Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Research Article

Evaluating the Mitigation Effect of Spirulina Against Radiation-Induced Heart Injury

Author(s): Mohammad Hootan Ahmadvand, Safoora Nikzad*, Sayed Payam Hashemi, Alireza khoshghadam, Fereshte Kalhori and Fatemeh Mirzaei

Volume 16, Issue 1, 2023

Published on: 07 November, 2022

Page: [78 - 83] Pages: 6

DOI: 10.2174/1874471016666221027142145

Price: $65

conference banner
Abstract

Background: During a radiological or nuclear disaster, exposure to a high dose of ionizing radiation usually results in cardiovascular diseases such as heart failure, attack, and ischemia.

Objective: The purpose of this study was to examine the mitigation effects of Spirulina in comparison to Metformin's.

Methods: 25 male Wistar rats were randomly assigned to five groups (5 rats in each): for the control group, rats did not receive any intervention. In group 2, spirulina was administered orally to rats. In group 3, rats were irradiated to the chest region with 15 Gray(Gy) x-radiation. In groups 4 and 5, rats were irradiated in the same way as group 3. Forty-eight hours after irradiation, treatment with Spirulina and Metformin began. All rats were sacrificed after ten weeks, and their heart tissues were removed for histopathological and biochemical assays.

Results: Results showed an elevation in Malondialdehyde (MDA) and decreasing superoxide dismutase (SOD) activity. Moreover, pathological changes of radiation were irregularities in the arrangement of myofibrils, proliferation, migration of mononuclear cells, vacuolation of the cytoplasm, and congestion. Administration of spirulina enhanced the SOD activity while did not affect MDA level and pathological change in heart tissue. Despite spirulina, metformin had a considerable effect on pathological lesions and decreased the level of MDA.

Conclusion: Reactive oxygen species (ROS) may be involved in the late effects of radiationinduced heart injury, and scavenging these particles may contribute to reduced radiation side effects. Based on these results, Spirulina had no effect on radiation-induced cardiac damage, while metformin did. Higher Spirulina doses given over a longer period of time will likely have a greater heart-mitigate effect.

Keywords: Spirulina, mitigation, radiation, oxidative stress, heart disease, radio thesapy.

« Previous
Graphical Abstract
[1]
Gurses, I.; Ozeren, M.; Serin, M.; Yucel, N.; Erkal, H.S. Histopathological efficiency of amifostine in radiation-induced heart disease in rats. Bratisl. Med. J., 2018, 119(1), 54-59.
[http://dx.doi.org/10.4149/BLL_2018_011] [PMID: 29405732]
[2]
Slezak, J.; Kura, B.; Babal, P.; Barancik, M.; Ferko, M.; Frimmel, K.; Kalocayova, B.; Kukreja, R.C.; Lazou, A.; Mezesova, L.; Okruhlicova, L.; Ravingerova, T.; Singal, P.K.; Szeiffova, B.B.; Viczenczova, C.; Vrbjar, N.; Tribulova, N. Potential markers and metabolic processes involved in the mechanism of radiation-induced heart injury. Can. J. Physiol. Pharmacol., 2017, 95(10), 1190-1203.
[http://dx.doi.org/10.1139/cjpp-2017-0121] [PMID: 28750189]
[3]
Ping, Z.; Peng, Y.; Lang, H.; Xinyong, C.; Zhiyi, Z.; Xiaocheng, W.; Hong, Z.; Liang, S. Oxidative stress in radiation-induced cardiotoxicity. Oxid. Med. Cell. Longev., 2020, 2020, 3579143.
[http://dx.doi.org/10.1155/2020/3579143] [PMID: 32190171]
[4]
Karam, H.M.; Radwan, R.R. Metformin modulates cardiac endothelial dysfunction, oxidative stress and inflammation in irradiated rats: A new perspective of an antidiabetic drug. Clin. Exp. Pharmacol. Physiol., 2019, 46(12), 1124-1132.
[http://dx.doi.org/10.1111/1440-1681.13148] [PMID: 31357226]
[5]
Boerma, M; Sridharan, V; Mao, XW; Nelson, GA; Cheema, AK; Koturbash, I; Singh, SP; Tackett, AJ; Hauer, J.M. Effects of ionizing radiation on the heart. Mutat. Res. Rev. Mutat. Res., 2016, 770(Pt B), 319-327.
[http://dx.doi.org/10.1016/j.mrrev.2016.07.003]
[6]
Wang, H.; Wei, J.; Zheng, Q.; Meng, L.; Xin, Y.; Yin, X.; Jiang, X. Radiation-induced heart disease: A review of classification, mechanism and prevention. Int. J. Biol. Sci., 2019, 15(10), 2128-2138.
[http://dx.doi.org/10.7150/ijbs.35460] [PMID: 31592122]
[7]
Wu, Q.; Liu, L.; Miron, A.; Klímová, B.; Wan, D.; Kuča, K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: An overview. Arch. Toxicol., 2016, 90(8), 1817-1840.
[http://dx.doi.org/10.1007/s00204-016-1744-5] [PMID: 27259333]
[8]
Rehab, M.; Ibrahim, M. Evaluation of the effect of Spirulina against gamma irradiation induced oxidative stress and tissue injury in rats. Int. J. Appl. Sci. Eng. Res., 2012, 5(1), 152-164.
[9]
Kolivand, S.; Amini, P.; Saffar, H.; Rezapoor, S.; Motevaseli, E.; Najafi, M.; Nouruzi, F.; Shabeeb, D.; Musa, A.E. Evaluating the radioprotective effect of curcumin on rat’s heart tissues. Curr. Radiopharm., 2019, 12(1), 23-28.
[http://dx.doi.org/10.2174/1874471011666180831101459] [PMID: 30173659]
[10]
Azmoonfar, R.; Amini, P.; Saffar, H.; Rezapoor, S.; Motevaseli, E.; Cheki, M.; Yahyapour, R.; farhood, B.; Nouruzi, F.; Khodamoradi, E.; Shabeeb, D.; Eleojo Musa, A.; Najafi, M. Metformin protects against radiation-induced pneumonitis and fibrosis and attenuates upregulation of dual oxidase genes expression. Adv. Pharm. Bull., 2018, 8(4), 697-704.
[http://dx.doi.org/10.15171/apb.2018.078] [PMID: 30607342]
[11]
Najafi, M.; Rezaeyan, A.; Haddadi, G.H.; Hosseinzadeh, M.; Moradi, M. Radioprotective effects of hesperidin on oxidative damages and histopathological changes induced by X-irradiation in rats heart tissue. J. Med. Phys., 2016, 41(3), 182-191.
[http://dx.doi.org/10.4103/0971-6203.189482] [PMID: 27651565]
[12]
Aldina, R.; Haryati, S.W. Effect of spirulina platensis extract on Vascular Endothelial Growth Factor (VEGF) expression in corneal inflammation in rat (rattus novergicus) strain wistar. Eur Asian J Biosci, 2019, 13(2), 823-829.
[13]
Ismail, M.; Hossain, M.F.; Tanu, A.R.; Shekhar, H.U. Effect of spirulina intervention on oxidative stress, antioxidant status, and lipid profile in chronic obstructive pulmonary disease patients. BioMed Res. Int., 2015, 2015, 486120.
[http://dx.doi.org/10.1155/2015/486120] [PMID: 25685791]
[14]
Aziz, M.M.; Eid, N.I.; Nada, A.S.; Amin, N.E.D.; Ain, S.A.A. Possible protective effect of the algae spirulina against nephrotoxicity induced by cyclosporine A and/or gamma radiation in rats. Environ. Sci. Pollut. Res. Int., 2018, 25(9), 9060-9070.
[http://dx.doi.org/10.1007/s11356-017-1146-0] [PMID: 29333572]
[15]
Najafi, M.; Shirazi, A.; Motevaseli, E.; Geraily, G.; Amini, P.; Tooli, L.F.; Shabeeb, D. Melatonin modulates regulation of NOX2 and NOX4 following irradiation in the lung. Curr. Clin. Pharmacol., 2019, 14(3), 224-231.
[http://dx.doi.org/10.2174/1574884714666190502151733] [PMID: 31057124]
[16]
Yahyapour, R.; Amini, P.; Saffar, H.; Rezapoor, S.; Motevaseli, E.; Cheki, M.; Farhood, B.; Nouruzi, F.; Shabeeb, D.; Eleojo, M.A.; Najafi, M. Metformin protects against radiation-induced heart injury and attenuates the upregulation of dual oxidase genes following rat’s chest irradiation. Int. J. Mol. Cell. Med., 2018, 7(3), 193-202.
[http://dx.doi.org/10.22088/IJMCM.BUMS.7.3.193] [PMID: 31565651]
[17]
Farhood, B.; Aliasgharzadeh, A.; Amini, P.; Saffar, H.; Motevaseli, E.; Rezapoor, S.; Nouruzi, F.; Shabeeb, D.; Eleojo, M.A.; Ashabi, G.; Mohseni, M.; Moradi, H.; Najafi, M. Radiation-induced dual oxidase upregulation in rat heart tissues: Protective effect of melatonin. Medicina, 2019, 55(7), 317.
[http://dx.doi.org/10.3390/medicina55070317] [PMID: 31252673]
[18]
Kolivand, S.; Amini, P.; Saffar, H.; Rezapoor, S.; Najafi, M.; Motevaseli, E.; Nouruzi, F.; Shabeeb, D.; Eleojo, M.A. Selenium-L-methionine modulates radiation injury and Duox1 and Duox2 upregulation in rat’s heart tissues. J. Cardiovasc. Thorac. Res., 2019, 11(2), 121-126.
[http://dx.doi.org/10.15171/jcvtr.2019.21] [PMID: 31384406]
[19]
Wang, Y.W.; He, S.J.; Feng, X.; Cheng, J.; Luo, Y.T.; Tian, L.; Huang, Q. Metformin: A review of its potential indications. Drug Des. Devel. Ther., 2017, 11, 2421-2429.
[http://dx.doi.org/10.2147/DDDT.S141675] [PMID: 28860713]
[20]
Cosar, R.; Ozen, A.; Tastekin, E.; Sut, N.; Cakina, S.; Demir, S.; Parlar, S.; Nurlu, D.; Kavuzlu, Y.; Koçak, Z. Does gender difference effect radiation-induced lung toxicity? An experimental study by genetic and histopathological predictors. Radiat. Res., 2021, 197(3), 280-288.
[http://dx.doi.org/10.1667/RADE-21-00075.1] [PMID: 34735567]
[21]
Henderson, M.A.; Valluri, S.; DesRosiers, C.; Lopez, J.T.; Batuello, C.N.; Caperell, G.A.; Mendonca, M.S.; Powers, E.M.; Bigsby, R.M.; Dynlacht, J.R. Effect of gender on radiation-induced cataractogenesis. Radiat. Res., 2009, 172(1), 129-133.
[http://dx.doi.org/10.1667/RR1589.1] [PMID: 19580515]
[22]
Ahmadvand, M.H.; Nikzad, S.; Changizi, V.; Pashaki, A.S.; Najafi, M.; Mirzaei, F. Evaluation of the mitigation effect of spirulina against lung injury induced by radiation in rats. Curr. Radiopharm., 2022, 15.
[http://dx.doi.org/10.2174/1874471015666220418133919] [PMID: 35440331]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy