Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Gastrointestinal, Liver, Pancreas, Oral and Psychological Long-term Symptoms of COVID-19 After Recovery: A Review

Author(s): Reza Afrisham, Yasaman Jadidi, Maryam Davoudi, Kiana Moayedi, Omid Soliemanifar, Chrysovalantou Eleni Xirouchaki, Damoon Ashtary-Larky, Shadisadat Seyyedebrahimi* and Shaban Alizadeh*

Volume 23, Issue 7, 2023

Published on: 22 December, 2022

Page: [852 - 868] Pages: 17

DOI: 10.2174/1389557523666221116154907

Price: $65

conference banner
Abstract

Due to the importance of control and prevention of COVID-19-correlated long-term symptoms, the present review article has summarized what has been currently known regarding the molecular and cellular mechanisms linking COVID-19 to important long-term complications including psychological complications, liver and gastrointestinal manifestations, oral signs as well as even diabetes. COVID-19 can directly affect the body cells through their Angiotensin-converting enzyme 2 (ACE-2) to induce inflammatory responses and cytokine storm. The cytokines cause the release of reactive oxygen species (ROS) and subsequently initiate and promote cell injuries. Another way, COVID-19-associated dysbiosis may be involved in GI pathogenesis. In addition, SARS-CoV-2 reduces butyrate-secreting bacteria and leads to the induction of hyperinflammation. Moreover, SARS-CoV-2-mediated endoplasmic reticulum stress induces de novo lipogenesis in hepatocytes, which leads to hepatic steatosis and inhibits autophagy via increasing mTOR. In pancreas tissue, the virus damages beta-cells and impairs insulin secretion. SARS-COV-2 may change the ACE2 activity by modifying ANGII levels in taste buds which leads to gustatory dysfunction. SARS-CoV-2 infection and its resulting stress can lead to severe inflammation that can subsequently alter neurotransmitter signals. This, in turn, negatively affects the structure of neurons and leads to mood and anxiety disorders. In conclusion, all the pathways mentioned earlier can play a crucial role in the disease's pathogenesis and related comorbidities. However, more studies are needed to clarify the underlying mechanism of the pathogenesis of the new coming virus.

Keywords: COVID-19, inflammation, long-term, mechanisms, liver, diabetes, SARS-CoV-2.

Graphical Abstract
[1]
Mitsuyama, K.; Tsuruta, K.; Takedatsu, H.; Yoshioka, S.; Morita, M.; Niwa, M.; Matsumoto, S. Clinical features and pathogenic mechanisms of gastrointestinal injury in COVID-19. J. Clin. Med., 2020, 9(11), 3630.
[http://dx.doi.org/10.3390/jcm9113630] [PMID: 33187280]
[2]
Mandal, A.; Konala, V.M.; Adapa, S.; Naramala, S.; Gayam, V. Gastrointestinal manifestations in COVID-19 infection and its practical applications. Cureus, 2020, 12(6), e8750.
[http://dx.doi.org/10.7759/cureus.8750] [PMID: 32714688]
[3]
Das, K.; Pingali, M.S.; Paital, B.; Panda, F.; Pati, S.G.; Singh, A.; Varadwaj, P.K.; Samanta, S.K. A detailed review of the outbreak of COVID-19. Front. Biosci., 2021, 26(6), 149-170.
[http://dx.doi.org/10.52586/4931] [PMID: 34162043]
[4]
Tsamakis, K.; Tsiptsios, D.; Ouranidis, A.; Mueller, C.; Schizas, D.; Terniotis, C.; Nikolakakis, N.; Tyros, G.; Kympouropoulos, S.; Lazaris, A.; Spandidos, D.; Smyrnis, N.; Rizos, E. COVID 19 and its consequences on mental health (Review). Exp. Ther. Med., 2021, 21(3), 244.
[http://dx.doi.org/10.3892/etm.2021.9675] [PMID: 33603852]
[5]
Nami, M.; Gadad, B.S.; Chong, L.; Ghumman, U.; Misra, A.; Gadad, S.S.; Kumar, D.; Perry, G.; Abraham, S.J.K.; Rao, K.S. The interrelation of neurological and psychological symptoms of COVID-19: risks and remedies. J. Clin. Med., 2020, 9(8), 2624.
[http://dx.doi.org/10.3390/jcm9082624] [PMID: 32823540]
[6]
Paital, B.; Das, K.; Parida, S.K. Inter nation social lockdown versus medical care against COVID-19, a mild environmental insight with special reference to India. Sci. Total Environ., 2020, 728, 138914.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138914] [PMID: 32339832]
[7]
Jansen van Vuren, E.; Steyn, S.F.; Brink, C.B. Möller, M.; Viljoen, F.P.; Harvey, B.H. The neuropsychiatric manifestations of COVID-19: Interactions with psychiatric illness and pharmacological treatment. Biomed. Pharmacother., 2021, 135, 111200.
[http://dx.doi.org/10.1016/j.biopha.2020.111200] [PMID: 33421734]
[8]
Bodnar, B.; Patel, K.; Ho, W.; Luo, J.J.; Hu, W. Cellular mechanisms underlying neurological/neuropsychiatric manifestations of COVID-19. J. Med. Virol., 2021, 93(4), 1983-1998.
[http://dx.doi.org/10.1002/jmv.26720] [PMID: 33300152]
[9]
Mihalopoulos, M.; Dogra, N.; Mohamed, N.; Badani, K.; Kyprianou, N. COVID-19 and kidney disease: molecular determinants and clinical implications in renal cancer. Eur. Urol. Focus, 2020, 6(5), 1086-1096.
[http://dx.doi.org/10.1016/j.euf.2020.06.002] [PMID: 32540268]
[10]
To, K.K.W.; Tsang, O.T.Y.; Yip, C.C.Y.; Chan, K.H.; Wu, T.C.; Chan, J.M.C.; Leung, W.S.; Chik, T.S.H.; Choi, C.Y.C.; Kandamby, D.H.; Lung, D.C.; Tam, A.R.; Poon, R.W.S.; Fung, A.Y.F.; Hung, I.F.N.; Cheng, V.C.C.; Chan, J.F.W.; Yuen, K.Y. Consistent detection of 2019 novel coronavirus in saliva. Clin. Infect. Dis., 2020, 71(15), 841-843.
[http://dx.doi.org/10.1093/cid/ciaa149] [PMID: 32047895]
[11]
Lopez-Leon, S.; Wegman-Ostrosky, T.; Perelman, C.; Sepulveda, R.; Rebolledo, P.A.; Cuapio, A.; Villapol, S. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis. Sci. Rep., 2021, 11(1), 16144.
[http://dx.doi.org/10.1038/s41598-021-95565-8] [PMID: 34373540]
[12]
Taquet, M.; Geddes, J.R.; Husain, M.; Luciano, S.; Harrison, P.J. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry, 2021, 8(5), 416-427.
[http://dx.doi.org/10.1016/S2215-0366(21)00084-5] [PMID: 33836148]
[13]
Garrigues, E.; Janvier, P.; Kherabi, Y.; Le Bot, A.; Hamon, A.; Gouze, H.; Doucet, L.; Berkani, S.; Oliosi, E.; Mallart, E.; Corre, F.; Zarrouk, V.; Moyer, J.D.; Galy, A.; Honsel, V.; Fantin, B.; Nguyen, Y. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J. Infect., 2020, 81(6), e4-e6.
[http://dx.doi.org/10.1016/j.jinf.2020.08.029] [PMID: 32853602]
[14]
Taquet, M.; Luciano, S.; Geddes, J.R.; Harrison, P.J. Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA. Lancet Psychiatry, 2021, 8(2), 130-140.
[http://dx.doi.org/10.1016/S2215-0366(20)30462-4] [PMID: 33181098]
[15]
Shih, A.R.; Misdraji, J. COVID-19: gastrointestinal and hepatobiliary manifestations. Hum. Pathol., 2022. S0046-8177(22)00179-4
[PMID: 35843340]
[16]
Rizvi, A.; Patel, Z.; Liu, Y.; Satapathy, S.K.; Sultan, K.; Trindade, A.J. Northwell Health COVID-19 Research Consortium. Gastrointestinal sequelae 3 and 6 months after hospitalization for coronavirus disease 2019. Clin. Gastroenterol. Hepatol., 2021, 19(11), 2438-2440.e1.
[http://dx.doi.org/10.1016/j.cgh.2021.06.046] [PMID: 34217880]
[17]
Ghoshal, U.C.; Ghoshal, U.; Rahman, M.M.; Mathur, A.; Rai, S.; Akhter, M.; Mostafa, T.; Islam, M.S.; Haque, S.A.; Pandey, A.; Kibria, M.G.; Ahmed, F. Post-infection functional gastrointestinal disorders following coronavirus disease-19: A case–control study. J. Gastroenterol. Hepatol., 2022, 37(3), 489-498.
[http://dx.doi.org/10.1111/jgh.15717] [PMID: 34672022]
[18]
Ebrahim Nakhli, R.; Shanker, A.; Sarosiek, I.; Boschman, J.; Espino, K.; Sigaroodi, S.; Al Bayati, I.; Elhanafi, S.; Sadeghi, A.; Sarosiek, J.; Zuckerman, M.J.; Rezaie, A.; McCallum, R.W.; Schmulson, M.J.; Bashashati, A.; Bashashati, M. Gastrointestinal symptoms and the severity of COVID-19: Disorders of gut–brain interaction are an outcome. Neurogastroenterol. Motil., 2022, 34(9), e14368.
[http://dx.doi.org/10.1111/nmo.14368] [PMID: 35383423]
[19]
Kusiak, A. Cichońska, D.; Tubaja, M.; Skorek, A.; Jereczek-Fossa, B.A.; Corrao, G.; Marvaso, G.; Alterio, D. COVID-19 manifestation in the oral cavity – a narrative literature review. Acta Otorhinolaryngol. Ital., 2021, 41(5), 395-400.
[http://dx.doi.org/10.14639/0392-100X-N1584] [PMID: 34734574]
[20]
Kuba, K.; Yamaguchi, T.; Penninger, J.M. angiotensin-converting enzyme 2 (ACE2) in the pathogenesis of ARDS in COVID-19. Front. Immunol., 2021, 12, 732690.
[http://dx.doi.org/10.3389/fimmu.2021.732690] [PMID: 35003058]
[21]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N-H.; Nitsche, A.; Müller, M.A.; Drosten, C. Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[22]
Singh, H.; Choudhari, R.; Nema, V.; Khan, A.A. ACE2 and TMPRSS2 polymorphisms in various diseases with special reference to its impact on COVID-19 disease. Microb. Pathog., 2021, 150, 104621.
[http://dx.doi.org/10.1016/j.micpath.2020.104621] [PMID: 33278516]
[23]
Bristow, M.R.; Zisman, L.S.; Altman, N.L.; Gilbert, E.M.; Lowes, B.D.; Minobe, W.A.; Slavov, D.; Schwisow, J.A.; Rodriguez, E.M.; Carroll, I.A.; Keuer, T.A.; Buttrick, P.M.; Kao, D.P. Dynamic regulation of SARS-Cov-2 binding and cell entry mechanisms in remodeled human ventricular myocardium. JACC Basic Transl. Sci., 2020, 5(9), 871-883.
[http://dx.doi.org/10.1016/j.jacbts.2020.06.007] [PMID: 32838074]
[24]
Lin, H-B.; Liu, P.P. COVID-19 and the heart: ACE2 level and the company it keeps hold the key. JACC Basic Transl. Sci., 2020, 5(9), 884-887.
[http://dx.doi.org/10.1016/j.jacbts.2020.07.005] [PMID: 32838075]
[25]
Bertram, S.; Dijkman, R.; Habjan, M.; Heurich, A.; Gierer, S.; Glowacka, I.; Welsch, K.; Winkler, M.; Schneider, H.; Hofmann-Winkler, H.; Thiel, V. Pöhlmann, S. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J. Virol., 2013, 87(11), 6150-6160.
[http://dx.doi.org/10.1128/JVI.03372-12] [PMID: 23536651]
[26]
Zang, R.; Castro, M.F.G.; McCune, B.T.; Zeng, Q.; Rothlauf, P.W.; Sonnek, N.M.; Liu, Z.; Brulois, K.F.; Wang, X.; Greenberg, H.B.; Diamond, M.S.; Ciorba, M.A.; Whelan, S.P.J.; Ding, S. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci. Immunol., 2020, 5(47), eabc3582.
[http://dx.doi.org/10.1126/sciimmunol.abc3582] [PMID: 32404436]
[27]
Heurich, A.; Hofmann-Winkler, H.; Gierer, S.; Liepold, T.; Jahn, O. Pöhlmann, S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J. Virol., 2014, 88(2), 1293-1307.
[http://dx.doi.org/10.1128/JVI.02202-13] [PMID: 24227843]
[28]
Ahmadian, E.; Hosseiniyan Khatibi, S.M.; Razi Soofiyani, S.; Abediazar, S.; Shoja, M.M.; Ardalan, M.; Zununi Vahed, S. Covid-19 and kidney injury: Pathophysiology and molecular mechanisms. Rev. Med. Virol., 2021, 31(3), e2176.
[http://dx.doi.org/10.1002/rmv.2176] [PMID: 33022818]
[29]
Su, S.; Shen, J.; Zhu, L.; Qiu, Y.; He, J.S.; Tan, J.Y.; Iacucci, M.; Ng, S.C.; Ghosh, S.; Mao, R.; Liang, J. Involvement of digestive system in COVID-19: manifestations, pathology, management and challenges. Therap. Adv. Gastroenterol., 2020, 13.
[http://dx.doi.org/10.1177/1756284820934626] [PMID: 32595762]
[30]
Kopel, J.; Perisetti, A.; Gajendran, M.; Boregowda, U.; Goyal, H. Clinical insights into the gastrointestinal manifestations of COVID-19. Dig. Dis. Sci., 2020, 65(7), 1932-1939.
[http://dx.doi.org/10.1007/s10620-020-06362-8] [PMID: 32447742]
[31]
Miri, S.M.; Roozbeh, F.; Omranirad, A.; Alavian, S.M. Panic of buying toilet papers: a historical memory or a horrible truth? Systematic review of gastrointestinal manifestations of COVID-19. Hepat. Mon., 2020, 20(3), e10279.
[http://dx.doi.org/10.5812/hepatmon.102729]
[32]
Andrews, P.L.R.; Cai, W.; Rudd, J.A.; Sanger, G.J. COVID-19, nausea, and vomiting. J. Gastroenterol. Hepatol., 2021, 36(3), 646-656.
[http://dx.doi.org/10.1111/jgh.15261] [PMID: 32955126]
[33]
Xiao, L.; Sakagami, H.; Miwa, N. ACE2: the key molecule for understanding the pathophysiology of severe and critical conditions of COVID-19: demon or angel? Viruses, 2020, 12(5), 491.
[http://dx.doi.org/10.3390/v12050491] [PMID: 32354022]
[34]
Kuba, K.; Imai, Y.; Ohto-Nakanishi, T.; Penninger, J.M. Trilogy of ACE2: A peptidase in the renin–angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol. Ther., 2010, 128(1), 119-128.
[http://dx.doi.org/10.1016/j.pharmthera.2010.06.003] [PMID: 20599443]
[35]
Levy, E.; Stintzi, A.; Cohen, A.; Desjardins, Y.; Marette, A.; Spahis, S. Critical appraisal of the mechanisms of gastrointestinal and hepatobiliary infection by COVID-19. Am. J. Physiol. Gastrointest. Liver Physiol., 2021, 321(2), G99-G112.
[http://dx.doi.org/10.1152/ajpgi.00106.2021] [PMID: 34009033]
[36]
Brooks, E.F.; Bhatt, A.S. The gut microbiome: a missing link in understanding the gastrointestinal manifestations of COVID-19? Molecular Case Studies, 2021, 7(2), a006031.
[http://dx.doi.org/10.1101/mcs.a006031] [PMID: 33593727]
[37]
Fernandes, R.; Viana, S.D.; Nunes, S.; Reis, F. Diabetic gut microbiota dysbiosis as an inflammaging and immunosenescence condition that fosters progression of retinopathy and nephropathy. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(7), 1876-1897.
[http://dx.doi.org/10.1016/j.bbadis.2018.09.032] [PMID: 30287404]
[38]
Vignesh, R.; Swathirajan, C.R.; Tun, Z.H.; Rameshkumar, M.R.; Solomon, S.S.; Balakrishnan, P. Could perturbation of gut microbiota possibly exacerbate the severity of COVID-19 via cytokine storm? Front. Immunol., 2021, 11, 607734.
[http://dx.doi.org/10.3389/fimmu.2020.607734] [PMID: 33569053]
[39]
Chen, J.; Hall, S.; Vitetta, L. Altered gut microbial metabolites could mediate the effects of risk factors in COVID-19. Rev. Med. Virol., 2021, 31(5), 1-13.
[http://dx.doi.org/10.1002/rmv.2211] [PMID: 34546607]
[40]
Campbell, C.; McKenney, P.T.; Konstantinovsky, D.; Isaeva, O.I.; Schizas, M.; Verter, J.; Mai, C.; Jin, W.B.; Guo, C.J.; Violante, S.; Ramos, R.J.; Cross, J.R.; Kadaveru, K.; Hambor, J.; Rudensky, A.Y. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature, 2020, 581(7809), 475-479.
[http://dx.doi.org/10.1038/s41586-020-2193-0] [PMID: 32461639]
[41]
Yang, M.; Gu, Y.; Li, L.; Liu, T.; Song, X.; Sun, Y.; Cao, X.; Wang, B.; Jiang, K.; Cao, H. Bile Acid–gut microbiota axis in inflammatory bowel disease: from bench to bedside. Nutrients, 2021, 13(9), 3143.
[http://dx.doi.org/10.3390/nu13093143] [PMID: 34579027]
[42]
Yang, Y.; Huang, W.; Fan, Y.; Chen, G.Q. Gastrointestinal microenvironment and the gut-lung axis in the immune responses of severe COVID-19. Front. Mol. Biosci., 2021, 8, 647508.
[http://dx.doi.org/10.3389/fmolb.2021.647508] [PMID: 33912590]
[43]
Jothimani, D.; Venugopal, R.; Abedin, M.F.; Kaliamoorthy, I.; Rela, M. COVID-19 and the liver. J. Hepatol., 2020, 73(5), 1231-1240.
[http://dx.doi.org/10.1016/j.jhep.2020.06.006] [PMID: 32553666]
[44]
Li, D.; Ding, X.; Xie, M.; Tian, D.; Xia, L. COVID-19-associated liver injury: from bedside to bench. J. Gastroenterol., 2021, 56(3), 218-230.
[http://dx.doi.org/10.1007/s00535-021-01760-9] [PMID: 33527211]
[45]
Nardo, A.D.; Schneeweiss-Gleixner, M.; Bakail, M.; Dixon, E.D.; Lax, S.F.; Trauner, M. Pathophysiological mechanisms of liver injury in COVID-19. Liver Int., 2021, 41(1), 20-32.
[http://dx.doi.org/10.1111/liv.14730] [PMID: 33190346]
[46]
Cai, Y.; Ye, L.P.; Song, Y.Q.; Mao, X.L.; Wang, L.; Jiang, Y.Z.; Que, W.T.; Li, S.W. Liver injury in COVID-19: Detection, pathogenesis, and treatment. World J. Gastroenterol., 2021, 27(22), 3022-3036.
[http://dx.doi.org/10.3748/wjg.v27.i22.3022] [PMID: 34168405]
[47]
Wu, Z.; Yang, D. A meta-analysis of the impact of COVID-19 on liver dysfunction. Eur. J. Med. Res., 2020, 25(1), 54.
[http://dx.doi.org/10.1186/s40001-020-00454-x] [PMID: 33148326]
[48]
Cichoż-Lach, H.; Michalak, A. Liver injury in the era of COVID-19. World J. Gastroenterol., 2021, 27(5), 377-390.
[http://dx.doi.org/10.3748/wjg.v27.i5.377] [PMID: 33584070]
[49]
Sathish, T.; Kapoor, N.; Cao, Y.; Tapp, R.J.; Zimmet, P. Proportion of newly diagnosed diabetes in COVID -19 patients: A systematic review and meta-analysis. Diabetes Obes. Metab., 2021, 23(3), 870-874.
[http://dx.doi.org/10.1111/dom.14269] [PMID: 33245182]
[50]
Rathmann, W.; Kuss, O.; Kostev, K. Incidence of newly diagnosed diabetes after COVID-19. Diabetologia, 2022, 65(6), 949-954.
[http://dx.doi.org/10.1007/s00125-022-05670-0] [PMID: 35292829]
[51]
Banerjee, M.; Pal, R.; Dutta, S. Risk of incident diabetes post-COVID-19: A systematic review and meta-analysis. Prim. Care Diabetes, 2022, 16(4), 591-593.
[http://dx.doi.org/10.1016/j.pcd.2022.05.009] [PMID: 35654679]
[52]
COVID-19 and diabetes: a co-conspiracy? Lancet Diabetes Endocrinol., 2020, 8(10), 801.
[http://dx.doi.org/10.1016/S2213-8587(20)30315-6] [PMID: 32946812]
[53]
Mirza, A.F.; Halim, C.; Sari, M.I. The relationship of age, sex and prothrombin time related to the severity and mortality of COVID-19 patients with diabetes mellitus: a systematic review and meta analysis. F1000 Res., 2022, 11(729), 729.
[http://dx.doi.org/10.12688/f1000research.107398.1]
[54]
Khunti, K.; Del Prato, S.; Mathieu, C.; Kahn, S.E.; Gabbay, R.A.; Buse, J.B. COVID-19, Hyperglycemia, and New-Onset Diabetes. Diabetes Care, 2021, 44(12), 2645-2655.
[http://dx.doi.org/10.2337/dc21-1318] [PMID: 34625431]
[55]
Mirzaei, F.; Khodadadi, I.; Vafaei, S.A.; Abbasi-Oshaghi, E.; Tayebinia, H.; Farahani, F. Importance of hyperglycemia in COVID-19 intensive-care patients: Mechanism and treatment strategy. Prim. Care Diabetes, 2021, 15(3), 409-416.
[http://dx.doi.org/10.1016/j.pcd.2021.01.002] [PMID: 33436320]
[56]
Müller, J.A. Groß, R.; Conzelmann, C.; Krüger, J.; Merle, U.; Steinhart, J.; Weil, T.; Koepke, L.; Bozzo, C.P.; Read, C.; Fois, G.; Eiseler, T.; Gehrmann, J.; van Vuuren, J.; Wessbecher, I.M.; Frick, M.; Costa, I.G.; Breunig, M.; Grüner, B.; Peters, L.; Schuster, M.; Liebau, S.; Seufferlein, T.; Stenger, S.; Stenzinger, A.; MacDonald, P.E.; Kirchhoff, F.; Sparrer, K.M.J.; Walther, P.; Lickert, H.; Barth, T.F.E.; Wagner, M.; Münch, J.; Heller, S.; Kleger, A. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat. Metab., 2021, 3(2), 149-165.
[http://dx.doi.org/10.1038/s42255-021-00347-1] [PMID: 33536639]
[57]
Wu, C.T.; Lidsky, P.V.; Xiao, Y.; Lee, I.T.; Cheng, R.; Nakayama, T.; Jiang, S.; Demeter, J.; Bevacqua, R.J.; Chang, C.A.; Whitener, R.L.; Stalder, A.K.; Zhu, B.; Chen, H.; Goltsev, Y.; Tzankov, A.; Nayak, J.V.; Nolan, G.P.; Matter, M.S.; Andino, R.; Jackson, P.K. SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment. Cell Metab., 2021, 33(8), 1565-1576.e5.
[http://dx.doi.org/10.1016/j.cmet.2021.05.013] [PMID: 34081912]
[58]
Coate, K.C.; Cha, J.; Shrestha, S.; Wang, W.; Gonçalves, L.M.; Almaça, J.; Kapp, M.E.; Fasolino, M.; Morgan, A.; Dai, C.; Saunders, D.C.; Bottino, R.; Aramandla, R.; Jenkins, R.; Stein, R.; Kaestner, K.H.; Vahedi, G.; Brissova, M.; Powers, A.C. SARS-CoV-2 Cell Entry Factors ACE2 and TMPRSS2 Are expressed in the microvasculature and ducts of human pancreas but are not enriched in β cells. Cell Metab., 2020, 32(6), 1028-1040.e4.
[http://dx.doi.org/10.1016/j.cmet.2020.11.006] [PMID: 33207245]
[59]
Kusmartseva, I.; Wu, W.; Syed, F.; Van Der Heide, V.; Jorgensen, M.; Joseph, P.; Tang, X.; Candelario-Jalil, E.; Yang, C.; Nick, H.; Harbert, J.L.; Posgai, A.L.; Paulsen, J.D.; Lloyd, R.; Cechin, S.; Pugliese, A.; Campbell-Thompson, M.; Vander Heide, R.S.; Evans-Molina, C.; Homann, D.; Atkinson, M.A. Expression of SARS-CoV-2 Entry factors in the pancreas of normal organ donors and individuals with COVID-19. Cell Metab., 2020, 32(6), 1041-1051.e6.
[http://dx.doi.org/10.1016/j.cmet.2020.11.005] [PMID: 33207244]
[60]
Pae, E.K.; Harper, R.M. Potential mechanisms underlying hypoxia-induced diabetes in a rodent model: Implications for covid-19. Children (Basel), 2021, 8(12), 1178.
[http://dx.doi.org/10.3390/children8121178] [PMID: 34943374]
[61]
Han, H.; Ma, Q.; Li, C.; Liu, R.; Zhao, L.; Wang, W.; Zhang, P.; Liu, X.; Gao, G.; Liu, F.; Jiang, Y.; Cheng, X.; Zhu, C.; Xia, Y. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg. Microbes Infect., 2020, 9(1), 1123-1130.
[http://dx.doi.org/10.1080/22221751.2020.1770129] [PMID: 32475230]
[62]
DeDiego, M.L.; Nieto-Torres, J.L.; Regla-Nava, J.A. Jimenez-Guardeño, J.M.; Fernandez-Delgado, R.; Fett, C.; Castaño-Rodriguez, C.; Perlman, S.; Enjuanes, L. Inhibition of NF-κB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. J. Virol., 2014, 88(2), 913-924.
[http://dx.doi.org/10.1128/JVI.02576-13] [PMID: 24198408]
[63]
Kircheis, R. Haasbach, E.; Lueftenegger, D.; Heyken, W.T.; Ocker, M.; Planz, O. NF-κB Pathway as a Potential Target for Treatment of Critical Stage COVID-19 Patients. Front. Immunol., 2020, 11, 598444.
[http://dx.doi.org/10.3389/fimmu.2020.598444] [PMID: 33362782]
[64]
King, G.L. The role of inflammatory cytokines in diabetes and its complications. J. Periodontol., 2008, 79(8s)(Suppl.), 1527-1534.
[http://dx.doi.org/10.1902/jop.2008.080246] [PMID: 18673007]
[65]
Catriona, C.; Paolo, P. SARS-CoV-2 induced post-translational protein modifications: A trigger for developing autoimmune diabetes? Diabetes Metab. Res. Rev., 2022, 38(1), e3508.
[http://dx.doi.org/10.1002/dmrr.3508] [PMID: 34990520]
[66]
Chen, L.; Zhao, J.; Peng, J.; Li, X.; Deng, X.; Geng, Z.; Shen, Z.; Guo, F.; Zhang, Q.; Jin, Y.; Wang, L.; Wang, S. Detection of SARS-CoV-2 in saliva and characterization of oral symptoms in COVID-19 patients. Cell Prolif., 2020, 53(12), e12923.
[http://dx.doi.org/10.1111/cpr.12923] [PMID: 33073910]
[67]
Swain, S.K.; Debta, P.; Sahu, A.; Lenka, S. Oral cavity manifestations by COVID-19 infections: a review. Int. J. Otorhinolaryngol. Head Neck Surg., 2021, 7(8), 1391-1397.
[http://dx.doi.org/10.18203/issn.2454-5929.ijohns20212914]
[68]
Swain, S.; Choudhury, J.; Acharya, S. Herpes zoster oticus among pediatric patients: Our experiences at a tertiary care teaching hospital. Indian J. Health Sci. Biomed Res. (KLEU), 2020, 13(3), 215. (KLEU)
[http://dx.doi.org/10.4103/kleuhsj.kleuhsj_100_20]
[69]
Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med., 2020, 46(4), 586-590.
[http://dx.doi.org/10.1007/s00134-020-05985-9] [PMID: 32125455]
[70]
Herrera, D.; Serrano, J. Roldán, S.; Sanz, M. Is the oral cavity relevant in SARS-CoV-2 pandemic? Clin. Oral Investig., 2020, 24(8), 2925-2930.
[http://dx.doi.org/10.1007/s00784-020-03413-2] [PMID: 32577830]
[71]
Sipert, CR.; Nogueira, F.N. Salivary glands, saliva and oral findings in COVID-19 infection. Pesqui. Bras. Odontopediatria Clin. Integr., 2020, 20.
[72]
Wang, C.; Wu, H.; Ding, X.; Ji, H.; Jiao, P.; Song, H.; Li, S.; Du, H. Does infection of 2019 novel coronavirus cause acute and/or chronic sialadenitis? Med. Hypotheses, 2020, 140, 109789.
[http://dx.doi.org/10.1016/j.mehy.2020.109789] [PMID: 32361098]
[73]
Patel, J.; Woolley, J. Necrotizing periodontal disease: Oral manifestation of COVID-19. Oral Dis., 2020, 27(suppl. 3), 768-769.
[PMID: 32506662]
[74]
Wang, Z.; Zhou, J.; Marshall, B.; Rekaya, R.; Ye, K.; Liu, H.X. SARS-CoV-2 receptor ACE2 is enriched in a subpopulation of mouse tongue epithelial cells in nongustatory papillae but not in taste buds or embryonic oral epithelium. ACS Pharmacol. Transl. Sci., 2020, 3(4), 749-758.
[http://dx.doi.org/10.1021/acsptsci.0c00062] [PMID: 32821883]
[75]
Wang, H.; Zhou, M.; Brand, J.; Huang, L. Inflammation and taste disorders: mechanisms in taste buds. Ann. N. Y. Acad. Sci., 2009, 1170(1), 596-603.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04480.x] [PMID: 19686199]
[76]
Sato, T.; Ueha, R.; Goto, T.; Yamauchi, A.; Kondo, K.; Yamasoba, T. Expression of ACE2 and TMPRSS2 proteins in the upper and lower aerodigestive tracts of rats: implications on COVID 19 infections. Laryngoscope, 2021, 131(3), E932-E939.
[http://dx.doi.org/10.1002/lary.29132] [PMID: 32940922]
[77]
Sakaguchi, W.; Kubota, N.; Shimizu, T.; Saruta, J.; Fuchida, S.; Kawata, A.; Yamamoto, Y.; Sugimoto, M.; Yakeishi, M.; Tsukinoki, K. Existence of SARS-CoV-2 entry molecules in the oral cavity. Int. J. Mol. Sci., 2020, 21(17), 6000.
[http://dx.doi.org/10.3390/ijms21176000] [PMID: 32825469]
[78]
Finsterer, J.; Stollberger, C. Causes of hypogeusia/hyposmia in SARS-CoV2 infected patients. J. Med. Virol., 2020, 92(10), 1793-1794.
[http://dx.doi.org/10.1002/jmv.25903] [PMID: 32311107]
[79]
Shigemura, N.; Iwata, S.; Yasumatsu, K.; Ohkuri, T.; Horio, N.; Sanematsu, K.; Yoshida, R.; Margolskee, R.F.; Ninomiya, Y. Angiotensin II modulates salty and sweet taste sensitivities. J. Neurosci., 2013, 33(15), 6267-6277.
[http://dx.doi.org/10.1523/JNEUROSCI.5599-12.2013] [PMID: 23575826]
[80]
Shigemura, N.; Takai, S.; Hirose, F.; Yoshida, R.; Sanematsu, K.; Ninomiya, Y. Expression of renin-angiotensin system components in the taste organ of mice. Nutrients, 2019, 11(9), 2251.
[http://dx.doi.org/10.3390/nu11092251] [PMID: 31546789]
[81]
Chen, J.; Jiang, Q.; Xia, X.; Liu, K.; Yu, Z.; Tao, W.; Gong, W.; Han, J.D.J. Individual variation of the SARS-CoV-2 receptor ACE2 gene expression and regulation. Aging Cell, 2020, 19(7), e13168.
[http://dx.doi.org/10.1111/acel.13168] [PMID: 32558150]
[82]
Lahiri, D.; Ardila, A. COVID-19 pandemic: a neurological perspective. Cureus, 2020, 12(4), e7889.
[PMID: 32489743]
[83]
Lozada-Nur, F.; Chainani-Wu, N.; Fortuna, G.; Sroussi, H. Dysgeusia in COVID-19: possible mechanisms and implications. Oral Surg. Oral Med. Oral Pathol. Oral Radiol., 2020, 130(3), 344-346.
[http://dx.doi.org/10.1016/j.oooo.2020.06.016] [PMID: 32703719]
[84]
Tancheva, L.; Petralia, M.C.; Miteva, S.; Dragomanova, S.; Solak, A.; Kalfin, R.; Lazarova, M.; Yarkov, D.; Ciurleo, R.; Cavalli, E.; Bramanti, A.; Nicoletti, F. Emerging neurological and psychobiological aspects of COVID-19 infection. Brain Sci., 2020, 10(11), 852.
[http://dx.doi.org/10.3390/brainsci10110852] [PMID: 33198412]
[85]
Bhat, S.; Chokroverty, S. Sleep disorders and COVID-19. Sleep Med., 2022, 91, 253-261.
[http://dx.doi.org/10.1016/j.sleep.2021.07.021] [PMID: 34391672]
[86]
Josephson, S.A.; Kamel, H. Neurology and COVID-19. JAMA, 2020, 324(12), 1139-1140.
[http://dx.doi.org/10.1001/jama.2020.14254] [PMID: 32960246]
[87]
Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; Miao, X.; Li, Y.; Hu, B. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol., 2020, 77(6), 683-690.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]
[88]
Kumar, A.; Pareek, V.; Prasoon, P.; Faiq, M.A.; Kumar, P.; Kumari, C.; Narayan, R.K. Possible routes of SARS-CoV-2 invasion in brain: In context of neurological symptoms in COVID-19 patients. J. Neurosci. Res., 2020, 98(12), 2376-2383.
[http://dx.doi.org/10.1002/jnr.24717] [PMID: 32869376]
[89]
Gebhard, C.E.; Sütsch, C.; Bengs, S.; Deforth, M.; Buehler, K.P.; Hamouda, N. Sex-and gender-specific risk factors of post-COVID-19 syndrome: a population-based cohort study in Switzerland. medRxiv, 2021.
[90]
Mazza, M.G.; Palladini, M.; De Lorenzo, R.; Magnaghi, C.; Poletti, S.; Furlan, R.; Ciceri, F.; Rovere-Querini, P.; Benedetti, F. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: Effect of inflammatory biomarkers at three-month follow-up. Brain Behav. Immun., 2021, 94, 138-147.
[http://dx.doi.org/10.1016/j.bbi.2021.02.021] [PMID: 33639239]
[91]
Halpin, S.J.; McIvor, C.; Whyatt, G.; Adams, A.; Harvey, O.; McLean, L.; Walshaw, C.; Kemp, S.; Corrado, J.; Singh, R.; Collins, T.; O’Connor, R.J.; Sivan, M. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: A cross-sectional evaluation. J. Med. Virol., 2021, 93(2), 1013-1022.
[http://dx.doi.org/10.1002/jmv.26368] [PMID: 32729939]
[92]
Beck, K.; Vincent, A.; Becker, C.; Keller, A.; Cam, H.; Schaefert, R.; Reinhardt, T.; Sutter, R.; Tisljar, K.; Bassetti, S.; Schuetz, P.; Hunziker, S. Prevalence and factors associated with psychological burden in COVID-19 patients and their relatives: A prospective observational cohort study. PLoS One, 2021, 16(5), e0250590.
[http://dx.doi.org/10.1371/journal.pone.0250590] [PMID: 33951085]
[93]
Fortunato, F.; Martinelli, D.; Lo Caputo, S.; Santantonio, T.; Dattoli, V.; Lopalco, P.L.; Prato, R. Sex and gender differences in COVID-19: an Italian local register-based study. BMJ Open, 2021, 11(10), e051506.
[http://dx.doi.org/10.1136/bmjopen-2021-051506] [PMID: 34620662]
[94]
Sullivan, B.N.; Fischer, T. Age-Associated neurological complications of COVID-19: a systematic review and meta-analysis. Front. Aging Neurosci., 2021, 13, 653694.
[http://dx.doi.org/10.3389/fnagi.2021.653694] [PMID: 34408638]
[95]
Jensen, A.; Castro, A.W.; Ferretti, M.T.; Martinkova, J.; Vasilevskaya, A.; Chadha, A.S. Sex and gender differences in the neurological and neuropsychiatric symptoms of long COVID: a narrative review. Ital. J. Gend.-Specific Medicine., 2022, 8(1), 18-28.
[96]
Steardo, L., Jr; Steardo, L.; Verkhratsky, A. Psychiatric face of COVID-19. Transl. Psychiatry, 2020, 10(1), 261.
[http://dx.doi.org/10.1038/s41398-020-00949-5] [PMID: 32732883]
[97]
Soloveva, N.V.; Makarova, E.V.; Kichuk, I.V. Coronavirus syndrome: COVID-19 psychotrauma. Eur. J. Transl. Myol., 2021, 30(4), 9302.
[http://dx.doi.org/10.4081/ejtm.2020.9302] [PMID: 33520144]
[98]
Efstathiou, V.; Stefanou, M.I.; Demetriou, M.; Siafakas, N.; Makris, M.; Tsivgoulis, G.; Zoumpourlis, V.; Kympouropoulos, S.; Tsoporis, J.; Spandidos, D.; Smyrnis, N.; Rizos, E. Long COVID and neuropsychiatric manifestations. (Review). Exp. Ther. Med., 2022, 23(5), 363.
[http://dx.doi.org/10.3892/etm.2022.11290] [PMID: 35493431]
[99]
Khademi, M.; Vaziri-Harami, R.; Shams, J. Prevalence of mental health problems and its associated factors among recovered COVID-19 patients during the pandemic: a single-center study. Front. Psychiatry, 2021, 12, 602244.
[http://dx.doi.org/10.3389/fpsyt.2021.602244] [PMID: 33868043]
[100]
Sykes, D.L.; Holdsworth, L.; Jawad, N.; Gunasekera, P.; Morice, A.H.; Crooks, M.G. Post-COVID-19 symptom burden: what is long-COVID and how should we manage it? Lung, 2021, 199(2), 113-119.
[http://dx.doi.org/10.1007/s00408-021-00423-z] [PMID: 33569660]
[101]
Rogers, J.P.; Chesney, E.; Oliver, D.; Pollak, T.A.; McGuire, P.; Fusar-Poli, P.; Zandi, M.S.; Lewis, G.; David, A.S. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry, 2020, 7(7), 611-627.
[http://dx.doi.org/10.1016/S2215-0366(20)30203-0] [PMID: 32437679]
[102]
Morris, S.B.; Schwartz, N.G.; Patel, P.; Abbo, L.; Beauchamps, L.; Balan, S.; Lee, E.H.; Paneth-Pollak, R.; Geevarughese, A.; Lash, M.K.; Dorsinville, M.S.; Ballen, V.; Eiras, D.P.; Newton-Cheh, C.; Smith, E.; Robinson, S.; Stogsdill, P.; Lim, S.; Fox, S.E.; Richardson, G.; Hand, J.; Oliver, N.T.; Kofman, A.; Bryant, B.; Ende, Z.; Datta, D.; Belay, E.; Godfred-Cato, S. Case series of multisystem inflammatory syndrome in adults associated with SARS-CoV-2 infection—United Kingdom and United States, March–August 2020. MMWR Morb. Mortal. Wkly. Rep., 2020, 69(40), 1450-1456.
[http://dx.doi.org/10.15585/mmwr.mm6940e1] [PMID: 33031361]
[103]
Baumeister, D.; Ciufolini, S.; Mondelli, V. Effects of psychotropic drugs on inflammation: consequence or mediator of therapeutic effects in psychiatric treatment? Psychopharmacology (Berl.), 2016, 233(9), 1575-1589.
[http://dx.doi.org/10.1007/s00213-015-4044-5] [PMID: 26268146]
[104]
Wittenberg, G.M.; Stylianou, A.; Zhang, Y.; Sun, Y.; Gupta, A.; Jagannatha, P.S.; Wang, D.; Hsu, B.; Curran, M.E.; Khan, S.; Chen, G.; Bullmore, E.T.; Drevets, W.C. Effects of immunomodulatory drugs on depressive symptoms: A mega-analysis of randomized, placebo-controlled clinical trials in inflammatory disorders. Mol. Psychiatry, 2020, 25(6), 1275-1285.
[http://dx.doi.org/10.1038/s41380-019-0471-8] [PMID: 31427751]
[105]
Brivio, E.; Oliveri, S.; Guiddi, P.; Pravettoni, G. Incidence of PTSD and generalized anxiety symptoms during the first wave of COVID-19 outbreak: an exploratory study of a large sample of the Italian population. BMC Public Health, 2021, 21(1), 1158.
[http://dx.doi.org/10.1186/s12889-021-11168-y] [PMID: 34134663]
[106]
Lahav, Y. Psychological distress related to COVID-19 – The contribution of continuous traumatic stress. J. Affect. Disord., 2020, 277, 129-137.
[http://dx.doi.org/10.1016/j.jad.2020.07.141] [PMID: 32818776]
[107]
Kira, I.A.; Alpay, E.H.; Ayna, Y.E.; Shuwiekh, H.A.; Ashby, J.S.; Turkeli, A. The effects of COVID-19 continuous traumatic stressors on mental health and cognitive functioning: A case example from Turkey. Curr. Psychol., 2022, 41(10), 7371-7382.
[PMID: 33897228]
[108]
Hill, A.R.; Spencer-Segal, J.L. Glucocorticoids and the brain after critical illness. Endocrinology, 2021, 162(3)
[http://dx.doi.org/10.1210/endocr/bqaa242] [PMID: 33508121]
[109]
Rotman-Pikielny, P.; Rouach, V.; Chen, O.; Gur, H.G.; Limor, R.; Stern, N. Serum cortisol levels in patients admitted to the department of medicine: Prognostic correlations and effects of age, infection, and comorbidity. Am. J. Med. Sci., 2006, 332(2), 61-67.
[http://dx.doi.org/10.1097/00000441-200608000-00002] [PMID: 16909051]
[110]
Tan, T.; Khoo, B.; Mills, E.G.; Phylactou, M.; Patel, B.; Eng, P.C.; Thurston, L.; Muzi, B.; Meeran, K.; Prevost, A.T.; Comninos, A.N.; Abbara, A.; Dhillo, W.S. Association between high serum total cortisol concentrations and mortality from COVID-19. Lancet Diabetes Endocrinol., 2020, 8(8), 659-660.
[http://dx.doi.org/10.1016/S2213-8587(20)30216-3] [PMID: 32563278]
[111]
Güven, M.; Gültekin, H. Could serum total cortisol level at admission predict mortality due to coronavirus disease 2019 in the intensive care unit? A prospective study. Sao Paulo Med. J., 2021, 139(4), 398-404.
[http://dx.doi.org/10.1590/1516-3180.2020.0722.r1.2302021] [PMID: 34190873]
[112]
Pereira, A.M.; Tiemensma, J.; Romijn, J.A. Neuropsychiatric disorders in Cushing’s syndrome. Neuroendocrinology, 2010, 92(Suppl. 1), 65-70.
[http://dx.doi.org/10.1159/000314317] [PMID: 20829621]
[113]
Ramezani, M.; Simani, L.; Karimialavijeh, E.; Rezaei, O.; Hajiesmaeili, M.; Pakdaman, H. The role of anxiety and cortisol in outcomes of patients with COVID-19. Basic Clin. Neurosci., 2020, 11(2), 179-184.
[http://dx.doi.org/10.32598/bcn.11.covid19.1168.2] [PMID: 32855777]
[114]
Htun, Y.M.; Thiha, K.; Aung, A.; Aung, N.M.; Oo, T.W.; Win, P.S.; Sint, N.H.; Naing, K.M.; Min, A.K.; Tun, K.M.; Hlaing, K. Assessment of depressive symptoms in patients with COVID-19 during the second wave of epidemic in Myanmar: A cross-sectional single-center study. PLoS One, 2021, 16(6), e0252189.
[http://dx.doi.org/10.1371/journal.pone.0252189] [PMID: 34086722]
[115]
Rondung, E.; Leiler, A.; Meurling, J. Bjärtå, A. Symptoms of depression and anxiety during the early phase of the covid-19 pandemic in sweden. Front. Public Health, 2021, 9, 562437.
[http://dx.doi.org/10.3389/fpubh.2021.562437] [PMID: 34150691]
[116]
Salimi, Z.; Najafi, R.; Khalesi, A.; Oskoei, R.; Moharreri, F.; Hajebi Khaniki, S.; Shahini, N.; Soltanifar, A.; Mohaddes Ardabili, H. Evaluating the Depression, Anxiety, Stress, and Predictors of Psychological Morbidity Among COVID-19 Survivors in Mashhad, Iran. Iran. J. Psychiatry. Behav. Sci., 2021, 15(2)
[http://dx.doi.org/10.5812/ijpbs.108972]
[117]
Jackson, J.C.; Pandharipande, P.P.; Girard, T.D.; Brummel, N.E.; Thompson, J.L.; Hughes, C.G.; Pun, B.T.; Vasilevskis, E.E.; Morandi, A.; Shintani, A.K.; Hopkins, R.O.; Bernard, G.R.; Dittus, R.S.; Ely, E.W. Depression, post-traumatic stress disorder, and functional disability in survivors of critical illness in the BRAIN-ICU study: a longitudinal cohort study. Lancet Respir. Med., 2014, 2(5), 369-379.
[http://dx.doi.org/10.1016/S2213-2600(14)70051-7] [PMID: 24815803]
[118]
Castro, V.M.; Gunning, F.M.; McCoy, T.H.; Perlis, R.H. Mood disorders and outcomes of COVID-19 hospitalizations. Am. J. Psychiatry, 2021, 178(6), 541-547.
[http://dx.doi.org/10.1176/appi.ajp.2020.20060842] [PMID: 33820425]
[119]
Ceban, F.; Nogo, D.; Carvalho, I.P.; Lee, Y.; Nasri, F.; Xiong, J.; Lui, L.M.W.; Subramaniapillai, M.; Gill, H.; Liu, R.N.; Joseph, P.; Teopiz, K.M.; Cao, B.; Mansur, R.B.; Lin, K.; Rosenblat, J.D.; Ho, R.C.; McIntyre, R.S. Association between mood disorders and risk of COVID-19 infection, hospitalization, and death: A systematic review and meta-analysis. JAMA Psychiatry, 2021, 78(10), 1079-1091.
[http://dx.doi.org/10.1001/jamapsychiatry.2021.1818] [PMID: 34319365]
[120]
Rosenblat, J.; McIntyre, R. Bipolar disorder and immune dysfunction: epidemiological findings, proposed pathophysiology and clinical implications. Brain Sci., 2017, 7(12), 144.
[http://dx.doi.org/10.3390/brainsci7110144] [PMID: 29084144]
[121]
Kemeny, M.E.; Schedlowski, M. Understanding the interaction between psychosocial stress and immune-related diseases: A stepwise progression. Brain Behav. Immun., 2007, 21(8), 1009-1018.
[http://dx.doi.org/10.1016/j.bbi.2007.07.010] [PMID: 17889502]
[122]
Bauer, M.E.; Teixeira, A.L. Neuroinflammation in mood disorders: role of regulatory immune cells. Neuroimmunomodulation, 2021, 28(3), 99-107.
[http://dx.doi.org/10.1159/000515594] [PMID: 33951643]
[123]
Brietzke, E.; Magee, T.; Freire, R.C.R.; Gomes, F.A.; Milev, R. Three insights on psychoneuroimmunology of mood disorders to be taken from the COVID-19 pandemic. Brain, Behavior, & Immunity - Health, 2020, 5, 100076. http://dx.doi.org/10.1016/j.bbih.2020.100076 PMID: 32322822
[124]
Mazza, M.G.; De Lorenzo, R.; Conte, C.; Poletti, S.; Vai, B.; Bollettini, I.; Melloni, E.M.T.; Furlan, R.; Ciceri, F.; Rovere-Querini, P.; Benedetti, F. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav. Immun., 2020, 89, 594-600.
[http://dx.doi.org/10.1016/j.bbi.2020.07.037] [PMID: 32738287]
[125]
Orefici, G.; Cardona, F.; Cox, C.J.; Cunningham, M.W.; Ferretti, J.J.; Stevens, D.L.; Fischetti, V.A. Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS). In: Streptococcus pyogenes: Basic Biology to Clinical Manifestations; University of Oklahoma Health Sciences Center: Oklahoma City (OK) , 2016.
[PMID: 26866234]
[126]
Murphy, T.K.; Sajid, M.W.; Goodman, W.K. Immunology of obsessive-compulsive disorder. Psychiatr. Clin. North Am., 2006, 29(2), 445-469.
[http://dx.doi.org/10.1016/j.psc.2006.02.003] [PMID: 16650717]
[127]
Gray, S.M.; Bloch, M.H. Systematic review of proinflammatory cytokines in obsessive-compulsive disorder. Curr. Psychiatry Rep., 2012, 14(3), 220-228.
[http://dx.doi.org/10.1007/s11920-012-0272-0] [PMID: 22477442]
[128]
Karagüzel, E.Ö.; Arslan, F.C.; Uysal, E.K.; Demir, S.; Aykut, D.S.; Tat, M.; Karahan, S.C. Blood levels of interleukin-1 beta, interleukin-6 and tumor necrosis factor-alpha and cognitive functions in patients with obsessive compulsive disorder. Compr. Psychiatry, 2019, 89, 61-66.
[http://dx.doi.org/10.1016/j.comppsych.2018.11.013] [PMID: 30594753]
[129]
Rao, N.P.; Venkatasubramanian, G.; Ravi, V.; Kalmady, S.; Cherian, A.; Yc, J.R. Plasma cytokine abnormalities in drug-naïve, comorbidity-free obsessive–compulsive disorder. Psychiatry Res., 2015, 229(3), 949-952.
[http://dx.doi.org/10.1016/j.psychres.2015.07.009] [PMID: 26187339]
[130]
Khosravani, V.; Aardema, F.; Samimi Ardestani, S.M.; Sharifi Bastan, F. The impact of the coronavirus pandemic on specific symptom dimensions and severity in OCD: A comparison before and during COVID-19 in the context of stress responses. J. Obsessive Compuls. Relat. Disord., 2021, 29, 100626.
[http://dx.doi.org/10.1016/j.jocrd.2021.100626] [PMID: 33520614]
[131]
Acenowr, C.P.; Coles, M.E. OCD during COVID-19: Understanding clinical and non-clinical anxiety in the community. Psychiatry Res., 2021, 300, 113910.
[http://dx.doi.org/10.1016/j.psychres.2021.113910] [PMID: 33872852]
[132]
Ji, G.; Wei, W.; Yue, K.C.; Li, H.; Shi, L.J.; Ma, J.D.; He, C.Y.; Zhou, S.S.; Zhao, Z.; Lou, T.; Cheng, J.; Yang, S.C.; Hu, X.Z. Effects of the COVID-19 pandemic on obsessive-compulsive symptoms among university students: prospective cohort survey study. J. Med. Internet Res., 2020, 22(9), e21915.
[http://dx.doi.org/10.2196/21915] [PMID: 32931444]
[133]
Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; Luo, J.; Huang, Z.; Tu, S.; Zhao, Y.; Chen, L.; Xu, D.; Li, Y.; Li, C.; Peng, L.; Li, Y.; Xie, W.; Cui, D.; Shang, L.; Fan, G.; Xu, J.; Wang, G.; Wang, Y.; Zhong, J.; Wang, C.; Wang, J.; Zhang, D.; Cao, B. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet, 2021, 397(10270), 220-232.
[http://dx.doi.org/10.1016/S0140-6736(20)32656-8] [PMID: 33428867]
[134]
Menges, D.; Ballouz, T.; Anagnostopoulos, A.; Aschmann, H.E.; Domenghino, A.; Fehr, J.S.; Puhan, M.A. Burden of post-COVID-19 syndrome and implications for healthcare service planning: A population-based cohort study. PLoS One, 2021, 16(7), e0254523.
[http://dx.doi.org/10.1371/journal.pone.0254523] [PMID: 34252157]
[135]
Islam, M.S.; Ferdous, M.Z.; Islam, U.S.; Mosaddek, A.S.M.; Potenza, M.N.; Pardhan, S. Treatment, persistent symptoms, and depression in people infected with COVID-19 in Bangladesh. Int. J. Environ. Res. Public Health, 2021, 18(4), 1453.
[http://dx.doi.org/10.3390/ijerph18041453] [PMID: 33562427]
[136]
Romero-Duarte, Á.; Rivera-Izquierdo, M.; Guerrero-Fernández de Alba, I.; Pérez-Contreras, M.; Fernández-Martínez, N.F.; Ruiz- Montero, R.; Serrano-Ortiz, Á.; González-Serna, R.O.; Salcedo- Leal, I.; Jiménez-Mejías, E.; Cárdenas-Cruz, A. Sequelae, persistent symptomatology and outcomes after COVID-19 hospitalization: the ANCOHVID multicentre 6-month follow-up study. BMC Med., 2021, 19(1), 129.
[http://dx.doi.org/10.1186/s12916-021-02003-7] [PMID: 34011359]
[137]
Zhou, M.; Cai, J.; Sun, W.; Wu, J.; Wang, Y.; Gamber, M.; Fan, L.; He, G. Do post-COVID-19 symptoms exist? A longitudinal study of COVID-19 sequelae in Wenzhou, China. Ann. Med. Psychol. (Paris), 2021, 179(9), 818-821.
[http://dx.doi.org/10.1016/j.amp.2021.03.003] [PMID: 33688094]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy