Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Linking Diabetes to Alzheimer’s Disease: Potential Roles of Glucose Metabolism and Alpha-Glucosidase

Author(s): Ai Sze Wee, Thao Dinh Nhu, Kooi Yeong Khaw*, Kim San Tang and Keng Yoon Yeong*

Volume 21, Issue 10, 2023

Published on: 14 November, 2022

Page: [2036 - 2048] Pages: 13

DOI: 10.2174/1570159X21999221111102343

Price: $65

Abstract

Alzheimer’s disease (AD) and type 2 diabetes mellitus (DM) are more prevalent with ageing and cause a substantial global socio-economic burden. The biology of these two conditions is well elaborated, but whether AD and type 2 DM arise from coincidental roots in ageing or are linked by pathophysiological mechanisms remains unclear. Research findings involving animal models have identified mechanisms shared by both AD and type 2 DM. Deposition of β-amyloid peptides and formation of intracellular neurofibrillary tangles are pathological hallmarks of AD. Type 2 DM, on the other hand, is a metabolic disorder characterised by hyperglycaemia and insulin resistance. Several studies show that improving type 2 DM can delay or prevent the development of AD, and hence, prevention and control of type 2 DM may reduce the risk of AD later in life. Alpha-glucosidase is an enzyme that is commonly associated with hyperglycaemia in type 2 DM. However, it is uncertain if this enzyme may play a role in the progression of AD. This review explores the experimental evidence that depicts the relationship between dysregulation of glucose metabolism and AD. We also delineate the links between alpha-glucosidase and AD and the potential role of alpha-glucosidase inhibitors in treating AD.

Keywords: Alpha-glucosidase, Alzheimer’s disease, amyloid beta-peptides, apolipoprotein E, diabetes mellitus, hyperglycaemia, tau proteins.

Graphical Abstract
[1]
Wong, W. Economic burden of Alzheimer disease and managed care considerations. Am. J. Manag. Care, 2020, 26(8), S177-S183.
[PMID: 32840331]
[2]
Dumurgier, J.; Sabia, S. Epidemiology of Alzheimer’s disease: latest trends. Rev. Prat., 2020, 70(2), 149-151.
[PMID: 32877124]
[3]
Long, J.M.; Holtzman, D.M. Alzheimer disease: An update on pathobiology and treatment strategies. Cell, 2019, 179(2), 312-339.
[http://dx.doi.org/10.1016/j.cell.2019.09.001] [PMID: 31564456]
[4]
Feringa, F.M.; van der Kant, R. Cholesterol and Alzheimer’s disease; from risk genes to pathological effects. Front. Aging Neurosci., 2021, 13, 690372-690372.
[http://dx.doi.org/10.3389/fnagi.2021.690372] [PMID: 34248607]
[5]
Silva, M.V.F.; Loures, C.M.G.; Alves, L.C.V.; de Souza, L.C.; Borges, K.B.G.; Carvalho, M.G. Alzheimer’s disease: risk factors and potentially protective measures. J. Biomed. Sci., 2019, 26(1), 33.
[http://dx.doi.org/10.1186/s12929-019-0524-y] [PMID: 31072403]
[6]
Kim, J.; Woo, S.Y.; Kim, S.; Jang, H.; Kim, J.; Kim, J.; Kang, S.H.; Na, D.L.; Chin, J.; Apostolova, L.G.; Seo, S.W.; Kim, H.J. Differential effects of risk factors on the cognitive trajectory of early- and late-onset Alzheimer’s disease. Alzheimers Res. Ther., 2021, 13(1), 113.
[http://dx.doi.org/10.1186/s13195-021-00857-w] [PMID: 34127075]
[7]
Luchsinger, J.A.; Cheng, D.; Tang, M.X.; Schupf, N.; Mayeux, R. Central obesity in the elderly is related to late-onset Alzheimer disease. Alzheimer Dis. Assoc. Disord., 2012, 26(2), 101-105.
[http://dx.doi.org/10.1097/WAD.0b013e318222f0d4] [PMID: 21666429]
[8]
Xu, W.; Qiu, C.; Winblad, B.; Fratiglioni, L. The effect of borderline diabetes on the risk of dementia and Alzheimer’s disease. Diabetes, 2007, 56(1), 211-216.
[http://dx.doi.org/10.2337/db06-0879] [PMID: 17192484]
[9]
Faqih, N.T.; Ashoor, A.F.; Alshaikh, S.A.; Maglan, A.F.; Jastaniah, N. Association of Alzheimer’s disease and insulin resistance in King Abdulaziz Medical City, Jeddah. Cureus, 2021, 13(11), e19811.
[http://dx.doi.org/10.7759/cureus.19811] [PMID: 34956794]
[10]
Thomas, K.R.; Bangen, K.J.; Weigand, A.J.; Edmonds, E.C.; Sundermann, E.; Wong, C.G.; Eppig, J.; Werhane, M.L.; Delano-Wood, L.; Bondi, M.W. Type 2 diabetes interacts with Alzheimer disease risk factors to predict functional decline. Alzheimer Dis. Assoc. Disord., 2020, 34(1), 10-17.
[http://dx.doi.org/10.1097/WAD.0000000000000332] [PMID: 31305320]
[11]
Liu, L.; Volpe, S.L.; Ross, J.A.; Grimm, J.A.; Van Bockstaele, E.J.; Eisen, H.J. Dietary sugar intake and risk of Alzheimer’s disease in older women. Nutr. Neurosci., 2021, 30, 1-12.
[http://dx.doi.org/10.1080/1028415X.2021.1959099] [PMID: 34328409]
[12]
Ha, J.; Choi, D.W.; Kim, K.J.; Cho, S.Y.; Kim, H.; Kim, K.Y.; Koh, Y.; Nam, C.M.; Kim, E. Association of metformin use with Alzheimer’s disease in patients with newly diagnosed type 2 diabetes: a population-based nested case–control study. Sci. Rep., 2021, 11(1), 24069.
[http://dx.doi.org/10.1038/s41598-021-03406-5] [PMID: 34912022]
[13]
Huang, C.C.; Chung, C.M.; Leu, H.B.; Lin, L.Y.; Chiu, C.C.; Hsu, C.Y.; Chiang, C.H.; Huang, P.H.; Chen, T.J.; Lin, S.J.; Chen, J.W.; Chan, W.L. Diabetes mellitus and the risk of Alzheimer’s disease: a nationwide population-based study. PLoS One, 2014, 9(1), e87095.
[http://dx.doi.org/10.1371/journal.pone.0087095] [PMID: 24489845]
[14]
Barbiellini Amidei, C.; Fayosse, A.; Dumurgier, J.; Machado-Fragua, M.D.; Tabak, A.G.; van Sloten, T.; Kivimäki, M.; Dugravot, A.; Sabia, S.; Singh-Manoux, A. Association between age at diabetes onset and subsequent risk of dementia. JAMA, 2021, 325(16), 1640-1649.
[http://dx.doi.org/10.1001/jama.2021.4001] [PMID: 33904867]
[15]
Kirvalidze, M.; Hodkinson, A.; Storman, D.; Fairchild, T.J.; Bała, M.M.; Beridze, G.; Zuriaga, A.; Brudasca, N.I.; Brini, S. The role of glucose in cognition, risk of dementia, and related biomarkers in individuals without type 2 diabetes mellitus or the metabolic syndrome: A systematic review of observational studies. Neurosci. Biobehav. Rev., 2022, 135, 104551.
[http://dx.doi.org/10.1016/j.neubiorev.2022.104551] [PMID: 35104494]
[16]
Dove, A.; Shang, Y.; Xu, W.; Grande, G.; Laukka, E.J.; Fratiglioni, L.; Marseglia, A. The impact of diabetes on cognitive impairment and its progression to dementia. Alzheimers Dement., 2021, 17(11), 1769-1778.
[http://dx.doi.org/10.1002/alz.12482] [PMID: 34636485]
[17]
Morris, J.K.; Vidoni, E.D.; Honea, R.A.; Burns, J.M. Impaired glycemia increases disease progression in mild cognitive impairment. Neurobiol. Aging, 2014, 35(3), 585-589.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.09.033] [PMID: 24411018]
[18]
Kandimalla, R.; Thirumala, V.; Reddy, P.H. Is Alzheimer’s disease a Type 3 Diabetes? A critical appraisal. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(5), 1078-1089.
[http://dx.doi.org/10.1016/j.bbadis.2016.08.018] [PMID: 27567931]
[19]
Zhang, Y.; Huang, N.; Yan, F.; Jin, H.; Zhou, S.; Shi, J.; Jin, F. Diabetes mellitus and Alzheimer’s disease: GSK-3β as a potential link. Behav. Brain Res., 2018, 339, 57-65.
[http://dx.doi.org/10.1016/j.bbr.2017.11.015] [PMID: 29158110]
[20]
Tumminia, A.; Vinciguerra, F.; Parisi, M.; Frittitta, L. Type 2 diabetes mellitus and Alzheimer’s disease: Role of insulin signalling and therapeutic implications. Int. J. Mol. Sci., 2018, 19(11), 3306.
[http://dx.doi.org/10.3390/ijms19113306] [PMID: 30355995]
[21]
Burillo, J.; Marqués, P.; Jiménez, B.; González-Blanco, C.; Benito, M.; Guillén, C. Insulin resistance and diabetes mellitus in Alzheimer’s disease. Cells, 2021, 10(5), 1236.
[http://dx.doi.org/10.3390/cells10051236] [PMID: 34069890]
[22]
Cai, X.; Han, X.; Luo, Y.; Ji, L. Comparisons of the efficacy of alpha glucosidase inhibitors on type 2 diabetes patients between Asian and Caucasian. PLoS One, 2013, 8(11), e79421.
[http://dx.doi.org/10.1371/journal.pone.0079421] [PMID: 24236131]
[23]
Dahlén, A.D.; Dashi, G.; Maslov, I.; Attwood, M.M.; Jonsson, J.; Trukhan, V.; Schiöth, H.B. Trends in antidiabetic drug discovery: FDA approved drugs, new drugs in clinical trials and global sales. Front. Pharmacol., 2022, 12, 807548.
[http://dx.doi.org/10.3389/fphar.2021.807548] [PMID: 35126141]
[24]
Gao, X.; Cai, X.; Yang, W.; Chen, Y.; Han, X.; Ji, L. Meta-analysis and critical review on the efficacy and safety of alpha-glucosidase inhibitors in Asian and non-Asian populations. J. Diabetes Investig., 2018, 9(2), 321-331.
[http://dx.doi.org/10.1111/jdi.12711] [PMID: 28685995]
[25]
Zhang, J.P.; Wang, N.; Xing, X.Y.; Yang, Z.J.; Wang, X.; Yang, W.Y. Efficacy of acarbose and metformin in newly diagnosed type 2 diabetes patients stratified by HbA1c levels. J. Diabetes, 2016, 8(4), 559-567.
[http://dx.doi.org/10.1111/1753-0407.12337] [PMID: 26331290]
[26]
Kong, Y.; Wang, F.; Wang, J.; Liu, C.; Zhou, Y.; Xu, Z.; Zhang, C.; Sun, B.; Guan, Y. Pathological mechanisms linking diabetes mellitus and Alzheimer’s disease: the Receptor for Advanced Glycation End Products (RAGE). Front. Aging Neurosci., 2020, 12, 217.
[http://dx.doi.org/10.3389/fnagi.2020.00217] [PMID: 32774301]
[27]
Ko, S.Y.; Ko, H.A.; Chu, K.H.; Shieh, T.M.; Chi, T.C.; Chen, H.I.; Chang, W.C.; Chang, S.S. The possible mechanism of advanced glycation end products (AGEs) for Alzheimer’s disease. PLoS One, 2015, 10(11), e0143345.
[http://dx.doi.org/10.1371/journal.pone.0143345] [PMID: 26587989]
[28]
Sato, T.; Shimogaito, N.; Wu, X.; Kikuchi, S.; Yamagishi, S.; Takeuchi, M. Toxic advanced glycation end products (TAGE) theory in Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen., 2006, 21(3), 197-208.
[http://dx.doi.org/10.1177/1533317506289277] [PMID: 16869341]
[29]
Yang, Y.; Wu, Y.; Zhang, S.; Song, W. High glucose promotes Aβ production by inhibiting APP degradation. PLoS One, 2013, 8(7), e69824.
[http://dx.doi.org/10.1371/journal.pone.0069824] [PMID: 23894546]
[30]
Sajan, M.; Hansen, B.; Ivey, R., III; Sajan, J.; Ari, C.; Song, S.; Braun, U.; Leitges, M.; Farese-Higgs, M.; Farese, R.V. Brain insulin signaling is increased in insulin-resistant states and decreases in FOXOs and PGC-1α and increases in Aβ1-40/42 and phospho-tau may abet Alzheimer development. Diabetes, 2016, 65(7), 1892-1903.
[http://dx.doi.org/10.2337/db15-1428] [PMID: 26895791]
[31]
Currais, A.; Prior, M.; Lo, D.; Jolivalt, C.; Schubert, D.; Maher, P. Diabetes exacerbates amyloid and neurovascular pathology in aging-accelerated mice. Aging Cell, 2012, 11(6), 1017-1026.
[http://dx.doi.org/10.1111/acel.12002] [PMID: 22938075]
[32]
Jolivalt, C.G.; Hurford, R.; Lee, C.A.; Dumaop, W.; Rockenstein, E.; Masliah, E. Type 1 diabetes exaggerates features of Alzheimer’s disease in APP transgenic mice. Exp. Neurol., 2010, 223(2), 422-431.
[http://dx.doi.org/10.1016/j.expneurol.2009.11.005] [PMID: 19931251]
[33]
Lee, H.J.; Seo, H.I.; Cha, H.Y.; Yang, Y.J.; Kwon, S.H.; Yang, S.J. Diabetes and Alzheimer’s disease: Mechanisms and nutritional aspects. Clin. Nutr. Res., 2018, 7(4), 229-240.
[http://dx.doi.org/10.7762/cnr.2018.7.4.229] [PMID: 30406052]
[34]
Devi, L.; Alldred, M.J.; Ginsberg, S.D.; Ohno, M. Mechanisms underlying insulin deficiency-induced acceleration of β-amyloidosis in a mouse model of Alzheimer’s disease. PLoS One, 2012, 7(3), e32792.
[http://dx.doi.org/10.1371/journal.pone.0032792] [PMID: 22403710]
[35]
Wang, J.Q.; Yin, J.; Song, Y.F.; Zhang, L.; Ren, Y.X.; Wang, D.G.; Gao, L.P.; Jing, Y.H. Brain aging and AD-like pathology in streptozotocin-induced diabetic rats. J. Diabetes Res., 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/796840] [PMID: 25197672]
[36]
Kurochkin, I.V. Insulin-degrading enzyme: embarking on amyloid destruction. Trends Biochem. Sci., 2001, 26(7), 421-425.
[http://dx.doi.org/10.1016/S0968-0004(01)01876-X] [PMID: 11440853]
[37]
Farris, W.; Mansourian, S.; Chang, Y.; Lindsley, L.; Eckman, E.A.; Frosch, M.P.; Eckman, C.B.; Tanzi, R.E.; Selkoe, D.J.; Guénette, S. Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc. Natl. Acad. Sci. USA, 2003, 100(7), 4162-4167.
[http://dx.doi.org/10.1073/pnas.0230450100] [PMID: 12634421]
[38]
Azam, M.S.; Wahiduzzaman, M.; Reyad-ul-Ferdous, M.; Islam, M.N.; Roy, M. Inhibition of insulin degrading enzyme to control diabetes mellitus and its applications on some other chronic disease: a critical review. Pharm. Res., 2022, 39(4), 611-629.
[http://dx.doi.org/10.1007/s11095-022-03237-7] [PMID: 35378698]
[39]
Qiu, W.Q.; Walsh, D.M.; Ye, Z.; Vekrellis, K.; Zhang, J.; Podlisny, M.B.; Rosner, M.R.; Safavi, A.; Hersh, L.B.; Selkoe, D.J. Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J. Biol. Chem., 1998, 273(49), 32730-32738.
[http://dx.doi.org/10.1074/jbc.273.49.32730] [PMID: 9830016]
[40]
Vekrellis, K.; Ye, Z.; Qiu, W.Q.; Walsh, D.; Hartley, D.; Chesneau, V.; Rosner, M.R.; Selkoe, D.J. Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme. J. Neurosci., 2000, 20(5), 1657-1665.
[http://dx.doi.org/10.1523/JNEUROSCI.20-05-01657.2000] [PMID: 10684867]
[41]
Gasparini, L.; Gouras, G.K.; Wang, R.; Gross, R.S.; Beal, M.F.; Greengard, P.; Xu, H. Stimulation of β-amyloid precursor protein trafficking by insulin reduces intraneuronal β-amyloid and requires mitogen-activated protein kinase signaling. J. Neurosci., 2001, 21(8), 2561-2570.
[http://dx.doi.org/10.1523/JNEUROSCI.21-08-02561.2001] [PMID: 11306609]
[42]
Mullins, R.J.; Diehl, T.C.; Chia, C.W.; Kapogiannis, D. Insulin resistance as a link between amyloid-beta and tau pathologies in Alzheimer’s disease. Front. Aging Neurosci., 2017, 9, 118.
[http://dx.doi.org/10.3389/fnagi.2017.00118] [PMID: 28515688]
[43]
Kavanagh, K.; Day, S.M.; Pait, M.C.; Mortiz, W.R.; Newgard, C.B.; Ilkayeva, O.; Mcclain, D.A.; Macauley, S.L. Type-2-diabetes alters CSF but not plasma metabolomic and AD risk profiles in vervet monkeys. Front. Neurosci., 2019, 13, 843.
[http://dx.doi.org/10.3389/fnins.2019.00843] [PMID: 31555072]
[44]
Macauley, S.L.; Stanley, M.; Caesar, E.E.; Yamada, S.A.; Raichle, M.E.; Perez, R.; Mahan, T.E.; Sutphen, C.L.; Holtzman, D.M. Hyperglycemia modulates extracellular amyloid-β concentrations and neuronal activity in vivo. J. Clin. Invest., 2015, 125(6), 2463-2467.
[http://dx.doi.org/10.1172/JCI79742] [PMID: 25938784]
[45]
Stanley, M.; Macauley, S.L.; Caesar, E.E.; Koscal, L.J.; Moritz, W.; Robinson, G.O.; Roh, J.; Keyser, J.; Jiang, H.; Holtzman, D.M. The effects of peripheral and central high insulin on brain insulin signaling and amyloid-β in young and old APP/PS1 mice. J. Neurosci., 2016, 36(46), 11704-11715.
[http://dx.doi.org/10.1523/JNEUROSCI.2119-16.2016] [PMID: 27852778]
[46]
Cirrito, J.R.; Yamada, K.A.; Finn, M.B.; Sloviter, R.S.; Bales, K.R.; May, P.C.; Schoepp, D.D.; Paul, S.M.; Mennerick, S.; Holtzman, D.M. Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron, 2005, 48(6), 913-922.
[http://dx.doi.org/10.1016/j.neuron.2005.10.028] [PMID: 16364896]
[47]
Yan, P.; Bero, A.W.; Cirrito, J.R.; Xiao, Q.; Hu, X.; Wang, Y.; Gonzales, E.; Holtzman, D.M.; Lee, J.M. Characterizing the appearance and growth of amyloid plaques in APP/PS1 mice. J. Neurosci., 2009, 29(34), 10706-10714.
[http://dx.doi.org/10.1523/JNEUROSCI.2637-09.2009] [PMID: 19710322]
[48]
Carro, E.; Torres-Aleman, I. The role of insulin and insulin-like growth factor I in the molecular and cellular mechanisms underlying the pathology of Alzheimer’s disease. Eur. J. Pharmacol., 2004, 490(1-3), 127-133.
[http://dx.doi.org/10.1016/j.ejphar.2004.02.050] [PMID: 15094079]
[49]
Hayes, C.A.; Ashmore, B.G.; Vijayasankar, A.; Marshall, J.P.; Ashpole, N.M. Insulin-Like Growth Factor-1 differentially modulates glutamate-induced toxicity and stress in cells of the neurogliovascular unit. Front. Aging Neurosci., 2021, 13, 751304.
[http://dx.doi.org/10.3389/fnagi.2021.751304] [PMID: 34887742]
[50]
Kianpour Rad, S.; Arya, A.; Karimian, H.; Madhavan, P.; Rizwan, F.; Koshy, S.; Prabhu, G. Mechanism involved in insulin resistance via accumulation of β-amyloid and neurofibrillary tangles: link between type 2 diabetes and Alzheimer’s disease. Drug Des. Devel. Ther., 2018, 12, 3999-4021.
[http://dx.doi.org/10.2147/DDDT.S173970] [PMID: 30538427]
[51]
Dehghan, F.; Hajiaghaalipour, F.; Yusof, A.; Muniandy, S.; Hosseini, S.A.; Heydari, S.; Salim, L.Z.A.; Azarbayjani, M.A. Saffron with resistance exercise improves diabetic parameters through the GLUT4/AMPK pathway in-vitro and in-vivo. Sci. Rep., 2016, 6(1), 25139.
[http://dx.doi.org/10.1038/srep25139] [PMID: 27122001]
[52]
Sayem, A.; Arya, A.; Karimian, H.; Krishnasamy, N.; Ashok Hasamnis, A.; Hossain, C. Action of phytochemicals on insulin signaling pathways accelerating Glucose Transporter (GLUT4) protein translocation. Molecules, 2018, 23(2), 258.
[http://dx.doi.org/10.3390/molecules23020258] [PMID: 29382104]
[53]
An, Y; Varma, VR; Varma, S Evidence for brain glucose dysregulation in Alzheimers dement. 2018, 14(3), 318-329.
[54]
Dammer, E.B.; Duong, D.M.; Diner, I.; Gearing, M.; Feng, Y.; Lah, J.J.; Levey, A.I.; Seyfried, N.T. Neuron enriched nuclear proteome isolated from human brain. J. Proteome Res., 2013, 12(7), 3193-3206.
[http://dx.doi.org/10.1021/pr400246t] [PMID: 23768213]
[55]
Tharp, W.G.; Gupta, D.; Smith, J.; Jones, K.P.; Jones, A.M.; Pratley, R.E. Effects of glucose and insulin on secretion of amyloid‐β by human adipose tissue cells. Obesity (Silver Spring), 2016, 24(7), 1471-1479.
[http://dx.doi.org/10.1002/oby.21494] [PMID: 27172814]
[56]
Zhang, Y.; Zhou, B.; Zhang, F.; Wu, J.; Hu, Y.; Liu, Y.; Zhai, Q. Amyloid-β induces hepatic insulin resistance by activating JAK2/STAT3/SOCS-1 signaling pathway. Diabetes, 2012, 61(6), 1434-1443.
[http://dx.doi.org/10.2337/db11-0499] [PMID: 22522613]
[57]
Fishel, M.A.; Watson, G.S.; Montine, T.J.; Wang, Q.; Green, P.S.; Kulstad, J.J.; Cook, D.G.; Peskind, E.R.; Baker, L.D.; Goldgaber, D.; Nie, W.; Asthana, S.; Plymate, S.R.; Schwartz, M.W.; Craft, S. Hyperinsulinemia provokes synchronous increases in central inflammation and beta-amyloid in normal adults. Arch. Neurol., 2005, 62(10), 1539-1544.
[http://dx.doi.org/10.1001/archneur.62.10.noc50112] [PMID: 16216936]
[58]
Stanley, M.; Macauley, S.L.; Holtzman, D.M. Changes in insulin and insulin signaling in Alzheimer’s disease: cause or consequence? J. Exp. Med., 2016, 213(8), 1375-1385.
[http://dx.doi.org/10.1084/jem.20160493] [PMID: 27432942]
[59]
Yamamoto, N.; Ishikuro, R.; Tanida, M.; Suzuki, K.; Ikeda-Matsuo, Y.; Sobue, K. Insulin-signaling pathway regulates the degradation of amyloid β-protein via Astrocytes. Neuroscience, 2018, 385, 227-236.
[http://dx.doi.org/10.1016/j.neuroscience.2018.06.018] [PMID: 29932983]
[60]
Townsend, M.; Mehta, T.; Selkoe, D.J. Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway. J. Biol. Chem., 2007, 282(46), 33305-33312.
[http://dx.doi.org/10.1074/jbc.M610390200] [PMID: 17855343]
[61]
Jagust, W.J.; Seab, J.P.; Huesman, R.H.; Valk, P.E.; Mathis, C.A.; Reed, B.R.; Coxson, P.G.; Budinger, T.F. Diminished glucose transport in Alzheimer’s disease: dynamic PET studies. J. Cereb. Blood Flow Metab., 1991, 11(2), 323-330.
[http://dx.doi.org/10.1038/jcbfm.1991.65] [PMID: 1997504]
[62]
Koepsell, H. Glucose transporters in brain in health and disease. Pflugers Arch., 2020, 472(9), 1299-1343.
[http://dx.doi.org/10.1007/s00424-020-02441-x] [PMID: 32789766]
[63]
Rebelos, E.; Rinne, J.O.; Nuutila, P.; Ekblad, L.L. Brain glucose metabolism in health, obesity, and cognitive decline-does insulin have anything to do with it? A narrative review. J. Clin. Med., 2021, 10(7), 1532.
[http://dx.doi.org/10.3390/jcm10071532] [PMID: 33917464]
[64]
Muddapu, V.R.; Dharshini, S.A.P.; Chakravarthy, V.S.; Gromiha, M.M. Neurodegenerative diseases – is metabolic deficiency the root cause? Front. Neurosci., 2020, 14, 213.
[http://dx.doi.org/10.3389/fnins.2020.00213] [PMID: 32296300]
[65]
Mark, R.J.; Pang, Z.; Geddes, J.W.; Uchida, K.; Mattson, M.P. Amyloid beta-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J. Neurosci., 1997, 17(3), 1046-1054.
[http://dx.doi.org/10.1523/JNEUROSCI.17-03-01046.1997] [PMID: 8994059]
[66]
Cheng, B.; Mattson, M.P. IGF-I and IGF-II protect cultured hippocampal and septal neurons against calcium-mediated hypoglycemic damage. J. Neurosci., 1992, 12(4), 1558-1566.
[http://dx.doi.org/10.1523/JNEUROSCI.12-04-01558.1992] [PMID: 1313498]
[67]
Mark, R.J.; Lovell, M.A.; Markesbery, W.R.; Uchida, K.; Mattson, M.P. A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid beta-peptide. J. Neurochem., 1997, 68(1), 255-264.
[http://dx.doi.org/10.1046/j.1471-4159.1997.68010255.x] [PMID: 8978733]
[68]
Mark, R.J.; Hensley, K.; Butterfield, D.A.; Mattson, M.P. Amyloid beta-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J. Neurosci., 1995, 15(9), 6239-6249.
[http://dx.doi.org/10.1523/JNEUROSCI.15-09-06239.1995] [PMID: 7666206]
[69]
Mattson, M.P. Roles of the lipid peroxidation product 4-hydroxynonenal in obesity, the metabolic syndrome, and associated vascular and neurodegenerative disorders. Exp. Gerontol., 2009, 44(10), 625-633.
[http://dx.doi.org/10.1016/j.exger.2009.07.003] [PMID: 19622391]
[70]
Keller, J.N.; Mark, R.J.; Bruce, A.J.; Blanc, E.; Rothstein, J.D.; Uchida, K.; Waeg, G.; Mattson, M.P. 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience, 1997, 80(3), 685-696.
[http://dx.doi.org/10.1016/S0306-4522(97)00065-1] [PMID: 9276486]
[71]
Rajmohan, R.; Reddy, P.H. Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons. J. Alzheimers Dis., 2017, 57(4), 975-999.
[http://dx.doi.org/10.3233/JAD-160612] [PMID: 27567878]
[72]
Deng, L.; Pushpitha, K.; Joseph, C.; Gupta, V.; Rajput, R.; Chitranshi, N.; Dheer, Y.; Amirkhani, A.; Kamath, K.; Pascovici, D.; Wu, J.X.; Salekdeh, G.H.; Haynes, P.A.; Graham, S.L.; Gupta, V.K.; Mirzaei, M. Amyloid β induces early changes in the ribosomal machinery, cytoskeletal organization and oxidative phosphorylation in retinal photoreceptor cells. Front. Mol. Neurosci., 2019, 12, 24.
[http://dx.doi.org/10.3389/fnmol.2019.00024] [PMID: 30853886]
[73]
Smith-Swintosky, V.L.; Pettigrew, L.C.; Sapolsky, R.M.; Phares, C.; Craddock, S.D.; Brooke, S.M.; Mattson, M.P. Metyrapone, an inhibitor of glucocorticoid production, reduces brain injury induced by focal and global ischemia and seizures. J. Cereb. Blood Flow Metab., 1996, 16(4), 585-598.
[http://dx.doi.org/10.1097/00004647-199607000-00008] [PMID: 8964797]
[74]
Busciglio, J.; Lorenzo, A.; Yeh, J.; Yankner, B.A. β-Amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron, 1995, 14(4), 879-888.
[http://dx.doi.org/10.1016/0896-6273(95)90232-5] [PMID: 7718249]
[75]
Gonçalves, R.A.; Wijesekara, N.; Fraser, P.E.; De Felice, F.G. The link between Tau and insulin signaling: Implications for Alzheimer’s disease and other tauopathies. Front. Cell. Neurosci., 2019, 13, 17.
[http://dx.doi.org/10.3389/fncel.2019.00017] [PMID: 30804755]
[76]
Rodriguez-Rodriguez, P.; Sandebring-Matton, A.; Merino-Serrais, P.; Parrado-Fernandez, C.; Rabano, A.; Winblad, B.; Ávila, J.; Ferrer, I.; Cedazo-Minguez, A. Tau hyperphosphorylation induces oligomeric insulin accumulation and insulin resistance in neurons. Brain, 2017, 140(12), 3269-3285.
[http://dx.doi.org/10.1093/brain/awx256] [PMID: 29053786]
[77]
Janning, D.; Igaev, M.; Sündermann, F.; Brühmann, J.; Beutel, O.; Heinisch, J.J.; Bakota, L.; Piehler, J.; Junge, W.; Brandt, R. Single-molecule tracking of tau reveals fast kiss-and-hop interaction with microtubules in living neurons. Mol. Biol. Cell, 2014, 25(22), 3541-3551.
[http://dx.doi.org/10.1091/mbc.e14-06-1099] [PMID: 25165145]
[78]
Schweiger, S.; Matthes, F.; Posey, K.; Kickstein, E.; Weber, S.; Hettich, M.M.; Pfurtscheller, S.; Ehninger, D.; Schneider, R.; Kraub, S. Resveratrol induces dephosphorylation of Tau by interfering with the MID1-PP2A complex. Sci. Rep., 2017, 7(1), 13753.
[http://dx.doi.org/10.1038/s41598-017-12974-4] [PMID: 29062069]
[79]
Platt, T.L.; Beckett, T.L.; Kohler, K.; Niedowicz, D.M.; Murphy, M.P. Obesity, diabetes, and leptin resistance promote tau pathology in a mouse model of disease. Neuroscience, 2016, 315, 162-174.
[http://dx.doi.org/10.1016/j.neuroscience.2015.12.011] [PMID: 26701291]
[80]
Jung, H.J.; Kim, Y.J.; Eggert, S.; Chung, K.C.; Choi, K.S.; Park, S.A. Age-dependent increases in tau phosphorylation in the brains of type 2 diabetic rats correlate with a reduced expression of p62. Exp. Neurol., 2013, 248, 441-450.
[http://dx.doi.org/10.1016/j.expneurol.2013.07.013] [PMID: 23906983]
[81]
Papon, M.A.; El Khoury, N.B.; Marcouiller, F.; Julien, C.; Morin, F.; Bretteville, A.; Petry, F.R.; Gaudreau, S.; Amrani, A.; Mathews, P.M.; Hébert, S.S.; Planel, E. Deregulation of protein phosphatase 2A and hyperphosphorylation of τ protein following onset of diabetes in NOD mice. Diabetes, 2013, 62(2), 609-617.
[http://dx.doi.org/10.2337/db12-0187] [PMID: 22961084]
[82]
Alonso, A.D.; Di Clerico, J.; Li, B.; Corbo, C.P.; Alaniz, M.E.; Grundke-Iqbal, I.; Iqbal, K. Phosphorylation of tau at Thr212, Thr231, and Ser262 combined causes neurodegeneration. J. Biol. Chem., 2010, 285(40), 30851-30860.
[http://dx.doi.org/10.1074/jbc.M110.110957] [PMID: 20663882]
[83]
Di, J.; Cohen, L.S.; Corbo, C.P.; Phillips, G.R.; El Idrissi, A.; Alonso, A.D. Abnormal tau induces cognitive impairment through two different mechanisms: synaptic dysfunction and neuronal loss. Sci. Rep., 2016, 6(1), 20833.
[http://dx.doi.org/10.1038/srep20833] [PMID: 26888634]
[84]
Qu, Z.S.; Li, L.; Sun, X.J.; Zhao, Y.W.; Zhang, J.; Geng, Z.; Fu, J.L.; Ren, Q.G. Glycogen synthase kinase-3 regulates production of amyloid-β peptides and tau phosphorylation in diabetic rat brain. Sci. World J., 2014, 2014, 1-8.
[http://dx.doi.org/10.1155/2014/878123] [PMID: 24983010]
[85]
Schubert, M.; Brazil, D.P.; Burks, D.J.; Kushner, J.A.; Ye, J.; Flint, C.L.; Farhang-Fallah, J.; Dikkes, P.; Warot, X.M.; Rio, C.; Corfas, G.; White, M.F. Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J. Neurosci., 2003, 23(18), 7084-7092.
[http://dx.doi.org/10.1523/JNEUROSCI.23-18-07084.2003] [PMID: 12904469]
[86]
Zhou, Y.; Zhao, Y.; Xie, H.; Wang, Y.; Liu, L.; Yan, X. Alteration in amyloid β42, phosphorylated tau protein, interleukin 6, and acetylcholine during diabetes-accelerated memory dysfunction in diabetic rats: correlation of amyloid β42 with changes in glucose metabolism. Behav. Brain Funct., 2015, 11(1), 24.
[http://dx.doi.org/10.1186/s12993-015-0069-5] [PMID: 26271247]
[87]
Planel, E.; Tatebayashi, Y.; Miyasaka, T.; Liu, L.; Wang, L.; Herman, M.; Yu, W.H.; Luchsinger, J.A.; Wadzinski, B.; Duff, K.E.; Takashima, A. Insulin dysfunction induces in vivo tau hyperphosphorylation through distinct mechanisms. J. Neurosci., 2007, 27(50), 13635-13648.
[http://dx.doi.org/10.1523/JNEUROSCI.3949-07.2007] [PMID: 18077675]
[88]
Clodfelder-Miller, B.J.; Zmijewska, A.A.; Johnson, G.V.W.; Jope, R.S. Tau is hyperphosphorylated at multiple sites in mouse brain in vivo after streptozotocin-induced insulin deficiency. Diabetes, 2006, 55(12), 3320-3325.
[http://dx.doi.org/10.2337/db06-0485] [PMID: 17130475]
[89]
Li, Z.; Zhang, W.; Sima, A.A.F. Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes, 2007, 56(7), 1817-1824.
[http://dx.doi.org/10.2337/db07-0171] [PMID: 17456849]
[90]
Wang, S.; Zhou, S.; Min, F.; Ma, J.; Shi, X.; Bereczki, E.; Wu, J. mTOR-mediated hyperphosphorylation of tau in the hippocampus is involved in cognitive deficits in streptozotocin-induced diabetic mice. Metab. Brain Dis., 2014, 29(3), 729-736.
[http://dx.doi.org/10.1007/s11011-014-9528-1] [PMID: 24682776]
[91]
Zhao, Y.M.; Pei, J.J.; Ji, Z.J.; Zhao, Z.W.; Qian, Y.Y.; Sheng, S.L. Effect of amyloid precursor protein 17mer peptide on microtubule structure and tau protein hyperphosphorylation in hippocampal neurons of experimental diabetic mice. Neuroreport, 2003, 14(1), 61-66.
[http://dx.doi.org/10.1097/00001756-200301200-00012] [PMID: 12544832]
[92]
Wu, J.; Zhou, S.L.; Pi, L.H.; Shi, X.J.; Ma, L.R.; Chen, Z.; Qu, M.L.; Li, X.; Nie, S.D.; Liao, D.F.; Pei, J.J.; Wang, S. High glucose induces formation of tau hyperphosphorylation via Cav-1-mTOR pathway: A potential molecular mechanism for diabetes-induced cognitive dysfunction. Oncotarget, 2017, 8(25), 40843-40856.
[http://dx.doi.org/10.18632/oncotarget.17257] [PMID: 28489581]
[93]
Martin, L.; Latypova, X.; Terro, F. Post-translational modifications of tau protein: Implications for Alzheimer’s disease. Neurochem. Int., 2011, 58(4), 458-471.
[http://dx.doi.org/10.1016/j.neuint.2010.12.023] [PMID: 21215781]
[94]
Alquezar, C.; Arya, S.; Kao, A.W. Tau Post-translational modifications: Dynamic transformers of tau function, degradation, and aggregation. Front. Neurol., 2021, 11, 595532.
[http://dx.doi.org/10.3389/fneur.2020.595532] [PMID: 33488497]
[95]
Theofilas, P.; Wang, C.; Butler, D. Caspase inhibition mitigates tau cleavage and neurotoxicity in iPSC-induced neurons with the V337M MAPT mutation. bioRxiv, 2021, 2021.01.08.425912.
[96]
Harris, L.D.; Jasem, S.; Licchesi, J.D.F. The ubiquitin system in Alzheimer’s disease. Adv. Exp. Med. Biol., 2020, 1233, 195-221.
[http://dx.doi.org/10.1007/978-3-030-38266-7_8] [PMID: 32274758]
[97]
Reinecke, J.B.; DeVos, S.L.; McGrath, J.P.; Shepard, A.M.; Goncharoff, D.K.; Tait, D.N.; Fleming, S.R.; Vincent, M.P.; Steinhilb, M.L. Implicating calpain in tau-mediated toxicity in vivo. PLoS One, 2011, 6(8), e23865.
[http://dx.doi.org/10.1371/journal.pone.0023865] [PMID: 21858230]
[98]
Chen, H.H.; Liu, P.; Auger, P.; Lee, S.H.; Adolfsson, O.; Rey-Bellet, L.; Lafrance-Vanasse, J.; Friedman, B.A.; Pihlgren, M.; Muhs, A.; Pfeifer, A.; Ernst, J.; Ayalon, G.; Wildsmith, K.R.; Beach, T.G.; van der Brug, M.P. Calpain-mediated tau fragmentation is altered in Alzheimer’s disease progression. Sci. Rep., 2018, 8(1), 16725.
[http://dx.doi.org/10.1038/s41598-018-35130-y] [PMID: 30425303]
[99]
McMillan, P.J.; Kraemer, B.C.; Robinson, L.; Leverenz, J.B.; Raskind, M.; Schellenberg, G. Truncation of tau at E391 promotes early pathologic changes in transgenic mice. J. Neuropathol. Exp. Neurol., 2011, 70(11), 1006-1019.
[http://dx.doi.org/10.1097/NEN.0b013e31823557fb] [PMID: 22002427]
[100]
Tolkovsky, A.M.; Spillantini, M.G. Tau aggregation and its relation to selected forms of neuronal cell death. Essays Biochem., 2021, 65(7), 847-857.
[http://dx.doi.org/10.1042/EBC20210030] [PMID: 34897457]
[101]
Zhang, H.; Cao, Y.; Ma, L.; Wei, Y.; Li, H. Possible mechanisms of tau spread and toxicity in Alzheimer’s disease. Front. Cell Dev. Biol., 2021, 9, 707268.
[http://dx.doi.org/10.3389/fcell.2021.707268] [PMID: 34395435]
[102]
Corsetti, V.; Amadoro, G.; Gentile, A.; Capsoni, S.; Ciotti, M.T.; Cencioni, M.T.; Atlante, A.; Canu, N.; Rohn, T.T.; Cattaneo, A.; Calissano, P. Identification of a caspase-derived N-terminal tau fragment in cellular and animal Alzheimer’s disease models. Mol. Cell. Neurosci., 2008, 38(3), 381-392.
[http://dx.doi.org/10.1016/j.mcn.2008.03.011] [PMID: 18511295]
[103]
Wang, Y.P.; Biernat, J.; Pickhardt, M.; Mandelkow, E.; Mandelkow, E.M. Stepwise proteolysis liberates tau fragments that nucleate the Alzheimer-like aggregation of full-length tau in a neuronal cell model. Proc. Natl. Acad. Sci. USA, 2007, 104(24), 10252-10257.
[http://dx.doi.org/10.1073/pnas.0703676104] [PMID: 17535890]
[104]
Zhang, H.; Wei, W.; Zhao, M.; Ma, L.; Jiang, X.; Pei, H.; Cao, Y.; Li, H. Interaction between Aβ and tau in the pathogenesis of Alzheimer’s disease. Int. J. Biol. Sci., 2021, 17(9), 2181-2192.
[http://dx.doi.org/10.7150/ijbs.57078] [PMID: 34239348]
[105]
Gamblin, T.C.; Chen, F.; Zambrano, A.; Abraha, A.; Lagalwar, S.; Guillozet, A.L.; Lu, M.; Fu, Y.; Garcia-Sierra, F.; LaPointe, N.; Miller, R.; Berry, R.W.; Binder, L.I.; Cryns, V.L. Caspase cleavage of tau: Linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2003, 100(17), 10032-10037.
[http://dx.doi.org/10.1073/pnas.1630428100] [PMID: 12888622]
[106]
Yin, H.; Kuret, J. C-terminal truncation modulates both nucleation and extension phases of τ fibrillization. FEBS Lett., 2006, 580(1), 211-215.
[http://dx.doi.org/10.1016/j.febslet.2005.11.077] [PMID: 16364303]
[107]
Conze, C.; Rierola, M.; Trushina, N.I.; Peters, M.; Janning, D.; Holzer, M.; Heinisch, J.J.; Arendt, T.; Bakota, L.; Brandt, R. Caspase-cleaved tau is senescence-associated and induces a toxic gain of function by putting a brake on axonal transport. Mol. Psychiatry, 2022, 27(7), 3010-3023.
[http://dx.doi.org/10.1038/s41380-022-01538-2] [PMID: 35393558]
[108]
Zilka, N.; Filipcik, P.; Koson, P.; Fialova, L.; Skrabana, R.; Zilkova, M.; Rolkova, G.; Kontsekova, E.; Novak, M. Truncated tau from sporadic Alzheimer’s disease suffices to drive neurofibrillary degeneration in vivo. FEBS Lett., 2006, 580(15), 3582-3588.
[http://dx.doi.org/10.1016/j.febslet.2006.05.029] [PMID: 16753151]
[109]
Zilkova, M.; Zilka, N.; Kovac, A.; Kovacech, B.; Skrabana, R.; Skrabanova, M.; Novak, M. Hyperphosphorylated truncated protein tau induces caspase-3 independent apoptosis-like pathway in the Alzheimer’s disease cellular model. J. Alzheimers Dis., 2011, 23(1), 161-169.
[http://dx.doi.org/10.3233/JAD-2010-101434] [PMID: 20966551]
[110]
Hrnkova, M.; Zilka, N.; Minichova, Z.; Koson, P.; Novak, M. Neurodegeneration caused by expression of human truncated tau leads to progressive neurobehavioural impairment in transgenic rats. Brain Res., 2007, 1130(1), 206-213.
[http://dx.doi.org/10.1016/j.brainres.2006.10.085] [PMID: 17169350]
[111]
Zimova, I.; Brezovakova, V.; Hromadka, T.; Weisova, P.; Cubinkova, V.; Valachova, B.; Filipcik, P.; Jadhav, S.; Smolek, T.; Novak, M.; Zilka, N. Human truncated tau induces mature neurofibrillary pathology in a mouse model of human tauopathy. J. Alzheimers Dis., 2016, 54(2), 831-843.
[http://dx.doi.org/10.3233/JAD-160347] [PMID: 27567836]
[112]
Kim, B.; Backus, C.; Oh, S.; Feldman, E.L. Hyperglycemia-induced tau cleavage in vitro and in vivo: a possible link between diabetes and Alzheimer’s disease. J. Alzheimers Dis., 2013, 34(3), 727-739.
[http://dx.doi.org/10.3233/JAD-121669] [PMID: 23254634]
[113]
El Khoury, N.B.; Gratuze, M.; Papon, M.A.; Bretteville, A.; Planel, E. Insulin dysfunction and tau pathology. Front. Cell. Neurosci., 2014, 8, 22.
[http://dx.doi.org/10.3389/fncel.2014.00022] [PMID: 24574966]
[114]
Santos, R.X.; Correia, S.C.; Alves, M.G.; Oliveira, P.F.; Cardoso, S.; Carvalho, C.; Duarte, A.I.; Santos, M.S.; Moreira, P.I. Insulin therapy modulates mitochondrial dynamics and biogenesis, autophagy and tau protein phosphorylation in the brain of type 1 diabetic rats. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(7), 1154-1166.
[http://dx.doi.org/10.1016/j.bbadis.2014.04.011] [PMID: 24747740]
[115]
Guo, C.; Zhang, S.; Li, J.Y.; Ding, C.; Yang, Z.H.; Chai, R.; Wang, X.; Wang, Z.Y. Chronic hyperglycemia induced via the heterozygous knockout of Pdx1 worsens neuropathological lesion in an Alzheimer mouse model. Sci. Rep., 2016, 6(1), 29396.
[http://dx.doi.org/10.1038/srep29396] [PMID: 27406855]
[116]
Wei, T.H.; Hsieh, C.L. Effect of acupuncture on the p38 signaling pathway in several nervous system diseases: A systematic review. Int. J. Mol. Sci., 2020, 21(13), 4693.
[http://dx.doi.org/10.3390/ijms21134693] [PMID: 32630156]
[117]
Jin, Y.; Fan, Y.; Yan, E.; Liu, Z.; Zong, Z.; Qi, Z. Effects of sodium ferulate on amyloid-beta-induced MKK3/MKK6-p38 MAPK-Hsp27 signal pathway and apoptosis in rat hippocampus. Acta Pharmacol. Sin., 2006, 27(10), 1309-1316.
[http://dx.doi.org/10.1111/j.1745-7254.2006.00414.x] [PMID: 17007737]
[118]
Falcicchia, C.; Tozzi, F.; Arancio, O.; Watterson, D.M.; Origlia, N. Involvement of p38 MAPK in synaptic function and dysfunction. Int. J. Mol. Sci., 2020, 21(16), 5624.
[http://dx.doi.org/10.3390/ijms21165624] [PMID: 32781522]
[119]
Yamazaki, Y.; Zhao, N.; Caulfield, T.R.; Liu, C.C.; Bu, G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat. Rev. Neurol., 2019, 15(9), 501-518.
[http://dx.doi.org/10.1038/s41582-019-0228-7] [PMID: 31367008]
[120]
Emrani, S.; Arain, H.A.; DeMarshall, C.; Nuriel, T. APOE4 is associated with cognitive and pathological heterogeneity in patients with Alzheimer’s disease: a systematic review. Alzheimers Res. Ther., 2020, 12(1), 141.
[http://dx.doi.org/10.1186/s13195-020-00712-4] [PMID: 33148345]
[121]
Starks, E.J.; Patrick O’Grady, J.; Hoscheidt, S.M.; Racine, A.M.; Carlsson, C.M.; Zetterberg, H.; Blennow, K.; Okonkwo, O.C.; Puglielli, L.; Asthana, S.; Dowling, N.M.; Gleason, C.E.; Anderson, R.M.; Davenport-Sis, N.J.; DeRungs, L.M.; Sager, M.A.; Johnson, S.C.; Bendlin, B.B. Insulin resistance is associated with higher cerebrospinal fluid tau levels in asymptomatic APOEɛ4 carriers. J. Alzheimers Dis., 2015, 46(2), 525-533.
[http://dx.doi.org/10.3233/JAD-150072] [PMID: 25812851]
[122]
Sun, Y.; Ma, C.; Sun, H.; Wang, H.; Peng, W.; Zhou, Z.; Wang, H.; Pi, C.; Shi, Y.; He, X. Metabolism: A novel shared link between diabetes mellitus and Alzheimer’s disease. J. Diabetes Res., 2020, 2020, 1-12.
[http://dx.doi.org/10.1155/2020/4981814] [PMID: 32083135]
[123]
Namba, Y.; Tomonaga, M.; Kawasaki, H.; Otomo, E.; Ikeda, K. Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res., 1991, 541(1), 163-166.
[http://dx.doi.org/10.1016/0006-8993(91)91092-F] [PMID: 2029618]
[124]
Kok, E.; Haikonen, S.; Luoto, T.; Huhtala, H.; Goebeler, S.; Haapasalo, H.; Karhunen, P.J. Apolipoprotein E-dependent accumulation of Alzheimer disease-related lesions begins in middle age. Ann. Neurol., 2009, 65(6), 650-657.
[http://dx.doi.org/10.1002/ana.21696] [PMID: 19557866]
[125]
Kanekiyo, T.; Xu, H.; Bu, G. ApoE and Aβ in Alzheimer’s disease: accidental encounters or partners? Neuron, 2014, 81(4), 740-754.
[http://dx.doi.org/10.1016/j.neuron.2014.01.045] [PMID: 24559670]
[126]
Rannikmäe, K.; Kalaria, R.N.; Greenberg, S.M.; Chui, H.C.; Schmitt, F.A.; Samarasekera, N.; Al-Shahi Salman, R.; Sudlow, C.L.M. APOE associations with severe CAA-associated vasculopathic changes: collaborative meta-analysis. J. Neurol. Neurosurg. Psychiatry, 2014, 85(3), 300-305.
[http://dx.doi.org/10.1136/jnnp-2013-306485] [PMID: 24163429]
[127]
Biffi, A.; Sonni, A.; Anderson, C.D.; Kissela, B.; Jagiella, J.M.; Schmidt, H.; Jimenez-Conde, J.; Hansen, B.M.; Fernandez-Cadenas, I.; Cortellini, L.; Ayres, A.; Schwab, K.; Juchniewicz, K.; Urbanik, A.; Rost, N.S.; Viswanathan, A.; Seifert-Held, T.; Stoegerer, E.M.; Tomás, M.; Rabionet, R.; Estivill, X.; Brown, D.L.; Silliman, S.L.; Selim, M.; Worrall, B.B.; Meschia, J.F.; Montaner, J.; Lindgren, A.; Roquer, J.; Schmidt, R.; Greenberg, S.M.; Slowik, A.; Broderick, J.P.; Woo, D.; Rosand, J. Variants at APOE influence risk of deep and lobar intracerebral hemorrhage. Ann. Neurol., 2010, 68(6), 934-943.
[http://dx.doi.org/10.1002/ana.22134] [PMID: 21061402]
[128]
Liu, C.C.; Kanekiyo, T.; Xu, H.; Bu, G.; Bu, G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol., 2013, 9(2), 106-118.
[http://dx.doi.org/10.1038/nrneurol.2012.263] [PMID: 23296339]
[129]
Matsuzaki, T.; Sasaki, K.; Tanizaki, Y.; Hata, J.; Fujimi, K.; Matsui, Y.; Sekita, A.; Suzuki, S.O.; Kanba, S.; Kiyohara, Y.; Iwaki, T. Insulin resistance is associated with the pathology of Alzheimer disease: The Hisayama Study. Neurology, 2010, 75(9), 764-770.
[http://dx.doi.org/10.1212/WNL.0b013e3181eee25f] [PMID: 20739649]
[130]
Bell, R.D.; Winkler, E.A.; Singh, I.; Sagare, A.P.; Deane, R.; Wu, Z.; Holtzman, D.M.; Betsholtz, C.; Armulik, A.; Sallstrom, J.; Berk, B.C.; Zlokovic, B.V. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature, 2012, 485(7399), 512-516.
[http://dx.doi.org/10.1038/nature11087] [PMID: 22622580]
[131]
Heneka, M.T.; Carson, M.J.; Khoury, J.E.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[132]
LaDu, M.J.; Shah, J.A.; Reardon, C.A.; Getz, G.S.; Bu, G.; Hu, J.; Guo, L.; Van Eldik, L.J. Apolipoprotein E and apolipoprotein E receptors modulate Aβ-induced glial neuroinflammatory responses. Neurochem. Int., 2001, 39(5-6), 427-434.
[http://dx.doi.org/10.1016/S0197-0186(01)00050-X] [PMID: 11578778]
[133]
Keene, C.D.; Cudaback, E.; Li, X.; Montine, K.S.; Montine, T.J. Apolipoprotein E isoforms and regulation of the innate immune response in brain of patients with Alzheimer’s disease. Curr. Opin. Neurobiol., 2011, 21(6), 920-928.
[http://dx.doi.org/10.1016/j.conb.2011.08.002] [PMID: 21907569]
[134]
Lynch, J.R.; Tang, W.; Wang, H.; Vitek, M.P.; Bennett, E.R.; Sullivan, P.M.; Warner, D.S.; Laskowitz, D.T. APOE genotype and an ApoE-mimetic peptide modify the systemic and central nervous system inflammatory response. J. Biol. Chem., 2003, 278(49), 48529-48533.
[http://dx.doi.org/10.1074/jbc.M306923200] [PMID: 14507923]
[135]
Ringman, J.M.; Elashoff, D.; Geschwind, D.H.; Welsh, B.T.; Gylys, K.H.; Lee, C.; Cummings, J.L.; Cole, G.M. Plasma signaling proteins in persons at genetic risk for Alzheimer disease: influence of APOE genotype. Arch. Neurol., 2012, 69(6), 757-764.
[http://dx.doi.org/10.1001/archneurol.2012.277] [PMID: 22689192]
[136]
Boldrini, M.; Fulmore, C.A.; Tartt, A.N.; Simeon, L.R.; Pavlova, I.; Poposka, V.; Rosoklija, G.B.; Stankov, A.; Arango, V.; Dwork, A.J.; Hen, R.; Mann, J.J. Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell, 2018, 22(4), 589-599.e5.
[http://dx.doi.org/10.1016/j.stem.2018.03.015] [PMID: 29625071]
[137]
Spalding, K.L.; Bergmann, O.; Alkass, K.; Bernard, S.; Salehpour, M.; Huttner, H.B.; Boström, E.; Westerlund, I.; Vial, C.; Buchholz, B.A.; Possnert, G.; Mash, D.C.; Druid, H.; Frisén, J. Dynamics of hippocampal neurogenesis in adult humans. Cell, 2013, 153(6), 1219-1227.
[http://dx.doi.org/10.1016/j.cell.2013.05.002] [PMID: 23746839]
[138]
Moreno-Jiménez, E.P.; Flor-García, M.; Terreros-Roncal, J.; Rábano, A.; Cafini, F.; Pallas-Bazarra, N.; Ávila, J.; Llorens-Martín, M. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat. Med., 2019, 25(4), 554-560.
[http://dx.doi.org/10.1038/s41591-019-0375-9] [PMID: 30911133]
[139]
Mu, Y.; Gage, F.H. Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol. Neurodegener., 2011, 6(1), 85.
[http://dx.doi.org/10.1186/1750-1326-6-85] [PMID: 22192775]
[140]
Yang, C.P.; Gilley, J.A.; Zhang, G.; Kernie, S.G. ApoE is required for maintenance of the dentate gyrus neural progenitor pool. Development, 2011, 138(20), 4351-4362.
[http://dx.doi.org/10.1242/dev.065540] [PMID: 21880781]
[141]
Najm, R.; Jones, E.A.; Huang, Y. Apolipoprotein E4, inhibitory network dysfunction, and Alzheimer’s disease. Mol. Neurodegener., 2019, 14(1), 24.
[http://dx.doi.org/10.1186/s13024-019-0324-6] [PMID: 31186040]
[142]
Andrews-Zwilling, Y.; Bien-Ly, N.; Xu, Q.; Li, G.; Bernardo, A.; Yoon, S.Y.; Zwilling, D.; Yan, T.X.; Chen, L.; Huang, Y. Apolipoprotein E4 causes age- and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice. J. Neurosci., 2010, 30(41), 13707-13717.
[http://dx.doi.org/10.1523/JNEUROSCI.4040-10.2010] [PMID: 20943911]
[143]
Wu, M.; Zhang, M.; Yin, X.; Chen, K.; Hu, Z.; Zhou, Q.; Cao, X.; Chen, Z.; Liu, D. The role of pathological tau in synaptic dysfunction in Alzheimer’s diseases. Transl. Neurodegener., 2021, 10(1), 45.
[http://dx.doi.org/10.1186/s40035-021-00270-1] [PMID: 34753506]
[144]
Sen, A.; Nelson, T.J.; Alkon, D.L. ApoE isoforms differentially regulates cleavage and secretion of BDNF. Mol. Brain, 2017, 10(1), 19.
[http://dx.doi.org/10.1186/s13041-017-0301-3] [PMID: 28569173]
[145]
Mahley, R.W.; Huang, Y. Apolipoprotein e sets the stage: response to injury triggers neuropathology. Neuron, 2012, 76(5), 871-885.
[http://dx.doi.org/10.1016/j.neuron.2012.11.020] [PMID: 23217737]
[146]
Ji, Y.; Gong, Y.; Gan, W.; Beach, T.; Holtzman, D.M.; Wisniewski, T. Apolipoprotein E isoform-specific regulation of dendritic spine morphology in apolipoprotein E transgenic mice and Alzheimer’s disease patients. Neuroscience, 2003, 122(2), 305-315.
[http://dx.doi.org/10.1016/j.neuroscience.2003.08.007] [PMID: 14614898]
[147]
Dumanis, S.B.; Tesoriero, J.A.; Babus, L.W.; Nguyen, M.T.; Trotter, J.H.; Ladu, M.J.; Weeber, E.J.; Turner, R.S.; Xu, B.; Rebeck, G.W.; Hoe, H.S. ApoE4 decreases spine density and dendritic complexity in cortical neurons in vivo. J. Neurosci., 2009, 29(48), 15317-15322.
[http://dx.doi.org/10.1523/JNEUROSCI.4026-09.2009] [PMID: 19955384]
[148]
Sen, A.; Alkon, D.L.; Nelson, T.J. Apolipoprotein E3 (ApoE3) but not ApoE4 protects against synaptic loss through increased expression of protein kinase C epsilon. J. Biol. Chem., 2012, 287(19), 15947-15958.
[http://dx.doi.org/10.1074/jbc.M111.312710] [PMID: 22427674]
[149]
Klein, R.C.; Mace, B.E.; Moore, S.D.; Sullivan, P.M. Progressive loss of synaptic integrity in human apolipoprotein E4 targeted replacement mice and attenuation by apolipoprotein E2. Neuroscience, 2010, 171(4), 1265-1272.
[http://dx.doi.org/10.1016/j.neuroscience.2010.10.027] [PMID: 20951774]
[150]
Chen, Y.; Durakoglugil, M.S.; Xian, X.; Herz, J. ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. Proc. Natl. Acad. Sci. USA, 2010, 107(26), 12011-12016.
[http://dx.doi.org/10.1073/pnas.0914984107] [PMID: 20547867]
[151]
Han, W.; Li, C. Linking type 2 diabetes and Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2010, 107(15), 6557-6558.
[http://dx.doi.org/10.1073/pnas.1002555107] [PMID: 20385830]
[152]
Crane, P.K.; Walker, R.; Hubbard, R.A.; Li, G.; Nathan, D.M.; Zheng, H.; Haneuse, S.; Craft, S.; Montine, T.J.; Kahn, S.E.; McCormick, W.; McCurry, S.M.; Bowen, J.D.; Larson, E.B. Glucose levels and risk of dementia. N. Engl. J. Med., 2013, 369(6), 540-548.
[http://dx.doi.org/10.1056/NEJMoa1215740] [PMID: 23924004]
[153]
Akimoto, H.; Negishi, A.; Oshima, S.; Wakiyama, H.; Okita, M.; Horii, N.; Inoue, N.; Ohshima, S.; Kobayashi, D. Antidiabetic drugs for the risk of Alzheimer disease in patients with type 2 DM using FAERS. Am. J. Alzheimers Dis. Other Demen., 2020, 35.
[http://dx.doi.org/10.1177/1533317519899546] [PMID: 32162525]
[154]
Kazmi, M.; Zaib, S.; Ibrar, A.; Amjad, S.T.; Shafique, Z.; Mehsud, S.; Saeed, A.; Iqbal, J.; Khan, I. A new entry into the portfolio of α-glucosidase inhibitors as potent therapeutics for type 2 diabetes: Design, bioevaluation and one-pot multi-component synthesis of diamine-bridged coumarinyl oxadiazole conjugates. Bioorg. Chem., 2018, 77, 190-202.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.022] [PMID: 29421697]
[155]
Santos, C.M.M.; Freitas, M.; Fernandes, E. A comprehensive review on xanthone derivatives as α-glucosidase inhibitors. Eur. J. Med. Chem., 2018, 157, 1460-1479.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.073] [PMID: 30282319]
[156]
Wachters-Hagedoorn, R.E.; Priebe, M.G.; Heimweg, J.A.J.; Heiner, A.M.; Elzinga, H.; Stellaard, F.; Vonk, R.J. Low-dose acarbose does not delay digestion of starch but reduces its bioavailability. Diabet. Med., 2007, 24(6), 600-606.
[http://dx.doi.org/10.1111/j.1464-5491.2007.02115.x] [PMID: 17381499]
[157]
Yan, W.W.; Chen, G.H.; Wang, F.; Tong, J.J.; Tao, F. Long-term acarbose administration alleviating the impairment of spatial learning and memory in the SAMP8 mice was associated with alleviated reduction of insulin system and acetylated H4K8. Brain Res., 2015, 1603, 22-31.
[http://dx.doi.org/10.1016/j.brainres.2015.01.042] [PMID: 25645154]
[158]
Manandhar, S.; Priya, K.; Mehta, C.H.; Nayak, U.Y.; Kabekkodu, S.P.; Pai, K.S.R. Repositioning of antidiabetic drugs for Alzheimer’s disease: possibility of Wnt signaling modulation by targeting LRP6 an in silico based study. J. Biomol. Struct. Dyn., 2021, 3, 1-15.
[http://dx.doi.org/10.1080/07391102.2021.1930583] [PMID: 34080526]
[159]
Zhou, J.B.; Tang, X.; Han, M.; Yang, J.; Simó, R. Impact of antidiabetic agents on dementia risk: A Bayesian network meta-analysis. Metabolism, 2020, 109, 154265.
[http://dx.doi.org/10.1016/j.metabol.2020.154265] [PMID: 32446679]
[160]
Proença, C.; Freitas, M.; Ribeiro, D.; Oliveira, E.F.T.; Sousa, J.L.C.; Tomé, S.M.; Ramos, M.J.; Silva, A.M.S.; Fernandes, P.A.; Fernandes, E. α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure-activity relationship study. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 1216-1228.
[http://dx.doi.org/10.1080/14756366.2017.1368503] [PMID: 28933564]
[161]
Wu, Y.; Liu, W.; Yang, T.; Li, M.; Qin, L.; Wu, L.; Liu, T. Oral administration of mangiferin ameliorates diabetes in animal models: a meta-analysis and systematic review. Nutr. Res., 2021, 87, 57-69.
[http://dx.doi.org/10.1016/j.nutres.2020.12.017] [PMID: 33601215]
[162]
Shi, G.J.; Li, Y.; Cao, Q.H.; Wu, H.X.; Tang, X.Y.; Gao, X.H.; Yu, J.Q.; Chen, Z.; Yang, Y. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomed. Pharmacother., 2019, 109, 1085-1099.
[http://dx.doi.org/10.1016/j.biopha.2018.10.130] [PMID: 30551359]
[163]
Penumala, M.; Zinka, R.B.; Shaik, J.B.; Amooru Gangaiah, D. In vitro screening of three Indian medicinal plants for their phytochemicals, anticholinesterase, antiglucosidase, antioxidant, and neuroprotective effects. BioMed Res. Int., 2017, 2017, 1-12.
[http://dx.doi.org/10.1155/2017/5140506] [PMID: 29204442]
[164]
Silva, A.P.G.S.; De Jesus, A.R.X.; Martins, A.I.M. New c-glycosylpolyphenol antidiabetic agents, effect on glucose tolerance and interaction with beta-amyloid. therapeutic applications of the synthesized agent (s) and of genista tenera ethyl acetate extracts containing some of those agents; Google Patents, 2015.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy