Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Structure based Drug Designing Approaches in SARS-CoV-2 Spike Inhibitor Design

Author(s): Anusuya Shanmugam*, Anbazhagan Venkattappan and M. Michael Gromiha*

Volume 22, Issue 29, 2022

Published on: 15 November, 2022

Page: [2396 - 2409] Pages: 14

DOI: 10.2174/1568026623666221103091658

Price: $65

Open Access Journals Promotions 2
Abstract

The COVID-19 outbreak and the pandemic situation have hastened the research community to design a novel drug and vaccine against its causative organism, the SARS-CoV-2. The spike glycoprotein present on the surface of this pathogenic organism plays an immense role in viral entry and antigenicity. Hence, it is considered an important drug target in COVID-19 drug design. Several three-dimensional crystal structures of this SARS-CoV-2 spike protein have been identified and deposited in the Protein DataBank during the pandemic period. This accelerated the research in computer- aided drug designing, especially in the field of structure-based drug designing. This review summarizes various structure-based drug design approaches applied to this SARS-CoV-2 spike protein and its findings. Specifically, it is focused on different structure-based approaches such as molecular docking, high-throughput virtual screening, molecular dynamics simulation, drug repurposing, and target-based pharmacophore modelling and screening. These structural approaches have been applied to different ligands and datasets such as FDA-approved drugs, small molecular chemical compounds, chemical libraries, chemical databases, structural analogs, and natural compounds, which resulted in the prediction of spike inhibitors, spike-ACE-2 interface inhibitors, and allosteric inhibitors.

Keywords: COVID-19, SARS-CoV-2, Spike protein, Drug repurposing, Structure based drug designing, Molecular docking.

Graphical Abstract
[1]
She, J.; Jiang, J.; Ye, L.; Hu, L.; Bai, C.; Song, Y. 2019 novel coronavirus of pneumonia in Wuhan, China: Emerging attack and management strategies. Clin. Transl. Med., 2020, 9(1), 19.
[http://dx.doi.org/10.1186/s40169-020-00271-z] [PMID: 32078069]
[2]
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, 5(4), 536-544.
[http://dx.doi.org/10.1038/s41564-020-0695-z] [PMID: 32123347]
[3]
Shanmugam, A.; Muralidharan, N.; Velmurugan, D.; Gromiha, M.M. Therapeutic targets and computational approaches on drug development for COVID-19. Curr. Top. Med. Chem., 2020, 20(24), 2210-2220.
[http://dx.doi.org/10.2174/1568026620666200710105507] [PMID: 32648845]
[4]
Yesudhas, D.; Srivastava, A.; Gromiha, M.M. COVID-19 outbreak: History, mechanism, transmission, structural studies and therapeutics. Infection, 2021, 49(2), 199-213.
[http://dx.doi.org/10.1007/s15010-020-01516-2] [PMID: 32886331]
[5]
Tsang, H.F.; Chan, L.W.C.; Cho, W.C.S.; Yu, A.C.S.; Yim, A.K.Y.; Chan, A.K.C.; Ng, L.P.W.; Wong, Y.K.E.; Pei, X.M.; Li, M.J.W.; Wong, S.C.C. An update on COVID-19 pandemic: The epidemiology, pathogenesis, prevention and treatment strategies. Expert Rev. Anti Infect. Ther., 2021, 19(7), 877-888.
[http://dx.doi.org/10.1080/14787210.2021.1863146] [PMID: 33306423]
[6]
WHO Director-General’s Speeches. WHO Director-General’s opening remarks at the media briefing on COVID-19., 2020. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-oncovid-19---11-march-2020 (Accessed on: June 16, 2022).
[7]
WHO Coronavirus (COVID-19) Dashboard., Available from: https://covid19.who.int/ (Accessed on: June 16, 2022).
[8]
Barh, D.; Tiwari, S.; Weener, M.E.; Azevedo, V.; Góes-Neto, A.; Gromiha, M.M.; Ghosh, P. Multi-omics-based identification of SARS-CoV-2 infection biology and candidate drugs against COVID-19. Comput. Biol. Med., 2020, 126, 104051.
[http://dx.doi.org/10.1016/j.compbiomed.2020.104051] [PMID: 33131530]
[9]
Sharma, D.; Rawat, P.; Janakiraman, V.; Gromiha, M.M. Elucidating important structural features for the binding affinity of spike ‐ SARS‐COV ‐2 neutralizing antibody complexes. Proteins, 2022, 90(3), 824-834.
[http://dx.doi.org/10.1002/prot.26277] [PMID: 34761442]
[10]
Rawat, P.; Sharma, D.; Srivastava, A.; Janakiraman, V.; Gromiha, M.M. Exploring antibody repurposing for COVID-19: Beyond presumed roles of therapeutic antibodies. Sci. Rep., 2021, 11(1), 10220.
[http://dx.doi.org/10.1038/s41598-021-89621-6] [PMID: 33986382]
[11]
Pal, M.; Berhanu, G.; Desalegn, C.; Kandi, V. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): An update. Cureus, 2020, 12(3), e7423.
[http://dx.doi.org/10.7759/cureus.7423] [PMID: 32337143]
[12]
Yadav, R.; Chaudhary, J.K.; Jain, N.; Chaudhary, P.K.; Khanra, S.; Dhamija, P.; Sharma, A.; Kumar, A.; Handu, S. Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells, 2021, 10(4), 821.
[http://dx.doi.org/10.3390/cells10040821] [PMID: 33917481]
[13]
Huang, Y.; Yang, C.; Xu, X.; Xu, W.; Liu, S. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol. Sin., 2020, 41(9), 1141-1149.
[http://dx.doi.org/10.1038/s41401-020-0485-4] [PMID: 32747721]
[14]
Wang, M.Y.; Zhao, R.; Gao, L.J.; Gao, X.F.; Wang, D.P.; Cao, J.M. SARS-CoV-2: Structure, biology, and structure-based therapeutics development. Front. Cell. Infect. Microbiol., 2020, 10, 587269.
[http://dx.doi.org/10.3389/fcimb.2020.587269] [PMID: 33324574]
[15]
Rawat, P.; Jemimah, S.; Ponnuswamy, P.K.; Gromiha, M.M. Why are ACE2 binding coronavirus strains SARS‐COV / SARS‐COV ‐2 wild and NL63 mild? Proteins, 2021, 89(4), 389-398.
[http://dx.doi.org/10.1002/prot.26024] [PMID: 33210300]
[16]
Yesudhas, D.; Srivastava, A.; Sekijima, M.; Gromiha, M.M. Tackling Covid‐19 using disordered‐to‐order transition of residues in the spike protein upon angiotensin‐converting enzyme 2 binding. Proteins, 2021, 89(9), 1158-1166.
[http://dx.doi.org/10.1002/prot.26088] [PMID: 33893649]
[17]
Cai, Y.; Zhang, J.; Xiao, T.; Peng, H.; Sterling, S.M.; Walsh, R.M., Jr; Rawson, S.; Rits-Volloch, S.; Chen, B. Distinct conformational states of SARS-CoV-2 spike protein. Science, 2020, 369(6511), 1586-1592.
[http://dx.doi.org/10.1126/science.abd4251] [PMID: 32694201]
[18]
Gur, M.; Taka, E.; Yilmaz, S.Z.; Kilinc, C.; Aktas, U.; Golcuk, M. Conformational transition of SARS-CoV-2 spike glycoprotein between its closed and open states. J. Chem. Phys., 2020, 153(7), 075101.
[http://dx.doi.org/10.1063/5.0011141] [PMID: 32828084]
[19]
Gil, C.; Ginex, T.; Maestro, I.; Nozal, V.; Barrado-Gil, L.; Cuesta-Geijo, M.Á.; Urquiza, J.; Ramírez, D.; Alonso, C.; Campillo, N.E.; Martinez, A. COVID-19: drug targets and potential treatments. J. Med. Chem., 2020, 63(21), 12359-12386.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00606] [PMID: 32511912]
[20]
Gurung, A.B.; Ali, M.A.; Lee, J.; Farah, M.A.; Al-Anazi, K.M. An updated review of computer-aided drug design and its application to COVID-19. BioMed Res. Int., 2021, 2021, 8853056.
[http://dx.doi.org/10.1155/2021/8853056] [PMID: 34258282]
[21]
Batool, M.; Ahmad, B.; Choi, S. A structure-based drug discovery paradigm. Int. J. Mol. Sci., 2019, 20(11), 2783.
[http://dx.doi.org/10.3390/ijms20112783] [PMID: 31174387]
[22]
Anderson, A.C. The process of structure-based drug design. Chem. Biol., 2003, 10(9), 787-797.
[http://dx.doi.org/10.1016/j.chembiol.2003.09.002] [PMID: 14522049]
[23]
Wang, X.; Song, K.; Li, L.; Chen, L. Structure-based drug design strategies and challenges. Curr. Top. Med. Chem., 2018, 18(12), 998-1006.
[http://dx.doi.org/10.2174/1568026618666180813152921] [PMID: 30101712]
[24]
Hassan Baig, M.; Ahmad, K.; Roy, S.; Mohammad Ashraf, J.; Adil, M.; Haris Siddiqui, M.; Khan, S.; Amjad Kamal, M.; Provazník, I.; Choi, I. Computer aided drug design: Success and limitations. Curr. Pharm. Des., 2016, 22(5), 572-581.
[http://dx.doi.org/10.2174/1381612822666151125000550] [PMID: 26601966]
[25]
Yu, W.; MacKerell, A.D., Jr Computer-aided drug design methods. Methods Mol. Biol., 2017, 1520, 85-106.
[http://dx.doi.org/10.1007/978-1-4939-6634-9_5] [PMID: 27873247]
[26]
Colman, P.M. Structure-based drug design. Curr. Opin. Struct. Biol., 1994, 4(6), 868-874.
[http://dx.doi.org/10.1016/0959-440X(94)90268-2] [PMID: 7712290]
[27]
Macalino, S.J.Y.; Gosu, V.; Hong, S.; Choi, S. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res., 2015, 38(9), 1686-1701.
[http://dx.doi.org/10.1007/s12272-015-0640-5] [PMID: 26208641]
[28]
Wang, T.; Wu, M.B.; Zhang, R.H.; Chen, Z.J.; Hua, C.; Lin, J.P.; Yang, L.R. Advances in computational structure-based drug design and application in drug discovery. Curr. Top. Med. Chem., 2015, 16(9), 901-916.
[http://dx.doi.org/10.2174/1568026615666150825142002] [PMID: 26303430]
[29]
Zhou, G.P. The medicinal chemistry of structure-based inhibitor/drug design: Current progress and future prospective. Curr. Top. Med. Chem., 2021, 21(13), 1097-1098.
[http://dx.doi.org/10.2174/156802662113210908102402] [PMID: 34602026]
[30]
Andricopulo, A.; Salum, L.; Abraham, D. Structure-based drug design strategies in medicinal chemistry. Curr. Top. Med. Chem., 2009, 9(9), 771-790.
[http://dx.doi.org/10.2174/156802609789207127] [PMID: 19754394]
[31]
Gemma, S. Structure-based design of biologically active compounds. Molecules, 2020, 25(14), 3115.
[http://dx.doi.org/10.3390/molecules25143115] [PMID: 32650470]
[32]
Burley, S.K.; Berman, H.M.; Kleywegt, G.J.; Markley, J.L.; Nakamura, H.; Velankar, S. Protein Data Bank (PDB): The single global macromolecular structure archive. Methods Mol. Biol., 2017, 1607, 627-641.
[http://dx.doi.org/10.1007/978-1-4939-7000-1_26] [PMID: 28573592]
[33]
Ferreira, L.; dos Santos, R.; Oliva, G.; Andricopulo, A. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[34]
Lohning, A.E.; Levonis, S.M.; Williams-Noonan, B.; Schweiker, S.S. A practical guide to molecular docking and homology modelling for medicinal chemists. Curr. Top. Med. Chem., 2017, 17(18), 2023-2040.
[PMID: 28137238]
[35]
Santos, L.H.S.; Ferreira, R.S.; Caffarena, E.R. Integrating molecular docking and molecular dynamics simulations. Methods Mol. Biol., 2019, 2053, 13-34.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_2] [PMID: 31452096]
[36]
Kontoyianni, M. Docking and virtual screening in drug discovery. Methods Mol. Biol., 2017, 1647, 255-266.
[http://dx.doi.org/10.1007/978-1-4939-7201-2_18] [PMID: 28809009]
[37]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250.
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19] [PMID: 25618350]
[38]
Sivakumar, K.C.; Haixiao, J.; Naman, C.B.; Sajeevan, T.P. Prospects of MULTITARGET drug designing strategies by linking molecular docking and molecular dynamics to explore the PROTEIN–LIGAND recognition process. Drug Dev. Res., 2020, 81(6), 685-699.
[http://dx.doi.org/10.1002/ddr.21673] [PMID: 32329098]
[39]
Madhavi Sastry, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 2013, 27(3), 221-234.
[http://dx.doi.org/10.1007/s10822-013-9644-8] [PMID: 23579614]
[40]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[41]
Morris, G.M.; Lim-Wilby, M. Molecular docking. Methods Mol. Biol., 2008, 443, 365-382.
[http://dx.doi.org/10.1007/978-1-59745-177-2_19] [PMID: 18446297]
[42]
Guedes, I.A.; de Magalhães, C.S.; Dardenne, L.E. Receptor–ligand molecular docking. Biophys. Rev., 2014, 6(1), 75-87.
[http://dx.doi.org/10.1007/s12551-013-0130-2] [PMID: 28509958]
[43]
Vakser, I.A. Protein-protein docking: From interaction to interactome. Biophys. J., 2014, 107(8), 1785-1793.
[http://dx.doi.org/10.1016/j.bpj.2014.08.033] [PMID: 25418159]
[44]
Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther., 2022, 7(1), 48.
[http://dx.doi.org/10.1038/s41392-022-00904-4] [PMID: 35165272]
[45]
Lee, A.C.L.; Harris, J.L.; Khanna, K.K.; Hong, J.H. A comprehensive review on current advances in peptide drug development and design. Int. J. Mol. Sci., 2019, 20(10), 2383.
[http://dx.doi.org/10.3390/ijms20102383] [PMID: 31091705]
[46]
Pagadala, N.S.; Syed, K.; Tuszynski, J. Software for molecular docking: A review. Biophys. Rev., 2017, 9(2), 91-102.
[http://dx.doi.org/10.1007/s12551-016-0247-1] [PMID: 28510083]
[47]
Alekseenko, A.; Ignatov, M.; Jones, G.; Sabitova, M.; Kozakov, D. Protein–protein and protein–peptide docking with ClusPro server. Methods Mol. Biol., 2020, 2165, 157-174.
[http://dx.doi.org/10.1007/978-1-0716-0708-4_9] [PMID: 32621224]
[48]
Lionta, E.; Spyrou, G.; Vassilatis, D.; Cournia, Z. Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Curr. Top. Med. Chem., 2014, 14(16), 1923-1938.
[http://dx.doi.org/10.2174/1568026614666140929124445] [PMID: 25262799]
[49]
Shoichet, B.K. Virtual screening of chemical libraries. Nature, 2004, 432(7019), 862-865.
[http://dx.doi.org/10.1038/nature03197] [PMID: 15602552]
[50]
Good, A. Structure-based virtual screening protocols. Curr. Opin. Drug Discov. Devel., 2001, 4(3), 301-307.
[PMID: 11560062]
[51]
Villoutreix, B.; Eudes, R.; Miteva, M. Structure-based virtual ligand screening: Recent success stories. Comb. Chem. High Throughput Screen., 2009, 12(10), 1000-1016.
[http://dx.doi.org/10.2174/138620709789824682] [PMID: 20025565]
[52]
Low, Z.Y.; Farouk, I.A.; Lal, S.K. Drug repositioning: New approaches and future prospects for life-debilitating diseases and the COVID-19 pandemic outbreak. Viruses, 2020, 12(9), 1058.
[http://dx.doi.org/10.3390/v12091058] [PMID: 32972027]
[53]
Ma, D.L.; Chan, D.S.H.; Leung, C.H. Drug repositioning by structure-based virtual screening. Chem. Soc. Rev., 2013, 42(5), 2130-2141.
[http://dx.doi.org/10.1039/c2cs35357a] [PMID: 23288298]
[54]
Hijikata, A.; Shionyu, C.; Nakae, S.; Shionyu, M.; Ota, M.; Kanaya, S.; Shirai, T. Current status of structure-based drug repurposing against COVID-19 by targeting SARS-CoV-2 proteins. Biophys. Physicobiol., 2021, 18(0), 226-240.
[http://dx.doi.org/10.2142/biophysico.bppb-v18.025] [PMID: 34745807]
[55]
Kaserer, T.; Beck, K.; Akram, M.; Odermatt, A.; Schuster, D. Pharmacophore models and pharmacophore-based virtual screening: Con-cepts and applications exemplified on hydroxysteroid dehydrogenases. Molecules, 2015, 20(12), 22799-22832.
[http://dx.doi.org/10.3390/molecules201219880] [PMID: 26703541]
[56]
Mortier, J.; Dhakal, P.; Volkamer, A. Truly target-focused pharmacophore modeling: A novel tool for mapping intermolecular surfaces. Molecules, 2018, 23(8), 1959.
[http://dx.doi.org/10.3390/molecules23081959] [PMID: 30082611]
[57]
Seidel, T.; Schuetz, D.A.; Garon, A.; Langer, T. The pharmacophore concept and its applications in computer-aided drug design. Prog. Chem. Org. Nat. Prod., 2019, 110, 99-141.
[http://dx.doi.org/10.1007/978-3-030-14632-0_4] [PMID: 31621012]
[58]
Kumar, P.; Kaalia, R.; Srinivasan, A.; Ghosh, I. Multiple target-based pharmacophore design from active site structures. SAR QSAR Environ. Res., 2018, 29(1), 1-19.
[http://dx.doi.org/10.1080/1062936X.2017.1401555] [PMID: 29243947]
[59]
Rampogu, S.; Lee, K.W. Pharmacophore modelling-based drug repurposing approaches for SARS-CoV-2 therapeutics. Front Chem., 2021, 9, 636362.
[http://dx.doi.org/10.3389/fchem.2021.636362] [PMID: 34041221]
[60]
Bitencourt-Ferreira, G.; de Azevedo, W.F. Jr Homology modeling of protein targets with MODELLER. Methods Mol. Biol., 2019, 2053, 231-249.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_15] [PMID: 31452109]
[61]
Shanmugam, A.; Natarajan, J. Homology modeling and docking analyses of M. leprae Mur ligases reveals the common binding residues for structure based drug designing to eradicate leprosy. J. Mol. Model., 2012, 18(6), 2659-2672.
[http://dx.doi.org/10.1007/s00894-011-1285-z] [PMID: 22102165]
[62]
Shanmugam, A.; Natarajan, J. Comparative modeling of UDP-N-acetylmuramoyl-glycyl-D-glutamate-2, 6-diaminopimelate ligase from Mycobacterium leprae and analysis of its binding features through molecular docking studies. J. Mol. Model., 2012, 18(1), 115-125.
[http://dx.doi.org/10.1007/s00894-011-1039-y] [PMID: 21491188]
[63]
Muhammed, M.T.; Aki-Yalcin, E. Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chem. Biol. Drug Des., 2019, 93(1), 12-20.
[http://dx.doi.org/10.1111/cbdd.13388] [PMID: 30187647]
[64]
Krieger, E.; Nabuurs, S.B.; Vriend, G. Homology modeling. Methods Biochem. Anal., 2003, 44, 509-523.
[PMID: 12647402]
[65]
Cavasotto, C.N.; Phatak, S.S. Homology modeling in drug discovery: Current trends and applications. Drug Discov. Today, 2009, 14(13-14), 676-683.
[http://dx.doi.org/10.1016/j.drudis.2009.04.006] [PMID: 19422931]
[66]
Haddad, Y.; Adam, V.; Heger, Z. Ten quick tips for homology modeling of high-resolution protein 3D structures. PLOS Comput. Biol., 2020, 16(4), e1007449.
[http://dx.doi.org/10.1371/journal.pcbi.1007449] [PMID: 32240155]
[67]
Xiang, Z. Advances in homology protein structure modeling. Curr. Protein Pept. Sci., 2006, 7(3), 217-227.
[http://dx.doi.org/10.2174/138920306777452312] [PMID: 16787261]
[68]
Singh, T.U.; Parida, S.; Lingaraju, M.C.; Kesavan, M.; Kumar, D.; Singh, R.K. Drug repurposing approach to fight COVID-19. Pharmacol. Rep., 2020, 72(6), 1479-1508.
[http://dx.doi.org/10.1007/s43440-020-00155-6] [PMID: 32889701]
[69]
Fadlalla, M.; Ahmed, M.; Ali, M.; Elshiekh, A.A.; Yousef, B.A. Molecular docking as a potential approach in repurposing drugs against covid-19: A systematic review and novel pharmacophore models. Curr. Pharmacol. Rep., 2022, 8(3), 212-226.
[http://dx.doi.org/10.1007/s40495-022-00285-w] [PMID: 35381996]
[70]
de Oliveira, O.V.; Rocha, G.B.; Paluch, A.S.; Costa, L.T. Repurposing approved drugs as inhibitors of SARS-CoV-2 S-protein from molecular modeling and virtual screening. J. Biomol. Struct. Dyn., 2021, 39(11), 3924-3933.
[http://dx.doi.org/10.1080/07391102.2020.1772885] [PMID: 32448085]
[71]
Eweas, A.F.; Alhossary, A.A.; Abdel-Moneim, A.S. Molecular docking reveals ivermectin and remdesivir as potential repurposed drugs against SARS-CoV-2. Front. Microbiol., 2021, 11, 592908.
[http://dx.doi.org/10.3389/fmicb.2020.592908] [PMID: 33746908]
[72]
Braz, H.L.B.; Silveira, J.A.M.; Marinho, A.D.; de Moraes, M.E.A.; Moraes Filho, M.O.; Monteiro, H.S.A.; Jorge, R.J.B. In silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection. Int. J. Antimicrob. Agents, 2020, 56(3), 106119.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106119] [PMID: 32738306]
[73]
Skariyachan, S.; Gopal, D.; Chakrabarti, S.; Kempanna, P.; Uttarkar, A.; Muddebihalkar, A.G.; Niranjan, V. Structural and molecular basis of the interaction mechanism of selected drugs towards multiple targets of SARS-CoV-2 by molecular docking and dynamic simulation studies- deciphering the scope of repurposed drugs. Comput. Biol. Med., 2020, 126, 104054.
[http://dx.doi.org/10.1016/j.compbiomed.2020.104054] [PMID: 33074111]
[74]
Behera, S.K.; Mahapatra, N.; Tripathy, C.S.; Pati, S. Drug repurposing for identification of potential inhibitors against SARS-CoV-2 spike receptor-binding domain: An in silico approach. Indian J. Med. Res., 2021, 153(1 & 2), 132-143.
[PMID: 33818470]
[75]
Baig, A.M.; Khaleeq, A.; Syeda, H. Docking prediction of amantadine in the receptor binding domain of spike protein of SARS-CoV-2. ACS Pharmacol. Transl. Sci., 2020, 3(6), 1430-1433.
[http://dx.doi.org/10.1021/acsptsci.0c00172] [PMID: 33344913]
[76]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[77]
Lazniewski, M.; Dermawan, D.; Hidayat, S.; Muchtaridi, M.; Dawson, W.K.; Plewczynski, D. Drug repurposing for identification of potential spike inhibitors for SARS-CoV-2 using molecular docking and molecular dynamics simulations. Methods, 2022, 203, 498-510.
[http://dx.doi.org/10.1016/j.ymeth.2022.02.004] [PMID: 35167916]
[78]
Tsegay, K.B.; Adeyemi, C.M.; Gniffke, E.P.; Sather, D.N.; Walker, J.K.; Smith, S.E.P. A repurposed drug screen identifies compounds that inhibit the binding of the COVID-19 spike protein to ACE2. Front. Pharmacol., 2021, 12, 685308.
[http://dx.doi.org/10.3389/fphar.2021.685308] [PMID: 34194331]
[79]
Somadi, G.; Sivan, S.K. Identification of therapeutic target in S2 domain of SARS nCov-2 Spike glycoprotein: Key to design and discover drug candidates for inhibition of viral entry into host cell. J. Theor. Comput. Chem., 2020, 19(7), 2050028.
[http://dx.doi.org/10.1142/S0219633620500285]
[80]
Prajapat, M.; Shekhar, N.; Sarma, P.; Avti, P.; Singh, S.; Kaur, H.; Bhattacharyya, A.; Kumar, S.; Sharma, S.; Prakash, A.; Medhi, B. Virtual screening and molecular dynamics study of approved drugs as inhibitors of spike protein S1 domain and ACE2 interaction in SARS-CoV-2. J. Mol. Graph. Model., 2020, 101, 107716.
[http://dx.doi.org/10.1016/j.jmgm.2020.107716] [PMID: 32866780]
[81]
Shekhar, N.; Sarma, P.; Prajapat, M.; Avti, P.; Kaur, H.; Raja, A.; Singh, H.; Bhattacharya, A.; Sharma, S.; Kumar, S.; Prakash, A.; Medhi, B. In silico structure-based repositioning of approved drugs for spike glycoprotein S2 domain fusion peptide of SARS-CoV-2: Rationale from molecular dynamics and binding free energy calculations. mSystems, 2020, 5(5), e00382-20.
[http://dx.doi.org/10.1128/mSystems.00382-20] [PMID: 32963099]
[82]
Kouznetsova, V.L.; Zhang, A.; Miller, M.A.; Tatineni, M.; Greenberg, J.P.; Tsigelny, I.F. Potential SARS-CoV-2 spike protein-ACE2 interface inhibitors: Repurposing FDA-approved drugs. J. explor. res. pharmacol., 2022, 7(1), 17-29.
[83]
A Alzain, A.; Ismail, A.; Fadlelmola, M.; A Mohamed, M.; Mahjoub, M.; A Makki, A.; Elsaman, T. De novo design of novel spike glycoprotein inhibitors using e-pharmacophore modeling, molecular hybridization, ADMET, quantum mechanics and molecular dynamics studies for COVID-19. Pak. J. Pharm. Sci., 2022, 35(Suppl.), 313-321.
[PMID: 35228193]
[84]
Mohebbi, A.; Askari, F.S.; Sammak, A.S.; Ebrahimi, M.; Najafimemar, Z. Druggability of cavity pockets within SARS-CoV-2 spike glycoprotein and pharmacophore-based drug discovery. Future Virol., 2021, 16(6), 389-397.
[http://dx.doi.org/10.2217/fvl-2020-0394] [PMID: 34099962]
[85]
Chan, W.K.B.; Olson, K.M.; Wotring, J.W.; Sexton, J.Z.; Carlson, H.A.; Traynor, J.R. In silico analysis of SARS-CoV-2 proteins as targets for clinically available drugs. Sci. Rep., 2022, 12(1), 5320.
[http://dx.doi.org/10.1038/s41598-022-08320-y] [PMID: 35351926]
[86]
Awad, I.E.; Abu-Saleh, A.A.A.A.; Sharma, S.; Yadav, A.; Poirier, R.A. High-throughput virtual screening of drug databanks for potential inhibitors of SARS-CoV-2 spike glycoprotein. J. Biomol. Struct. Dyn., 2022, 40(5), 2099-2112.
[http://dx.doi.org/10.1080/07391102.2020.1835721] [PMID: 33103586]
[87]
Dhameliya, T.M.; Nagar, P.R.; Gajjar, N.D. Systematic virtual screening in search of SARS CoV-2 inhibitors against spike glycoprotein: Pharmacophore screening, molecular docking, ADMET analysis and MD simulations. Mol. Divers., 2022, 26(5), 2775-2792.
[http://dx.doi.org/10.1007/s11030-022-10394-9] [PMID: 35132518]
[88]
Choudhary, S.; Malik, Y.S.; Tomar, S. Identification of SARS-CoV-2 cell entry inhibitors by drug repurposing using in silico structure-based virtual screening approach. Front. Immunol., 2020, 11, 1664.
[http://dx.doi.org/10.3389/fimmu.2020.01664] [PMID: 32754161]
[89]
Odhar, H.A.; Ahjel, S.W.; Hashim, A.F.; Rayshan, A.M. Molecular docking and dynamics simulation of a screening library from life chemicals database for potential Protein-Protein Interactions (PPIs) inhibitors against SARS-CoV-2 Spike protein. J. Pharm. Res. Int., 2021, 33(20A), 74-84.
[http://dx.doi.org/10.9734/jpri/2021/v33i20A31350]
[90]
Gopinath, K.; Jokinen, E.M.; Kurkinen, S.T.; Pentikäinen, O.T. Screening of natural products targeting SARS-CoV-2–ACE2 receptor interface – A MixMD Based HTVS pipeline. Front Chem., 2020, 8, 589769.
[http://dx.doi.org/10.3389/fchem.2020.589769] [PMID: 33330376]
[91]
Gurung, A.B.; Ali, M.A.; Lee, J.; Farah, M.A.; Al-Anazi, K.M. Identification of potential SARS-CoV-2 entry inhibitors by targeting the interface region between the spike RBD and human ACE2. J. Infect. Public Health, 2021, 14(2), 227-237.
[http://dx.doi.org/10.1016/j.jiph.2020.12.014] [PMID: 33493919]
[92]
Adeoye, A.O.; Oso, B.J.; Olaoye, I.F.; Tijjani, H.; Adebayo, A.I. Repurposing of chloroquine and some clinically approved antiviral drugs as effective therapeutics to prevent cellular entry and replication of coronavirus. J. Biomol. Struct. Dyn., 2021, 39(10), 3469-3479.
[http://dx.doi.org/10.1080/07391102.2020.1765876] [PMID: 32375574]
[93]
Trezza, A.; Iovinelli, D.; Santucci, A.; Prischi, F.; Spiga, O. An integrated drug repurposing strategy for the rapid identification of potential SARS-CoV-2 viral inhibitors. Sci. Rep., 2020, 10(1), 13866.
[http://dx.doi.org/10.1038/s41598-020-70863-9] [PMID: 32807895]
[94]
Chen, H.F.; Hsueh, P.R.; Liu, Y.Y.; Chen, Y.; Chang, S.Y.; Wang, W.J.; Wu, C.S.; Tsai, Y.M.; Liu, Y.S.; Su, W.C.; Chou, Y.C.; Hung, M.C. Disulfiram blocked cell entry of SARS-CoV-2 via inhibiting the interaction of spike protein and ACE2. Am. J. Cancer Res., 2022, 12(7), 3333-3346.
[PMID: 35968340]
[95]
Zhai, J.; He, X.; Man, V.H.; Sun, Y.; Ji, B.; Cai, L.; Wang, J. A multiple-step in silico screening protocol to identify allosteric inhibitors of Spike–hACE2 binding. Phys. Chem. Chem. Phys., 2022, 24(7), 4305-4316.
[http://dx.doi.org/10.1039/D1CP04736A] [PMID: 35107459]
[96]
Olotu, F.A.; Omolabi, K.F.; Soliman, M.E.S. Leaving no stone unturned: Allosteric targeting of SARS-CoV-2 spike protein at putative druggable sites disrupts human angiotensin-converting enzyme interactions at the receptor binding domain. Informatics in Medicine Unlocked, 2020, 21, 100451.
[http://dx.doi.org/10.1016/j.imu.2020.100451] [PMID: 33083517]
[97]
Alvarado, W.; Perez-Lemus, G.R.; Menéndez, C.A.; Byléhn, F.; de Pablo, J.J. Molecular characterization of COVID-19 therapeutics: Luteolin as an allosteric modulator of the spike protein of SARS-CoV-2. Mol. Syst. Des. Eng., 2022, 7(1), 58-66.
[http://dx.doi.org/10.1039/D1ME00119A]
[98]
Moroy, G.; Tuffery, P. Peptide-based strategies against sars-cov-2 attack: An updated in silico perspective. Frontiers in Drug Discovery, 2022, 2, 899477.
[http://dx.doi.org/10.3389/fddsv.2022.899477]
[99]
VanPatten, S.; He, M.; Altiti, A.; F Cheng, K.; Ghanem, M.H.; Al-Abed, Y. Evidence supporting the use of peptides and peptidomimetics as potential SARS-CoV-2 (COVID-19) therapeutics. Future Med. Chem., 2020, 12(18), 1647-1656.
[http://dx.doi.org/10.4155/fmc-2020-0180] [PMID: 32672061]
[100]
Bansal, P.; Kumar, R.; Singh, J.; Dhanda, S. In silico molecular docking of SARS-CoV-2 surface proteins with microbial non-ribosomal peptides: Identification of potential drugs. J. Proteins Proteom, 2021, 1-8.
[101]
Rajpoot, S.; Ohishi, T.; Kumar, A.; Pan, Q.; Banerjee, S.; Zhang, K.Y.J.; Baig, M.S. A novel therapeutic peptide blocks sars-cov-2 spike protein binding with host cell ACE2 receptor. Drugs R D., 2021, 21(3), 273-283.
[http://dx.doi.org/10.1007/s40268-021-00357-0] [PMID: 34324175]
[102]
Chowdhury, S.M.; Talukder, S.A.; Khan, A.M.; Afrin, N.; Ali, M.A.; Islam, R.; Parves, R.; Al Mamun, A.; Sufian, M.A.; Hossain, M.N.; Hossain, M.A.; Halim, M.A. Antiviral peptides as promising therapeutics against SARS-CoV-2. J. Phys. Chem. B, 2020, 124(44), 9785-9792.
[http://dx.doi.org/10.1021/acs.jpcb.0c05621] [PMID: 33095007]
[103]
Shah, J.N.; Guo, G.Q.; Krishnan, A.; Ramesh, M.; Katari, N.K.; Shahbaaz, M.; Abdellattif, M.H.; Singh, S.K.; Dua, K. Peptides-based therapeutics: Emerging potential therapeutic agents for COVID-19. Therapie, 2022, 77(3), 319-328.
[http://dx.doi.org/10.1016/j.therap.2021.09.007] [PMID: 34689960]
[104]
Zhao, H.; To, K.K.W.; Lam, H.; Zhou, X.; Chan, J.F.W.; Peng, Z.; Lee, A.C.Y.; Cai, J.; Chan, W.M.; Ip, J.D.; Chan, C.C.S.; Yeung, M.L.; Zhang, A.J.; Chu, A.W.H.; Jiang, S.; Yuen, K.Y. Cross-linking peptide and repurposed drugs inhibit both entry pathways of SARS-CoV-2. Nat. Commun., 2021, 12(1), 1517.
[http://dx.doi.org/10.1038/s41467-021-21825-w] [PMID: 33750821]
[105]
Egieyeh, S.; Egieyeh, E.; Malan, S.; Christofells, A.; Fielding, B. Computational drug repurposing strategy predicted peptide-based drugs that can potentially inhibit the interaction of SARS-CoV-2 spike protein with its target (humanACE2). PLoS One, 2021, 16(1), e0245258.
[http://dx.doi.org/10.1371/journal.pone.0245258] [PMID: 33417604]
[106]
AlAjmi, M.F.; Azhar, A.; Owais, M.; Rashid, S.; Hasan, S.; Hussain, A.; Rehman, M.T. Antiviral potential of some novel structural analogs of standard drugs repurposed for the treatment of COVID-19. J. Biomol. Struct. Dyn., 2021, 39(17), 6676-6688.
[http://dx.doi.org/10.1080/07391102.2020.1799865] [PMID: 32729392]
[107]
Patel, A.; Rajendran, M.; Shah, A.; Patel, H.; Pakala, S.B.; Karyala, P. Virtual screening of curcumin and its analogs against the spike surface glycoprotein of SARS-CoV-2 and SARS-CoV. J. Biomol. Struct. Dyn., 2022, 40(11), 5138-5146.
[PMID: 33397223]
[108]
Teli, D.M.; Shah, M.B.; Chhabria, M.T. In silico screening of natural compounds as potential inhibitors of SARS-CoV-2 main protease and spike RBD: Targets for COVID-19. Front. Mol. Biosci., 2021, 7, 599079.
[http://dx.doi.org/10.3389/fmolb.2020.599079] [PMID: 33542917]
[109]
Omoboyowa, D.A.; Balogun, T.A.; Chukwudozie, O.S.; Nweze, V.N.; Saibu, O.A.; Abdulahi, A. SARS-COV-2 spike glycoprotein as inhibitory target for in silico screening of natural compounds. Biointerface Res. Appl. Chem., 2021, 11(6), 14975-14985.
[110]
Kothandan, R.; Rajan, C.A.S.G.; Arjun, J.; Raj, R.R.M.; Syed, S. Virtual screening of phytochemical compounds as potential inhibitors against SARS-CoV-2 infection. Beni. Suef Univ. J. Basic Appl. Sci., 2021, 10(1), 9.
[http://dx.doi.org/10.1186/s43088-021-00095-x] [PMID: 33527080]
[111]
Nallusamy, S.; Mannu, J.; Ravikumar, C.; Angamuthu, K.; Nathan, B.; Nachimuthu, K.; Ramasamy, G.; Muthurajan, R.; Subbarayalu, M.; Neelakandan, K. Exploring phytochemicals of traditional medicinal plants exhibiting inhibitory activity against main protease, spike glycoprotein, RNA-dependent RNA polymerase and non-structural proteins of SARS-CoV-2 through virtual screening. Front. Pharmacol., 2021, 12, 667704.
[http://dx.doi.org/10.3389/fphar.2021.667704] [PMID: 34305589]
[112]
Sarkar, A.; Sen, D.; Sharma, A.; Muttineni, R.K.; Debnath, S. Structure-based virtual screening and molecular dynamics simulation to identify potential SARS-CoV-2 spike receptor inhibitors from natural compound database. Pharm. Chem. J., 2021, 55(5), 441-453.
[http://dx.doi.org/10.1007/s11094-021-02441-w] [PMID: 34426710]
[113]
Power, H.; Wu, J.; Turville, S.; Aggarwal, A.; Valtchev, P.; Schindeler, A.; Dehghani, F. Virtual screening and in vitro validation of natural compound inhibitors against SARS-CoV-2 spike protein. Bioorg. Chem., 2022, 119, 105574.
[http://dx.doi.org/10.1016/j.bioorg.2021.105574] [PMID: 34971947]
[114]
Zhang, D.; Hamdoun, S.; Chen, R.; Yang, L.; Ip, C.K.; Qu, Y.; Li, R.; Jiang, H.; Yang, Z.; Chung, S.K.; Liu, L.; Wong, V.K.W. Identification of natural compounds as SARS-CoV-2 entry inhibitors by molecular docking-based virtual screening with bio-layer interferometry. Pharmacol. Res., 2021, 172, 105820.
[http://dx.doi.org/10.1016/j.phrs.2021.105820] [PMID: 34403732]
[115]
Chlamydas, S.; Papavassiliou, A.G.; Piperi, C. Epigenetic mechanisms regulating COVID-19 infection. Epigenetics, 2021, 16(3), 263-270.
[http://dx.doi.org/10.1080/15592294.2020.1796896] [PMID: 32686577]
[116]
Pruimboom, L. Methylation pathways and SARS-CoV-2 lung infiltration and cell membrane-virus fusion are both subject to epigenetics. Front. Cell. Infect. Microbiol., 2020, 10, 290.
[http://dx.doi.org/10.3389/fcimb.2020.00290] [PMID: 32574283]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy