Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Perspective

Perspective on Aggregation-induced Emission (AIE) Materials for Pathogen Detection

Author(s): Chengcheng Zhou*, Yaping Zhu and Weijiang Guan*

Volume 19, Issue 2, 2023

Published on: 30 December, 2022

Page: [111 - 118] Pages: 8

DOI: 10.2174/1573411019666221114105211

Open Access Journals Promotions 2
Abstract

The rapid and accurate identification of pathogens plays a crucial role in clinical practice, which helps to prevent, control, and treat pathogenic infections at the initial stage. The current available technologies for pathogen detection appear to be inadequate in dealing with cases such as COVID-19. More importantly, the frequent emergence of drug-resistant bacteria is gradually rendering the existing therapeutic options ineffective. Efforts are urgently required to focus on the development of diagnostic systems for point-of-care (POC) detection and high-throughput pathogen identification. Since 2001, a new class of aggregation-induced emission luminogens (AIEgens) with good photostability, high sensitivity, and improved signal-to-noise ratio has emerged as powerful fluorescent tools for various biosensing and cell imaging. Based on the unique fluorescence of AIEgens that becomes stronger upon aggregation, naked-eye detection in turn-on mode has gained a speedy development. A timely overview can not only provide a summary of the advances and challenges of AIEgens in pathogen detection but also offer systematic ideas for future developments. There are also expectations for in-depth interdisciplinary research in the field of analytical chemistry and microbiology.

Keywords: Pathogen, aggregation-induced emission, bacteria, point-of-care (POC), high-throughput, fluorescence.

[1]
Urdea, M.; Penny, L.A.; Olmsted, S.S.; Giovanni, M.Y.; Kaspar, P.; Shepherd, A.; Wilson, P.; Dahl, C.A.; Buchsbaum, S.; Moeller, G.; Hay Burgess, D.C. Requirements for high impact diagnostics in the developing world. Nature, 2006, 444(Suppl. 1), 73-79.
[http://dx.doi.org/10.1038/nature05448] [PMID: 17159896]
[2]
Blair, J.M.A.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J.V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol., 2015, 13(1), 42-51.
[http://dx.doi.org/10.1038/nrmicro3380] [PMID: 25435309]
[3]
Xu, Z.; Qiu, Z.; Liu, Q.; Huang, Y.; Li, D.; Shen, X.; Fan, K.; Xi, J.; Gu, Y.; Tang, Y.; Jiang, J.; Xu, J.; He, J.; Gao, X.; Liu, Y.; Koo, H.; Yan, X.; Gao, L. Converting organosulfur compounds to inorganic polysulfides against resistant bacterial infections. Nat. Commun., 2018, 9(1), 3713.
[http://dx.doi.org/10.1038/s41467-018-06164-7] [PMID: 30213949]
[4]
Shen, S.; Huang, Y.; Yuan, A.; Lv, F.; Liu, L.; Wang, S. Electrochemical regulation of antibacterial activity using ferrocene-containing antibiotics. CCS Chemistry, 2021, 3(11), 129-135.
[http://dx.doi.org/10.31635/ccschem.021.202000570]
[5]
Didelot, X.; Bowden, R.; Wilson, D.J.; Peto, T.E.A.; Crook, D.W. Transforming clinical microbiology with bacterial genome sequencing. Nat. Rev. Genet., 2012, 13(9), 601-612.
[http://dx.doi.org/10.1038/nrg3226] [PMID: 22868263]
[6]
Yuan, H.; Liu, Z.; Liu, L.; Lv, F.; Wang, Y.; Wang, S. Cationic conjugated polymers for discrimination of microbial pathogens. Adv. Mater., 2014, 26(25), 4333-4338.
[http://dx.doi.org/10.1002/adma.201400636] [PMID: 24737340]
[7]
Lu, H.; Huang, Y.; Lv, F.; Liu, L.; Ma, Y.; Wang, S. Living bacteria-mediated aerobic photoinduced radical polymerization for in situ bacterial encapsulation and differentiation. CCS Chemistry, 2021, 3(7), 1296-1305.
[http://dx.doi.org/10.31635/ccschem.021.202100957]
[8]
Bai, H.; He, W.; Chau, J.H.C.; Zheng, Z.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. AIEgens for microbial detection and antimicrobial therapy. Biomaterials, 2021, 268, 120598.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120598] [PMID: 33321291]
[9]
Lazcka, O.; Campo, F.J.D.; Muñoz, F.X. Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron., 2007, 22(7), 1205-1217.
[http://dx.doi.org/10.1016/j.bios.2006.06.036] [PMID: 16934970]
[10]
Dong, G.P.; Guo, X.J.; Sun, Y.A.; Zhang, Z.; Du, L.P.; Li, M.Y. Diagnostic techniques for COVID-19: A mini-review of early diagnostic methods. J. Anal. Test., 2021, 5(4), 314-326.
[http://dx.doi.org/10.1007/s41664-021-00198-5] [PMID: 34631199]
[11]
Bisht, A.; Mishra, A.; Bisht, H.; Tripathi, R.M. Nanomaterial based biosensors for detection of viruses including SARS-CoV-2: A review. J. Anal. Test., 2021, 5(4), 327-340.
[http://dx.doi.org/10.1007/s41664-021-00200-0] [PMID: 34777896]
[12]
Kollef, M.H. Optimizing antibiotic therapy in the intensive care unit setting. Crit. Care, 2001, 5(4), 189-195.
[http://dx.doi.org/10.1186/cc1022] [PMID: 11511331]
[13]
Wu, T.F.; Chen, Y.C.; Wang, W.C.; Fang, Y.C.; Fukuoka, S.; Pride, D.T.; Pak, O.S. A rapid and low-cost pathogen detection platform by using a molecular agglutination assay. ACS Cent. Sci., 2018, 4(11), 1485-1494.
[http://dx.doi.org/10.1021/acscentsci.8b00447] [PMID: 30555900]
[14]
Gong, M.M.; MacDonald, B.D.; Nguyen, T.V.; Van Nguyen, K.; Sinton, D. Lab-in-a-pen: A diagnostics format familiar to patients for low-resource settings. Lab Chip, 2014, 14(5), 957-963.
[http://dx.doi.org/10.1039/c3lc51185e] [PMID: 24406870]
[15]
Shanmugakani, R.K.; Srinivasan, B.; Glesby, M.J.; Westblade, L.F.; Cárdenas, W.B.; Raj, T.; Erickson, D.; Mehta, S. Current state of the art in rapid diagnostics for antimicrobial resistance. Lab Chip, 2020, 20(15), 2607-2625.
[http://dx.doi.org/10.1039/D0LC00034E] [PMID: 32644060]
[16]
Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev., 2015, 115(21), 11718-11940.
[http://dx.doi.org/10.1021/acs.chemrev.5b00263] [PMID: 26492387]
[17]
Luo, J.; Xie, Z.; Lam, J.W.Y.; Cheng, L.; Tang, B.Z.; Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu, Y.; Zhu, D. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. (Camb.), 2001, (18), 1740-1741.
[http://dx.doi.org/10.1039/b105159h] [PMID: 12240292]
[18]
Wu, J.; Kwon, B.; Liu, W.; Anslyn, E.V.; Wang, P.; Kim, J.S. Chromogenic/fluorogenic ensemble chemosensing systems. Chem. Rev., 2015, 115(15), 7893-7943.
[http://dx.doi.org/10.1021/cr500553d] [PMID: 25965103]
[19]
Kwon, H.Y.; Liu, X.; Choi, E.G.; Lee, J.Y.; Choi, S.Y.; Kim, J.Y.; Wang, L.; Park, S.J.; Kim, B.; Lee, Y.A.; Kim, J.J.; Kang, N.Y.; Chang, Y.T. Development of a universal fluorescent probe for gram‐positive bacteria. Angew. Chem. Int. Ed., 2019, 58(25), 8426-8431.
[http://dx.doi.org/10.1002/anie.201902537] [PMID: 31025486]
[20]
Hu, F.; Qi, G. Kenry; Mao, D.; Zhou, S.; Wu, M.; Wu, W.; Liu, B. Visualization and in situ ablation of intracellular bacterial pathogens through metabolic labeling. Angew. Chem. Int. Ed., 2020, 59(24), 9288-9292.
[http://dx.doi.org/10.1002/anie.201910187] [PMID: 31449353]
[21]
Zhou, C.; Ding, Z.; Guo, Q.; Jiang, M. Visualization of antimicrobial-induced bacterial membrane disruption with a bicolor AIEgen. Chemosensors (Basel), 2022, 10(7), 284.
[http://dx.doi.org/10.3390/chemosensors10070284]
[22]
Kang, M.; Zhang, Z.; Song, N.; Li, M.; Sun, P.; Chen, X.; Wang, D.; Tang, B.Z. Aggregation‐enhanced theranostics: AIE sparkles in biomedical field. Aggregate, 2020, 1(1), 80-106.
[http://dx.doi.org/10.1002/agt2.7]
[23]
Wang, N.; Yao, H.; Tao, Q.; Sun, J.; Ma, H.; Wang, Y.; Zhou, C.; Fan, H.; Shao, H.; Qin, A.; Su, D.; Wang, C.; Chong, H. TPE based aggregation induced emission fluorescent sensors for viscosity of liquid and mechanical properties of hydrogel. Chin. Chem. Lett., 2022, 33(1), 252-256.
[http://dx.doi.org/10.1016/j.cclet.2021.06.092]
[24]
Park, J.; Kim, T.I.; Cho, S.; Pandith, A.; Kim, Y. Surfactant-induced excimer emission: A versatile platform for the design of fluorogenic probes. Biomaterials, 2022, 289, 121749.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121749] [PMID: 36055174]
[25]
Pandith, A.; Kim, H.Y.; Shin, T.; Seo, Y.J. Unprecedented green-emissive boranyl-hydrazone supramolecular assemblies and their in vitro diagnostic applications. J. Photochem. Photobiol. B, 2019, 197, 111553.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111553] [PMID: 31326845]
[26]
He, X.; Xiong, L.H.; Zhao, Z.; Wang, Z.; Luo, L.; Lam, J.W.Y.; Kwok, R.T.K.; Tang, B.Z. AIE-based theranostic systems for detection and killing of pathogens. Theranostics, 2019, 9(11), 3223-3248.
[http://dx.doi.org/10.7150/thno.31844] [PMID: 31244951]
[27]
Zhu, C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission: A trailblazing journey to the field of biomedicine. ACS Appl. Bio Mater., 2018, 1(6), 1768-1786.
[http://dx.doi.org/10.1021/acsabm.8b00600] [PMID: 34996278]
[28]
Zhao, E.; Hong, Y.; Chen, S.; Leung, C.W.T.; Chan, C.Y.K.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Highly fluorescent and photostable probe for long-term bacterial viability assay based on aggregation-induced emission. Adv. Healthc. Mater., 2014, 3(1), 88-96.
[http://dx.doi.org/10.1002/adhm.201200475] [PMID: 23814037]
[29]
Hu, R.; Zhou, F.; Zhou, T.; Shen, J.; Wang, Z.; Zhao, Z.; Qin, A.; Tang, B.Z. Specific discrimination of gram-positive bacteria and direct visualization of its infection towards mammalian cells by a DPAN-based AIEgen. Biomaterials, 2018, 187, 47-54.
[http://dx.doi.org/10.1016/j.biomaterials.2018.09.019] [PMID: 30292941]
[30]
Zhao, E.; Chen, Y.; Chen, S.; Deng, H.; Gui, C.; Leung, C.W.T.; Hong, Y.; Lam, J.W.Y.; Tang, B.Z. A luminogen with aggregation-induced emission characteristics for wash-free bacterial imaging, high-throughput antibiotics screening and bacterial susceptibility evaluation. Adv. Mater., 2015, 27(33), 4931-4937.
[http://dx.doi.org/10.1002/adma.201501972] [PMID: 26179636]
[31]
Song, Q.; Sun, X.; Dai, Z.; Gao, Y.; Gong, X.; Zhou, B.; Wu, J.; Wen, W. Point-of-care testing detection methods for COVID-19. Lab Chip, 2021, 21(9), 1634-1660.
[http://dx.doi.org/10.1039/D0LC01156H] [PMID: 33705507]
[32]
Roy, S.; Arshad, F.; Eissa, S.; Safavieh, M.; Alattas, S.G.; Ahmed, M.U.; Zourob, M. Recent developments towards portable point-of-care diagnostic devices for pathogen detection. Sens. Diagn., 2022, 1(1), 87-105.
[http://dx.doi.org/10.1039/D1SD00017A]
[33]
Granger, J.H.; Schlotter, N.E.; Crawford, A.C.; Porter, M.D. Prospects for point-of-care pathogen diagnostics using surface-enhanced Raman scattering (SERS). Chem. Soc. Rev., 2016, 45(14), 3865-3882.
[http://dx.doi.org/10.1039/C5CS00828J] [PMID: 27048939]
[34]
Umapathi, R.; Ghoreishian, S.M.; Sonwal, S.; Rani, G.M.; Huh, Y.S. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord. Chem. Rev., 2022, 453, 214305.
[http://dx.doi.org/10.1016/j.ccr.2021.214305]
[35]
Umapathi, R.; Sonwal, S.; Lee, M.J.; Mohana Rani, G.; Lee, E.S.; Jeon, T.J.; Kang, S.M.; Oh, M.H.; Huh, Y.S. Colorimetric based on-site sensing strategies for the rapid detection of pesticides in agricultural foods: New horizons, perspectives, and challenges. Coord. Chem. Rev., 2021, 446, 214061.
[http://dx.doi.org/10.1016/j.ccr.2021.214061]
[36]
Umapathi, R.; Park, B.; Sonwal, S.; Rani, G.M.; Cho, Y.; Huh, Y.S. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends Food Sci. Technol., 2022, 119, 69-89.
[http://dx.doi.org/10.1016/j.tifs.2021.11.018]
[37]
Hou, Y.; Lv, C.C.; Guo, Y.L.; Ma, X.H.; Liu, W.; Jin, Y.; Li, B.X.; Yang, M.; Yao, S.Y. Recent advances and applications in paper-based devices for point-of-care testing. J. Anal. Test., 2022, 6(3), 247-273.
[http://dx.doi.org/10.1007/s41664-021-00204-w] [PMID: 35039787]
[38]
Xiong, L.H.; Cui, R.; Zhang, Z.L.; Yu, X.; Xie, Z.; Shi, Y.B.; Pang, D.W. Uniform fluorescent nanobioprobes for pathogen detection. ACS Nano, 2014, 8(5), 5116-5124.
[http://dx.doi.org/10.1021/nn501174g] [PMID: 24779675]
[39]
Zhou, C.; Jiang, M.; Du, J.; Bai, H.; Shan, G.; Kwok, R.T.K.; Chau, J.H.C.; Zhang, J.; Lam, J.W.Y.; Huang, P.; Tang, B.Z. One stone, three birds: One AIEgen with three colors for fast differentiation of three pathogens. Chem. Sci. (Camb.), 2020, 11(18), 4730-4740.
[http://dx.doi.org/10.1039/D0SC00256A] [PMID: 34122928]
[40]
Xiong, L.H.; He, X.; Zhao, Z.; Kwok, R.T.K.; Xiong, Y.; Gao, P.F.; Yang, F.; Huang, Y.; Sung, H.H.Y.; Williams, I.D.; Lam, J.W.Y.; Cheng, J.; Zhang, R.; Tang, B.Z. Ultrasensitive virion immunoassay platform with dual-modality based on a multifunctional aggregation-induced emission luminogen. ACS Nano, 2018, 12(9), 9549-9557.
[http://dx.doi.org/10.1021/acsnano.8b05270] [PMID: 30148962]
[41]
Feng, G.; Yuan, Y.; Fang, H.; Zhang, R.; Xing, B.; Zhang, G.; Zhang, D.; Liu, B. A light-up probe with aggregation-induced emission characteristics (AIE) for selective imaging, naked-eye detection and photodynamic killing of Gram-positive bacteria. Chem. Commun. (Camb.), 2015, 51(62), 12490-12493.
[http://dx.doi.org/10.1039/C5CC03807C] [PMID: 26149530]
[42]
Walsh, C. Deconstructing vancomycin. Science, 1999, 284(5413), 442-443.
[http://dx.doi.org/10.1126/science.284.5413.442] [PMID: 10232990]
[43]
Zhu, C.; Liu, L.; Yang, Q.; Lv, F.; Wang, S. Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem. Rev., 2012, 112(8), 4687-4735.
[http://dx.doi.org/10.1021/cr200263w] [PMID: 22670807]
[44]
Bai, H.; Lu, H.; Fu, X.; Zhang, E.; Lv, F.; Liu, L.; Wang, S. Supramolecular strategy based on conjugated polymers for discrimination of virus and pathogens. Biomacromolecules, 2018, 19(6), 2117-2122.
[http://dx.doi.org/10.1021/acs.biomac.8b00336] [PMID: 29634899]
[45]
Chen, W.; Li, Q.; Zheng, W.; Hu, F.; Zhang, G.; Wang, Z.; Zhang, D.; Jiang, X. Identification of bacteria in water by a fluorescent array. Angew. Chem. Int. Ed., 2014, 53(50), 13734-13739.
[http://dx.doi.org/10.1002/anie.201407606] [PMID: 25313526]
[46]
Liu, G.; Tian, S.; Li, C.; Xing, G.; Zhou, L. Aggregation-induced-emission materials with different electric charges as an artificial tongue: Design, construction, and assembly with various pathogenic bacteria for effective bacterial imaging and discrimination. ACS Appl. Mater. Interfaces, 2017, 9(34), 28331-28338.
[http://dx.doi.org/10.1021/acsami.7b09848] [PMID: 28809473]
[47]
Zhou, C.; Xu, W.; Zhang, P.; Jiang, M.; Chen, Y.; Kwok, R.T.K.; Lee, M.M.S.; Shan, G.; Qi, R.; Zhou, X.; Lam, J.W.Y.; Wang, S.; Tang, B.Z. Engineering sensor arrays using aggregation-induced emission luminogens for pathogen identification. Adv. Funct. Mater., 2019, 29(4), 1805986.
[http://dx.doi.org/10.1002/adfm.201805986]
[48]
Shen, J.; Hu, R.; Zhou, T.; Wang, Z.; Zhang, Y.; Li, S.; Gui, C.; Jiang, M.; Qin, A.; Tang, B.Z. Fluorescent sensor array for highly efficient microbial lysate identification through competitive interactions. ACS Sens., 2018, 3(11), 2218-2222.
[http://dx.doi.org/10.1021/acssensors.8b00650] [PMID: 30350949]
[49]
Ajish, J.K.; Ajish Kumar, K.S.; Ruhela, A.; Subramanian, M.; Ballal, A.D.; Kumar, M. AIE based fluorescent self assembled glycoacrylamides for E.coli detection and cell imaging. Sens. Actuators B Chem., 2018, 255, 1726-1734.
[http://dx.doi.org/10.1016/j.snb.2017.08.188]
[50]
Hang, Y.; He, X.P.; Yang, L.; Hua, J. Probing sugar–lectin recognitions in the near-infrared region using glyco-diketopyrrolopyrrole with aggregation-induced-emission. Biosens. Bioelectron., 2015, 65, 420-426.
[http://dx.doi.org/10.1016/j.bios.2014.10.058] [PMID: 25461189]
[51]
Dasnur Nanjappa, M.; Pandith, A.; Sankaran, S.; Dorairaj, D.P.; Reddy, A.A.; Ramesh, H.P.B. Recent advancements in developments of novel fluorescent probes: In cellulo recognitions of alkaline phosphatases. Symmetry (Basel), 2022, 14(8), 1634.
[http://dx.doi.org/10.3390/sym14081634]
[52]
Liu, G.; Wang, B.; Zhang, Y.; Xing, G.; Yang, X.; Wang, S. A tetravalent sialic acid-coated tetraphenylethene luminogen with aggregation-induced emission characteristics: Design, synthesis and application for sialidase activity assay, high-throughput screening of sialidase inhibitors and diagnosis of bacterial vaginosis. Chem. Commun. (Camb.), 2018, 54(76), 10691-10694.
[http://dx.doi.org/10.1039/C8CC06300A] [PMID: 30187046]

© 2024 Bentham Science Publishers | Privacy Policy