, H.; Chen, S.; Wang, X.; Wang, Y. Development of frequency-tunable multiple-band terahertz absorber based on control of polarization angles. Opt. Express, 2019, 27(16), 22190-22197.
[http://dx.doi.org/10.1364/OE.27.022190] [PMID: 31510514]
[3]
Cooper, K.B.; Dengler, R.J.; Llombart, N.; Thomas, B.; Chattopadhyay, G.; Siegel, P.H. THz imaging radar for standoff personnel screening. IEEE Trans. Terahertz Sci. Technol., 2011, 1(1), 169-182.
[http://dx.doi.org/10.1109/TTHZ.2011.2159556]
[4]
Ma, J.; Shrestha, R.; Adelberg, J.; Yeh, C.Y.; Hossain, Z.; Knightly, E.; Jornet, J.M.; Mittleman, D.M. Security and eavesdropping in terahertz wireless links. Nature, 2018, 563(7729), 89-93.
[http://dx.doi.org/10.1038/s41586-018-0609-x] [PMID: 30323288]
[5]
Iwaszczuk, K.; Strikwerda, A.C.; Fan, K.; Zhang, X.; Averitt, R.D.; Jepsen, P.U. Flexible metamaterial absorbers for stealth applications at terahertz frequencies. Opt. Express, 2012, 20(1), 635-643.
[http://dx.doi.org/10.1364/OE.20.000635] [PMID: 22274387]
[6]
Zhang, J.; Mu, N.; Liu, L.; Xie, J.; Feng, H.; Yao, J.; Chen, T.; Zhu, W. Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency. Biosens. Bioelectron., 2021, 185, 113241.
[http://dx.doi.org/10.1016/j.bios.2021.113241] [PMID: 33905964]
[7]
Levanon, N. Radar principles, 1988.
[8]
Zhou, R.; Wang, C.; Xu, W.; Xie, L. Biological applications of terahertz technology based on nanomaterials and nanostructures. Nanoscale, 2019, 11(8), 3445-3457.
[http://dx.doi.org/10.1039/C8NR08676A] [PMID: 30758358]
[9]
Xiong, H.; Yang, F. Ultra-broadband and tunable saline water-based absorber in microwave regime. Opt. Express, 2020, 28(4), 5306-5316.
[http://dx.doi.org/10.1364/OE.382719] [PMID: 32121754]
[10]
Xu, R.; Liu, X.; Lin, Y.S. Tunable ultra-narrowband terahertz perfect absorber by using metal-insulator-metal microstructures. Results Phys., 2019, 13, 102176.
[http://dx.doi.org/10.1016/j.rinp.2019.102176]
[11]
Yao, G.; Ling, F.; Yue, J.; Luo, C.; Ji, J.; Yao, J. Dual-band tunable perfect metamaterial absorber in the THz range. Opt. Express, 2016, 24(2), 1518-1527.
[http://dx.doi.org/10.1364/OE.24.001518] [PMID: 26832531]
[12]
Chen, X.; Tian, Z.; Lu, Y.; Xu, Y.; Zhang, X.; Ouyang, C.; Gu, J.; Han, J.; Zhang, W. Electrically tunable perfect terahertz absorber based on a graphene salisbury screen hybrid metasurface. Adv. Opt. Mater., 2020, 8(3), 1900660.
[http://dx.doi.org/10.1002/adom.201900660]
[13]
Zhang, M.; Zhang, F.; Li, M.; Li, P.; Li, J.; Li, J.; Yang, D. Highly efficient amplitude modulation of terahertz Fano resonance based on Si photoactive substrate by low power continuous wave. Adv. Mater. Technol., 2020, 5(12), 2000626.
[http://dx.doi.org/10.1002/admt.202000626]
[14]
Shen, X.; Cui, T.J.; Zhao, J.; Ma, H.F.; Jiang, W.X.; Li, H. Polarization-independent wide-angle triple-band metamaterial absorber. Opt. Express, 2011, 19(10), 9401-9407.
[http://dx.doi.org/10.1364/OE.19.009401] [PMID: 21643197]
[15]
Wang, B.X.; Zhai, X.; Wang, G.Z.; Huang, W.Q.; Wang, L.L. A novel dual-band terahertz metamaterial absorber for a sensor application. J. Appl. Phys., 2015, 117(1), 014504.
[http://dx.doi.org/10.1063/1.4905261]
[16]
Aghaee, T.; Orouji, A.A. Reconfigurable multi-band, graphene-based THz absorber: Circuit model approach. Results Phys., 2020, 16, 102855.
[http://dx.doi.org/10.1016/j.rinp.2019.102855]
[17]
Xing, R.; Jian, S. A dual-band THz absorber based on graphene sheet and ribbons. Opt. Laser Technol., 2018, 100, 129-132.
[http://dx.doi.org/10.1016/j.optlastec.2017.10.003]
[18]
Chou Chau, Y.F.; Lim, C.M.; Chiang, C.Y.; Voo, N.Y.; Muhammad Idris, N.S.; Chai, S.U. Tunable silver-shell dielectric core nano-beads array for thin-film solar cell application. J. Nanopart. Res., 2016, 18(4), 88.
[http://dx.doi.org/10.1007/s11051-016-3394-1]
[19]
Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett., 2008, 100(20), 207402.
[http://dx.doi.org/10.1103/PhysRevLett.100.207402] [PMID: 18518577]
[20]
Huang, L.; Chen, H. Multi-band and polarization insensitive metamaterial absorber. Electromagn. waves, 2011, 113, 103-110.
[http://dx.doi.org/10.2528/PIER10122401]
[21]
Landy, N.I.; Bingham, C.M.; Tyler, T.; Jokerst, N.; Smith, D.R.; Padilla, W.J. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys. Rev. B Condens. Matter Mater. Phys., 2009, 79(12), 125104.
[http://dx.doi.org/10.1103/PhysRevB.79.125104]
[22]
Ma, Y.; Chen, Q.; Grant, J.; Saha, S.C.; Khalid, A.; Cumming, D.R.S. A terahertz polarization insensitive dual band metamaterial absorber. Opt. Lett., 2011, 36(6), 945-947.
[http://dx.doi.org/10.1364/OL.36.000945] [PMID: 21403737]
[23]
Wen, Q.Y.; Zhang, H.W.; Xie, Y.S.; Yang, Q.H.; Liu, Y.L. Dual band terahertz metamaterial absorber: Design, fabrication, and characterization. Appl. Phys. Lett., 2009, 95(24), 241111.
[http://dx.doi.org/10.1063/1.3276072]
[24]
Bhattacharyya, S.; Ghosh, S.; Chaurasiya, D.; Srivastava, K.V. Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber. Appl. Phys., A Mater. Sci. Process., 2015, 118(1), 207-215.
[http://dx.doi.org/10.1007/s00339-014-8908-z]
[25]
Grant, J.; Ma, Y.; Saha, S.; Khalid, A.; Cumming, D.R.S. Polarization insensitive, broadband terahertz metamaterial absorber. Opt. Lett., 2011, 36(17), 3476-3478.
[http://dx.doi.org/10.1364/OL.36.003476] [PMID: 21886249]
[26]
Liu, S.; Chen, H.; Cui, T.J. A broadband terahertz absorber using multi-layer stacked bars. Appl. Phys. Lett., 2015, 106(15), 151601.
[http://dx.doi.org/10.1063/1.4918289]
[27]
Wu, D.; Wang, M.; Feng, H.; Xu, Z.; Liu, Y.; Xia, F.; Zhang, K.; Kong, W.; Dong, L.; Yun, M. Independently tunable perfect absorber based on the plasmonic properties in double-layer graphene. Carbon, 2019, 155, 618-623.
[http://dx.doi.org/10.1016/j.carbon.2019.09.024]
[28]
Sabah, C.; Dincer, F.; Karaaslan, M.; Unal, E.; Akgol, O. Polarization-insensitive FSS-based perfect metamaterial absorbers for GHz and THz frequencies. radio. Science, 2014, 49(4), 306-314.
[29]
Luo, Z.; Ji, S.; Zhao, J.; Wu, H.; Dai, H. A multiband metamaterial absorber for GHz and THz simultaneously. Results Phys., 2021, 30, 104893.
[http://dx.doi.org/10.1016/j.rinp.2021.104893]
[30]
Baah, M.; Paddubskaya, A.; Novitsky, A.; Valynets, N.; Kumar, M.; Itkonen, T.; Pekkarinen, M.; Soboleva, E.; Lahderanta, E.; Kafesaki, M.; Svirko, Y.; Kuzhir, P. All-graphene perfect broadband THz absorber. Carbon, 2021, 185, 709-716.
[http://dx.doi.org/10.1016/j.carbon.2021.09.067]
[31]
Vakil, A.; Engheta, N. Transformation optics using graphene. Science, 2011, 332(6035), 1291-1294.
[http://dx.doi.org/10.1126/science.1202691] [PMID: 21659598]
[32]
Li, J.; Li, J.; Zheng, C.; Wang, S.; Li, M.; Zhao, H.; Li, J.; Zhang, Y.; Yao, J. Dynamic control of reflective chiral terahertz metasurface with a new application developing in full grayscale near field imaging. Carbon, 2021, 172, 189-199.
[http://dx.doi.org/10.1016/j.carbon.2020.09.090]
[33]
Xu, K.D.; Li, J.; Zhang, A.; Chen, Q. Tunable multi-band terahertz absorber using a single-layer square graphene ring structure with T-shaped graphene strips. Opt. Express, 2020, 28(8), 11482-11492.
[http://dx.doi.org/10.1364/OE.390835] [PMID: 32403659]
[34]
Dicken, M.J.; Aydin, K.; Pryce, I.M.; Sweatlock, L.A.; Boyd, E.M.; Walavalkar, S.; Ma, J.; Atwater, H.A. Frequency tunable near-infrared metamaterials based on VO2 phase transition. Opt. Express, 2009, 17(20), 18330-18339.
[http://dx.doi.org/10.1364/OE.17.018330] [PMID: 19907624]
[35]
Bai, J.; Zhang, S.; Fan, F.; Wang, S.; Sun, X.; Miao, Y.; Chang, S. Tunable broadband THz absorber using vanadium dioxide metamaterials. Opt. Commun., 2019, 452, 292-295.
[http://dx.doi.org/10.1016/j.optcom.2019.07.057]
[36]
Zhang, Y.; Qiao, S.; Sun, L.; Shi, Q.W.; Huang, W.; Li, L.; Yang, Z. Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method. Opt. Express, 2014, 22(9), 11070-11078.
[http://dx.doi.org/10.1364/OE.22.011070] [PMID: 24921805]
[37]
Huang, W.; Yin, X.; Huang, C.; Wang, Q.; Miao, T.; Zhu, Y. Optical switching of a metamaterial by temperature controlling. Appl. Phys. Lett., 2010, 96(26), 261908.
[http://dx.doi.org/10.1063/1.3458706]
[38]
Song, Z.; Wang, K.; Li, J.; Liu, Q.H. Broadband tunable terahertz absorber based on vanadium dioxide metamaterials. Opt. Express, 2018, 26(6), 7148-7154.
[http://dx.doi.org/10.1364/OE.26.007148] [PMID: 29609401]
[39]
Zhao, Y.; Huang, Q.; Cai, H.; Lin, X.; Lu, Y. A broadband and switchable VO2-based perfect absorber at the THz frequency. Opt. Commun., 2018, 426, 443-449.
[http://dx.doi.org/10.1016/j.optcom.2018.05.085]
[40]
Zhao, X.; Zhang, J.; Fan, K.; Duan, G.; Metcalfe, G.D.; Wraback, M.; Zhang, X.; Averitt, R.D. Nonlinear terahertz metamaterial perfect absorbers using GaAs. Photon. Res., 2016, 4(3), A16-A21.
[http://dx.doi.org/10.1364/PRJ.4.000A16]
[41]
Ling, K.; Yoo, M.; Su, W.; Kim, K.; Cook, B.; Tentzeris, M.M.; Lim, S. Microfluidic tunable inkjet-printed metamaterial absorber on paper. Opt. Express, 2015, 23(1), 110-120.
[http://dx.doi.org/10.1364/OE.23.000110] [PMID: 25835658]
[42]
Zhang, F.; Feng, S.; Qiu, K.; Liu, Z.; Fan, Y.; Zhang, W.; Zhao, Q.; Zhou, J. Mechanically stretchable and tunable metamaterial absorber. Appl. Phys. Lett., 2015, 106(9), 091907.
[http://dx.doi.org/10.1063/1.4914502]
[43]
Wang, B.X.; Wang, G.Z. Temperature tunable metamaterial absorber at THz frequencies. J. Mater. Sci. Mater. Electron., 2017, 28(12), 8487-8493.
[http://dx.doi.org/10.1007/s10854-017-6570-x]
[44]
Sinha, A. Dhanjai; Zhao, H.; Huang, Y.; Lu, X.; Chen, J.; Jain, R. MXene: An emerging material for sensing and biosensing. Trends Analyt. Chem., 2018, 105, 424-435.
[http://dx.doi.org/10.1016/j.trac.2018.05.021]
[45]
Jhon, Y.I.; Seo, M.; Jhon, Y.M. First-principles study of a MXene terahertz detector. Nanoscale, 2018, 10(1), 69-75.
[http://dx.doi.org/10.1039/C7NR05351G] [PMID: 29192702]
[46]
Yang, Q.; Xu, Z.; Fang, B.; Huang, T.; Cai, S.; Chen, H.; Liu, Y.; Gopalsamy, K.; Gao, W.; Gao, C. MXene/graphene hybrid fibers for high performance flexible supercapacitors. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(42), 22113-22119.
[http://dx.doi.org/10.1039/C7TA07999K]
[47]
Han, M.; Yin, X.; Li, X.; Anasori, B.; Zhang, L.; Cheng, L.; Gogotsi, Y. Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Appl. Mater. Interfaces, 2017, 9(23), 20038-20045.
[http://dx.doi.org/10.1021/acsami.7b04602] [PMID: 28534403]
[48]
Shui, W.; Li, J.; Wang, H.; Xing, Y.; Li, Y.; Yang, Q.; Xiao, X.; Wen, Q.; Zhang, H. Ti3C2Tx MXene sponge composite as broadband terahertz absorber. Adv. Opt. Mater., 2020, 8(21), 2001120.
[http://dx.doi.org/10.1002/adom.202001120]
[49]
Xu, J.; Tang, S.; Liu, D.; Bai, Z.; Xie, X.; Tian, X.; Xu, W.; Hou, W.; Meng, X.; Yang, N. Rational design of hollow Fe3O4 microspheres on Ti3C2Tx MXene nanosheets as highly-efficient and lightweight electromagnetic absorbers. Ceram. Int., 2022, 48(2), 2595-2604.
[http://dx.doi.org/10.1016/j.ceramint.2021.10.042]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy