Generic placeholder image

Current Biotechnology

Editor-in-Chief

ISSN (Print): 2211-5501
ISSN (Online): 2211-551X

Review Article

Prevalence and Transmission of Multi Drug Resistance Gene in Staphylococcus aureus

Author(s): Bijayata Patra, Tamalika Chakraborty* and Sutripto Ghosh

Volume 11, Issue 3, 2022

Published on: 05 December, 2022

Page: [196 - 211] Pages: 16

DOI: 10.2174/2211550112666221117091252

Price: $65

Open Access Journals Promotions 2
Abstract

Antibiotics are antimicrobial substances that are commonly used to treat humans, animals, and fish, as well as to research susceptibility patterns in a variety of bacteria. With the rising number of diseases and the emergence of new infections, many drugs for humans, animals, fish, and plants are being developed. However, with the development of pharmaceuticals came the advent of a phenomenon known as drug resistance, which has alarmed scientists and researchers all around the world. The building of resistance in genes that code for specific drugs, plasmids, or transposons, the action of multidrug efflux pumps, changes in chromosomal genes, or the Staphylococci cassette chromosome can all produce it. Staphylococcus aureus, the most common Gram-positive bacteria, has a multidrug-resistant phenotype that reveals its pathogenicity. Staphylococcus sp. possesses a variety of transmissible genes that cause them to be resistant to treatments such as antibiotics. The discovery of antibiotics by Alexander Fleming has long been a boon in the fight against bacterial illnesses. Drug-resistant bacteria have emerged as a result of antibiotic overuse and suboptimal usage, attracting the attention of scientists throughout the world. Therefore, as a first step in combating drug-resistant bacteria, it is obvious that widespread efforts to curb antibiotic abuse are required. This review focuses on and brings to society the prevalence of different multidrug resistant genes in Staphylococcus aureus and their transmission.

Keywords: Multi drug resistant genes, antibiotic resistance, Staphylococcus aureus, drug resistant pathogens, ESKAPE pathogens, transposon, staphylococcal cassette chromosome.

Graphical Abstract
[1]
B S Antibiotic resistance threats in the United States 2013. Available from: https://stacks.cdc.gov/view/cdc/20705.
[2]
Cosgrove SE. The relationship between antimicrobial resistance and patient outcomes: Mortality, length of hospital stay, and health care costs. Clin Infect Dis 2006; 42(S2): S82-9.
[http://dx.doi.org/10.1086/499406] [PMID: 16355321]
[3]
DiazGranados CA, Zimmer SM, Mitchel K, Jernigan JA. Comparison of mortality associated with vancomycin-resistant and vancomycin-susceptible enterococcal bloodstream infections: A meta-analysis. Clin Infect Dis 2005; 41(3): 327-33.
[http://dx.doi.org/10.1086/430909] [PMID: 16007529]
[4]
Sydnor ERM, Perl TM. Hospital epidemiology and infection control in acute-care settings. Clin Microbiol Rev 2011; 24(1): 141-73.
[http://dx.doi.org/10.1128/CMR.00027-10] [PMID: 21233510]
[5]
O’Neill J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations / the Review on Antimicrobial Resistance chaired. 2022. Available from: https://wellcomecollection.org/works/rdpck35v [cited 8 July 2022].
[6]
Munita JM, Arias CA. Mechanisms of Antibiotic Resistance. Microbiol Spectr 2016; 4(2)
[http://dx.doi.org/10.1128/microbiolspec.VMBF-0016-2015] [PMID: 27227291]
[7]
Hooper DC. Mechanisms of action and resistance of older and newer fluoroquinolones. Clin Infect Dis 2000; 31(S2): S24-8.
[http://dx.doi.org/10.1086/314056] [PMID: 10984324]
[8]
Spratt BG. Resistance to antibiotics mediated by target alterations. Science 1994; 264(5157): 388-93.
[http://dx.doi.org/10.1126/science.8153626] [PMID: 8153626]
[9]
Courvalin P. Vancomycin resistance in gram-positive cocci. Clin Infect Dis 2006; 42 (Suppl. 1): S25-34.
[http://dx.doi.org/10.1086/491711] [PMID: 16323116]
[10]
Connell SR, Tracz DM, Nierhaus KH, Taylor DE. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemother 2003; 47(12): 3675-81.
[http://dx.doi.org/10.1128/AAC.47.12.3675-3681.2003] [PMID: 14638464]
[11]
Levy SB. Active efflux mechanisms for antimicrobial resistance. Antimicrob Agents Chemother 1992; 36(4): 695-703.
[http://dx.doi.org/10.1128/AAC.36.4.695] [PMID: 1503431]
[12]
Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18(3): 268-81.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03570.x] [PMID: 21793988]
[13]
Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: A meta-analysis. Clin Infect Dis 2003; 36(1): 53-9.
[http://dx.doi.org/10.1086/345476] [PMID: 12491202]
[14]
McGowan JE. Resistance in nonfermenting gram-negative bacteria: Multidrug resistance to the maximum. Am J Med 2006; 119(6): S29-36.
[http://dx.doi.org/10.1016/j.amjmed.2006.03.014] [PMID: 16735148]
[15]
Dahmane N, Libante V, Charron-Bourgoin F, et al. Diversity of integrative and conjugative elements of streptococcus salivarius and their intra- and interspecies transfer. Appl Environ Microbiol 2017; 83(13): e00337-17.
[http://dx.doi.org/10.1128/AEM.00337-17] [PMID: 28432093]
[16]
Haaber J, Penadés JR, Ingmer H. Transfer of antibiotic resistance in Staphylococcus aureus. Trends Microbiol 2017; 25(11): 893-905.
[http://dx.doi.org/10.1016/j.tim.2017.05.011] [PMID: 28641931]
[17]
Lowy FD. Antimicrobial resistance: The example of Staphylococcus aureus. J Clin Invest 2003; 111(9): 1265-73.
[http://dx.doi.org/10.1172/JCI18535] [PMID: 12727914]
[18]
Kernodle DS. Mechanisms of resistance to β-lactam antibiotics. In: Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Rood JI, Eds. Gram-positive pathogens. Washington, DC: American Society for Microbiology 2000; pp. 609-20.
[19]
Zhang HZ, Hackbarth CJ, Chansky KM, Chambers HF. A proteolytic transmembrane signaling pathway and resistance to β-lactams in staphylococci. Science 2001; 291(5510): 1962-5.
[http://dx.doi.org/10.1126/science.1055144] [PMID: 11239156]
[20]
Ghuysen JM. Molecular structures of penicillin-binding proteins and β-lactamases. Trends Microbiol 1994; 2(10): 372-80.
[http://dx.doi.org/10.1016/0966-842X(94)90614-9] [PMID: 7850204]
[21]
Lim D, Strynadka NCJ. Structural basis for the β lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat Struct Biol 2002; 9(11): 870-6.
[http://dx.doi.org/10.1038/nsb858] [PMID: 12389036]
[22]
Archer GL, Bosilevac JM. Signaling antibiotic resistance in staphylococci. Science 2001; 291(5510): 1915-6.
[http://dx.doi.org/10.1126/science.1059671] [PMID: 11245199]
[23]
Katayama Y, Ito T, Hiramatsu K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2000; 44(6): 1549-55.
[http://dx.doi.org/10.1128/AAC.44.6.1549-1555.2000] [PMID: 10817707]
[24]
Hooper DC. Fluoroquinolone resistance among Gram-positive cocci. Lancet Infect Dis 2002; 2(9): 530-8.
[http://dx.doi.org/10.1016/S1473-3099(02)00369-9] [PMID: 12206969]
[25]
Ng EY, Trucksis M, Hooper DC. Quinolone resistance mutations in topoisomerase IV: relationship to the flqA locus and genetic evidence that topoisomerase IV is the primary target and DNA gyrase is the secondary target of fluoroquinolones in Staphylococcus aureus. Antimicrob Agents Chemother 1996; 40(8): 1881-8.
[http://dx.doi.org/10.1128/AAC.40.8.1881] [PMID: 8843298]
[26]
Correia S, Poeta P, Hébraud M, Capelo JL, Igrejas G. Mechanisms of quinolone action and resistance: where do we stand? J Med Microbiol 2017; 66(5): 551-9.
[http://dx.doi.org/10.1099/jmm.0.000475] [PMID: 28504927]
[27]
Qiao J, Zhu M, Lu Z, Lv F, Zhao H, Bie X. The antibiotics resistance mechanism and pathogenicity of cold stressed Staphylococcus aureus. Lebensm Wiss Technol 2020; 126: 109274.
[http://dx.doi.org/10.1016/j.lwt.2020.109274]
[28]
McGuinness WA, Malachowa N, DeLeo FR. Vancomycin Resistance in Staphylococcus aureus. Yale J Biol Med 2017; 90(2): 269-81.
[PMID: 28656013]
[29]
González-Zorn B, Courvalin P. vanA -mediated high level glycopeptide resistance in MRSA. Lancet Infect Dis 2003; 3(2): 67-8.
[http://dx.doi.org/10.1016/S1473-3099(03)00510-3] [PMID: 12560187]
[30]
Showsh SA, De Boever EH, Clewell DB. Vancomycin resistance plasmid in Enterococcus faecalis that encodes sensitivity to a sex pheromone also produced by Staphylococcus aureus. Antimicrob Agents Chemother 2001; 45(7): 2177-8.
[http://dx.doi.org/10.1128/AAC.45.7.2177-2178.2001] [PMID: 11441824]
[31]
Munita JM, Bayer AS, Arias CA. Evolving resistance among Gram-positive pathogens. Clin Infect Dis 2015; 61(S2): S48-57.
[http://dx.doi.org/10.1093/cid/civ523] [PMID: 26316558]
[32]
Pogliano J, Pogliano N, Silverman JA. Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. J Bacteriol 2012; 194(17): 4494-504.
[http://dx.doi.org/10.1128/JB.00011-12] [PMID: 22661688]
[33]
Cornaglia G. Fighting infections due to multidrug-resistant Gram-positive pathogens. Clin Microbiol Infect 2009; 15(3): 209-11.
[http://dx.doi.org/10.1111/j.1469-0691.2009.02737.x] [PMID: 19335367]
[34]
Bayer AS, Schneider T, Sahl HG. Mechanisms of daptomycin resistance in Staphylococcus aureus: Role of the cell membrane and cell wall. Ann N Y Acad Sci 2013; 1277(1): 139-58.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06819.x] [PMID: 23215859]
[35]
Morrisette T, Alosaimy S, Abdul-Mutakabbir JC, Kebriaei R, Rybak MJ. The evolving reduction of vancomycin and daptomycin susceptibility in MRSA-Salvaging the gold standards with combination therapy. Antibiotics 2020; 9(11): 762.
[http://dx.doi.org/10.3390/antibiotics9110762] [PMID: 33143290]
[36]
McDougal LK, Thornsberry C. The role of beta-lactamase in staphylococcal resistance to penicillinase-resistant penicillins and cephalosporins. J Clin Microbiol 1986; 23(5): 832-9.
[http://dx.doi.org/10.1128/jcm.23.5.832-839.1986] [PMID: 3011847]
[37]
Boonsiri T, Watanabe S, Tan XE, et al. Identification and characterization of mutations responsible for the β-lactam resistance in oxacillin-susceptible mecA-positive Staphylococcus aureus. Sci Rep 2020; 10(1): 16907.
[http://dx.doi.org/10.1038/s41598-020-73796-5] [PMID: 33037239]
[38]
Jensen SO, Lyon BR. Genetics of antimicrobial resistance in Staphylococcus aureus. Future Microbiol 2009; 4(5): 565-82.
[http://dx.doi.org/10.2217/fmb.09.30] [PMID: 19492967]
[39]
Wright GD. Aminoglycoside-modifying enzymes. Curr Opin Microbiol 1999; 2(5): 499-503.
[http://dx.doi.org/10.1016/S1369-5274(99)00007-7] [PMID: 10508725]
[40]
Jana S, Deb J. Molecular targets for design of novel inhibitors to circumvent aminoglycoside resistance. Curr Drug Targets 2005; 6(3): 353-61.
[http://dx.doi.org/10.2174/1389450053765860] [PMID: 15857293]
[41]
Guo Y, Song G, Sun M, Wang J, Wang Y. Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Front Cell Infect Microbiol 2020; 10: 107.
[http://dx.doi.org/10.3389/fcimb.2020.00107] [PMID: 32257966]
[42]
Zárate S, Morales P, Świderek K, Bolanos-Garcia V, Bastida A. A molecular modeling approach to identify novel inhibitors of the major facilitator superfamily of efflux pump transporters. Antibiotics 2019; 8(1): 25.
[http://dx.doi.org/10.3390/antibiotics8010025] [PMID: 30875968]
[43]
Costa SS, Viveiros M, Amaral L, Couto I. Multidrug efflux pumps in Staphylococcus aureus: An Update. Open Microbiol J 2013; 7(1): 59-71.
[http://dx.doi.org/10.2174/1874285801307010059] [PMID: 23569469]
[44]
Walsh C, Wencewicz T. Antibiotics. (2nd ed.), ASM Press 2016.
[http://dx.doi.org/10.1128/9781555819316]
[45]
Sköld O. Sulfonamide resistance: Mechanisms and trends. Drug Resist Updat 2000; 3(3): 155-60.
[http://dx.doi.org/10.1054/drup.2000.0146] [PMID: 11498380]
[46]
Goessweiner-Mohr N, Arends K, Keller W, Grohmann E. Conjugation in gram-positive bacteria. Microbiol Spectr 2014; 2(4): 2.4.19.
[http://dx.doi.org/10.1128/microbiolspec.PLAS-0004-2013] [PMID: 26104193]
[47]
Climo MW, Sharma VK, Archer GL. Identification and characterization of the origin of conjugative transfer (oriT) and a gene (nes) encoding a single-stranded endonuclease on the staphylococcal plasmid pGO1. J Bacteriol 1996; 178(16): 4975-83.
[http://dx.doi.org/10.1128/jb.178.16.4975-4983.1996] [PMID: 8759863]
[48]
Weigel LM, Clewell DB, Gill SR, et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 2003; 302(5650): 1569-71.
[http://dx.doi.org/10.1126/science.1090956] [PMID: 14645850]
[49]
Zinder ND. Bacterial transduction. J Cell Comp Physiol 1955; 45(S2): 23-49.
[http://dx.doi.org/10.1002/jcp.1030450504] [PMID: 13242624]
[50]
Scharn CR, Tenover FC, Goering RV. Transduction of staphylococcal cassette chromosome mec elements between strains of Staphylococcus aureus. Antimicrob Agents Chemother 2013; 57(11): 5233-8.
[http://dx.doi.org/10.1128/AAC.01058-13] [PMID: 23939891]
[51]
Haaber J, Leisner JJ, Cohn MT, et al. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nat Commun 2016; 7(1): 13333.
[http://dx.doi.org/10.1038/ncomms13333] [PMID: 27819286]
[52]
Morikawa K, Takemura AJ, Inose Y, et al. Expression of a cryptic secondary sigma factor gene unveils natural competence for DNA transformation in Staphylococcus aureus. PLoS Pathog 2012; 8(11): e1003003.
[http://dx.doi.org/10.1371/journal.ppat.1003003] [PMID: 23133387]
[53]
Harkins CP, Pichon B, Doumith M, et al. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol 2017; 18(1): 130.
[http://dx.doi.org/10.1186/s13059-017-1252-9] [PMID: 28724393]
[54]
Cheng L, Nelson BC, Mehta M, et al. Piperacillin-tazobactam versus other antibacterial agents for treatment of bloodstream infections due to AmpC β-Lactamase-producing enterobacteriaceae. Antimicrob Agents Chemother 2017; 61(6): e00276-17.
[http://dx.doi.org/10.1128/AAC.00276-17] [PMID: 28320724]
[55]
Ito T, Katayama Y, Hiramatsu K. Cloning and nucleotide sequence determination of the entire mec DNA of pre-methicillin-resistant Staphylococcus aureus N315. Antimicrob Agents Chemother 1999; 43(6): 1449-58.
[http://dx.doi.org/10.1128/AAC.43.6.1449] [PMID: 10348769]
[56]
Ito T, Katayama Y, Asada K, et al. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2001; 45(5): 1323-36.
[http://dx.doi.org/10.1128/AAC.45.5.1323-1336.2001] [PMID: 11302791]
[57]
Mongkolrattanothai K, Boyle S, Murphy TV, Daum RS. Novel non-mecA-containing staphylococcal chromosomal cassette composite island containing pbp4 and tagF genes in a commensal staphylococcal species: a possible reservoir for antibiotic resistance islands in Staphylococcus aureus. Antimicrob Agents Chemother 2004; 48(5): 1823-36.
[http://dx.doi.org/10.1128/AAC.48.5.1823-1836.2004] [PMID: 15105141]
[58]
Smyth DS, Robinson DA. Integrative and sequence characteristics of a novel genetic element, ICE6013, in Staphylococcus aureus. J Bacteriol 2009; 191(19): 5964-75.
[http://dx.doi.org/10.1128/JB.00352-09] [PMID: 19648240]
[59]
Malachowa N, DeLeo FR. Mobile genetic elements of Staphylococcus aureus. Cell Mol Life Sci 2010; 67(18): 3057-71.
[http://dx.doi.org/10.1007/s00018-010-0389-4] [PMID: 20668911]
[60]
Rowland SJ, Dyke KGH. Tn552, a novel transposable element from Staphylococcus aureus. Mol Microbiol 1990; 4(6): 961-75.
[http://dx.doi.org/10.1111/j.1365-2958.1990.tb00669.x] [PMID: 2170815]
[61]
Rouch DA, Byrne ME, Kong YC, Skurray RA. The aacA-aphD gentamicin and kanamycin resistance determinant of Tn4001 from Staphylococcus aureus: Expression and nucleotide sequence analysis. J Gen Microbiol 1987; 133(11): 3039-52.
[PMID: 2833561]
[62]
Murray CJL, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022; 399(10325): 629-55.
[http://dx.doi.org/10.1016/S0140-6736(21)02724-0] [PMID: 35065702]
[63]
Larsson DGJ, Flach CF. Antibiotic resistance in the environment. Nat Rev Microbiol 2022; 20(5): 257-69.
[http://dx.doi.org/10.1038/s41579-021-00649-x] [PMID: 34737424]
[64]
Lopatkin AJ, Sysoeva TA, You L. Dissecting the effects of antibiotics on horizontal gene transfer: Analysis suggests a critical role of selection dynamics. BioEssays 2016; 38(12): 1283-92.
[http://dx.doi.org/10.1002/bies.201600133] [PMID: 27699821]
[65]
Savage VJ, Chopra I, O’Neill AJ. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob Agents Chemother 2013; 57(4): 1968-70.
[http://dx.doi.org/10.1128/AAC.02008-12] [PMID: 23357771]
[66]
Resch A, Fehrenbacher B, Eisele K, Schaller M, Götz F. Phage release from biofilm and planktonic Staphylococcus aureus cells. FEMS Microbiol Lett 2005; 252(1): 89-96.
[http://dx.doi.org/10.1016/j.femsle.2005.08.048] [PMID: 16213676]
[67]
Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol Adv 2019; 37(1): 177-92.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.013] [PMID: 30500353]
[68]
Hujer KM, Hamza NS, Hujer AM, et al. Identification of a new allelic variant of the Acinetobacter baumannii cephalosporinase, ADC-7 β-lactamase: Defining a unique family of class C enzymes. Antimicrob Agents Chemother 2005; 49(7): 2941-8.
[http://dx.doi.org/10.1128/AAC.49.7.2941-2948.2005] [PMID: 15980372]
[69]
Garneau-Tsodikova S, Labby KJ. Mechanisms of resistance to aminoglycoside antibiotics: Overview and perspectives. MedChemComm 2016; 7(1): 11-27.
[http://dx.doi.org/10.1039/C5MD00344J] [PMID: 26877861]
[70]
Hanaki H, Labischinski H, Inaba Y, Kondo N, Murakami H, Hiramatsu K. Increase in glutamine-non-amidated muropeptides in the peptidoglycan of vancomycin-resistant Staphylococcus aureus strain Mu50. J Antimicrob Chemother 1998; 42(3): 315-20.
[http://dx.doi.org/10.1093/jac/42.3.315] [PMID: 9786471]
[71]
Hanaki H, Kuwahara-Arai K, Boyle-Vavra S, Daum RS, Labischinski H, Hiramatsu K. Activated cell-wall synthesis is associated with vancomycin resistance in methicillin-resistant Staphylococcus aureus clinical strains Mu3 and Mu50. J Antimicrob Chemother 1998; 42(2): 199-209.
[http://dx.doi.org/10.1093/jac/42.2.199] [PMID: 9738837]
[72]
Walsh TR, Howe RA. The prevalence and mechanisms of vancomycin resistance in Staphylococcus aureus. Annu Rev Microbiol 2002; 56(1): 657-75.
[http://dx.doi.org/10.1146/annurev.micro.56.012302.160806] [PMID: 12142482]
[73]
Haberberger RL Jr, Kallen AJ, Driscoll TJ, Wallace MR. Microbiology: Oxacillin-resistant phenotypes of Staphylococcus aureus. Lab Med 1998; 29(5): 302-5.
[http://dx.doi.org/10.1093/labmed/29.5.302]
[74]
Moreno F, Crisp C, Jorgensen JH, Patterson JE. Methicillin-resistant Staphylococcus aureus as a community organism. Clin Infect Dis 1995; 21(5): 1308-12.
[http://dx.doi.org/10.1093/clinids/21.5.1308] [PMID: 8589164]
[75]
Tomasz A, Drugeon HB, de Lencastre HM, Jabes D, McDougall L, Bille J. New mechanism for methicillin resistance in Staphylococcus aureus: clinical isolates that lack the PBP 2a gene and contain normal penicillin-binding proteins with modified penicillin-binding capacity. Antimicrob Agents Chemother 1989; 33(11): 1869-74.
[http://dx.doi.org/10.1128/AAC.33.11.1869] [PMID: 2610497]
[76]
Montanari MP, Massidda O, Mingoia M, Varaldo P. Borderline susceptibility to methicillin in Staphylococcus aureus: A new mechanism of resistance? Microb Drug Resist 1996; 2(2): 257-60.
[http://dx.doi.org/10.1089/mdr.1996.2.257] [PMID: 9158769]
[77]
Takayama Y, Tanaka T, Oikawa K, Fukano N, Goto M, Takahashi T. Prevalence of blaZ gene and performance of phenotypic tests to detect penicillinase in Staphylococcus aureus Isolates from Japan. Ann Lab Med 2018; 38(2): 155-9.
[http://dx.doi.org/10.3343/alm.2018.38.2.155] [PMID: 29214760]
[78]
Kang JY, Lee W, Noh GM, Jeong BH, Park I, Lee SJ. Fluoroquinolone resistance of Staphylococcus epidermidis isolated from healthy conjunctiva and analysis of their mutations in quinolone-resistance determining region. Antimicrob Resist Infect Control 2020; 9(1): 177.
[http://dx.doi.org/10.1186/s13756-020-00841-3] [PMID: 33148329]
[79]
Okiki PA, Eromosele ES, Ade-Ojo P, Sobajo OA, Idris OO, Agbana RD. Occurrence of mecA and blaZ genes in methicillin-resistant Staphylococcus aureus associated with vaginitis among pregnant women in Ado-Ekiti, Nigeria. New Microbes New Infect 2020; 38: 100772.
[http://dx.doi.org/10.1016/j.nmni.2020.100772] [PMID: 33133613]
[80]
Wu S, Zhang J, Peng Q, Liu Y, Lei L, Zhang H. The Role of Staphylococcus aureus YycFG in gene regulation, biofilm organization and drug resistance. Antibiotics 2021; 10(12): 1555.
[http://dx.doi.org/10.3390/antibiotics10121555] [PMID: 34943766]
[81]
Lasek-Nesselquist E, Lu J, Schneider R, et al. Insights into the evolution of Staphylococcus aureus daptomycin resistance from an in vitro bioreactor model. Front Microbiol 2019; 10: 345.
[http://dx.doi.org/10.3389/fmicb.2019.00345] [PMID: 30891010]
[82]
Fagerlund A, Granum PE, Håvarstein LS. S taphylococcus aureus competence genes: Mapping of the SigH, ComK1 and ComK2 regulons by transcriptome sequencing. Mol Microbiol 2014; 94(3): 557-79.
[http://dx.doi.org/10.1111/mmi.12767] [PMID: 25155269]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy